
Have Variability Tools Fulfilled the Needs of the Software

Industry?

Ana Paula Allian

(State University of Maringá and

University of São Paulo

Maringá, Brazil

ana.allian@usp.br)

Edson OliveiraJr

(State University of Maringá

Maringá, Brazil

edson@din.uem.br)

Rafael Capilla

(Rey Juan Carlos University

Madrid, Spain

rafael.capilla@urjc.es)

Elisa Yumi Nakagawa

(University of São Paulo

São Carlos, Brazil

elisa@icmc.usp.br)

Abstract: For nearly 30 years, industry and researchers have proposed many soft-
ware variability tools to cope with the complexity of modeling variability in software
development, followed by a number of publications on variability techniques built upon
theoretical foundations. After more than 25 years of the practice of software variabil-
ity, there are not many studies investigating the impact of software variability tools
in the industry and the perception of practitioners. For this reason, we investigate in
this research work how existing software variability tools fulfill the needs of companies
demanding this kind of tool support. We conducted a survey with practitioners from
companies in eight different countries in order to analyze the missing capabilities of
software variability management tools and we compared the results of the survey with
the scientific literature through a systematic mapping study (SMS) to analyze if the
proposed solutions cover the needs required by practitioners. Our major findings in-
dicate that many tools lack important qualities such as interoperability, collaborative
work, code generation, scalability, impact analysis, and test; while the results from the
SMS showed these such capabilities are, to some extent, found in some of the existing
tools.

Key Words: Software Variability Tools, Systematic Mapping Study, Interoperability,
Scalability

Category: D.2, D.2.2, D.2.11, D.2.13

 Journal of Universal Computer Science, vol. 26, no. 10 (2020), 1282-1311
 submitted: 26/2/20, accepted: 27/10/20, appeared: 28/10/20 CC BY-ND 4.0

1 Introduction

For almost three decades software variability has been proven as the major soft-

ware technique to describe the commonalities and variabilities of software sys-

tems and enabling the adoption of Software Product Lines for an effective mass-

customization of products and tailored for different market segments [ISO/IEC,

2013a]. Variability is a significant ability of almost all software systems and not

just related to the software product line (SPL) [Hilliard, 2010]. Due to its im-

portance, variability should be managed properly throughout the software life

cycle [Pohl et al., 2005], changing the development process, from requirements to

implementation [Sierszecki et al., 2014]. The International Organization for Stan-

dardization (ISO) established ISO/IEC 26550, which encompasses a set of activi-

ties to create and maintain variants in all software development phases [ISO/IEC,

2013a]. Besides this, another standard, ISO/IEC 26555 [ISO/IEC, 2013b], estab-

lishes that variability management [Capilla et al., 2013] shall support variability

models, variability binding times, variability documentation, variability tracing,

and variability control and evolution. More importantly, software variability tools

facilitating the modeling and maintenance of large variability models is an im-

portant concern, especially in industrial settings [ISO/IEC, 2012].

To date, we have witnessed the evolution of a significant variety of research

software variability tools exhibiting different capabilities and according to the

evolution of software variability modeling approaches. Also, a couple of commer-

cial tools (i.e. GEARS and pure::variants) are preferred by industry to launch a

product line approach. Many of the research, open-source, and commercial tools

exhibit different capabilities (e.g., automatic code generation and traceability)

but there are important lacks and concerns not properly addressed by one sin-

gle tool. First, interoperability between different data formats supporting the

variability models and to other software artifacts like software requirements is

an important concern for the plethora of existing software variability tools. Sec-

ond, many tools lack proper visualization capabilities able to display properly

large variability models. Third, almost none of the tools are prepared to support

runtime variability concerns, maybe because customers still don’t demand this

kind of facilities and systems are reconfigured at post-deployment time using a

different approach. Thus, the desired scalability to have open variability models

changing variants at any time is the capability to be supported in the future.

Fourth, modeling context variability and its integration with context-oriented

programming languages are non-existent. Finally, code generation once variabil-

ity models are configured is a capability provided only by some tools.

The main contribution of this work is to present both the state of the prac-

tice and the state of the art on software variability tools and main capabilities

still required by industry. To find the state of the practice, we firstly identified

the tools known by practitioners from industry, their use, and the capabilities

1283Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

still uncovered by such tools, by conducting a survey widely distributed in many

companies, from which we had 28 respondents from eight different countries. Ad-

ditionally, we conducted a systematic mapping study (SMS) aiming at analyzing

whether the capabilities required by practitioners have been already solved by

solutions found in the state of the art identified in the literature. As the main

result, the most missing capabilities in tools used in industry are interoperability,

collaborative work, code generation, scalability, impact analysis, and test, while

the SMS revealed no single tool offers all desired capabilities required by prac-

titioners and existing tools are not also prepared to support the development

of large, complex software-intensive systems in iterative, distributed software

development processes.

This article is structured as follows: Section 2 describes some related works to

this research. In Section 3 we outline the research method to conduct this study;

Section 4 presents results of the survey; Section 5 discusses results of the SMS;

Section 6 provides the discussion putting together results of both survey and

SMS; Section 7 presents the threat to validity of our work; and, finally, Section

8 concludes this work.

2 Related Works

Several research works have already investigated software variability tools. [Lis-

boa et al., 2010] performed a systematic literature review (SLR) on domain anal-

ysis tools including variability tools, and identified whether such tools could doc-

ument common and variability features of software systems; besides, important

functionalities were identified, such as planning (to collect data and identify

domain features based on scope definition), modeling (to represent and model

mandatory and variable features), and validation (to validate consistencies in

variability models). Following, [Pereira et al., 2015] conducted an SLR on SPL

tools and variability tools and classified them into the same classification previ-

ously found by [Lisboa et al., 2010]. Moreover, [Benavides et al., 2010] performed

a comprehensive literature review on tools to the automated analysis of feature

models, covering only some tools identified in our study. These three studies

brought an important panorama on variability tools, but none addressed the use

of these tools in the industry.

[Berger et al., 2013, Berger et al., 2014] reported results of interviews with

industry practitioners about the use of variability tools (including variability

modeling), their benefits and limitations, but limited to the use in the SPL

context, while some variability tools are missing in their analysis. [Bhumula,

2013] performed an online survey to identify variability tools in use and carried

out a comparative analysis on 14 tools organizing them into different criteria

(governance issues and technical aspects like variability approach, visualization

1284 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

of feature models, binding time, and feature types). This author recommended

a set of best tools for industry but did not consider a complete list of tools and

also the results have been published six years ago.

In a more recent study, [Bashroush et al., 2017a] identified using a system-

atic literature review (SLR) a comprehensive list of variability tools used in the

context of software product lines. Complemented by a survey with industry prac-

titioners the authors look for the five most important quality attributes of SPL

tools, such as performance, scalability, integration, and usability. As a result, the

authors found that most tools did not mention the quality attributes pointed

out by practitioners. Although this study is closely related to our work, they

didn’t analyze major capabilities in the tools missed by practitioners. Compared

to our work, we cover more tools than [Bashroush et al., 2017a] and specific to

software variability management, not to support of the software product line

engineering practice. Also, instead of analyzing the adoption of the tools by in-

dustry, we investigated the exiting and missing capabilities of the tools providing

a complimentary analysis to previous works.

Other related works, like [Mahdavi-Hezavehi et al., 2013], provide a system-

atic literature review about variability in quality attributes of service-based sys-

tems but the study describes only the qualitative part and find evidence of

methods for handling variability in quality attributes which can be applicable

to design-time and run-time. In [Raatikainen et al., 2019] the authors describe

a tertiary study on software product lines and variability modeling but the au-

thors focus only on the variability modeling part neglecting other dimensions

supported by current variability management tools but also they don’t provide

any discussion about such tools. Finally, a similar study to ours described in

[Bashroush et al., 2017b], the authors perform a systematic literature review of

37 software variability management tools in order to understand the tools’ char-

acteristics and their maturity. Although the analyzed the main characteristics

of the tools, the final selection to compare these tools is based on their ability

to support a product line approach and not specific for variability management

only. Therefore, although we share some comment goals and results regarding

the important features identified, our work provides some additional results not

found in this work.

3 Research Method

Our research method involved three main activities: (i) conduction of a survey;

(ii) conduction of an SMS; (iii) mapping of capabilities in variability tools re-

quired by industry with capabilities found in the SMS. Details on the design and

execution of both survey and SMS are presented in this section (Subsections 3.1

and 3.2), while analysis of the results from the survey and SMS are discussed

1285Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

1286 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

– Q1: Which software variability tool(s) have you used?

Rationale: We would like to find variability tools used by practitioners in

software projects.

– Q2: How easy is it to use software variability tool(s)?

Rationale: We would like to know if existing tools are easy to be used from

the practitioners’ perspective.

– Q3: Which capabilities do you miss in software variability tools and which

others could be improved?

Rationale: We would like to identify the main capabilities still required by

industry in variability tools.

We adopted a self-administered, cross-sectional, and exploratory survey ac-

cording to [Molléri et al., 2016]. By being self-administered, respondents could

answer in writing a set of questions; by being cross-sectional, we could gather a

snapshot in time, as this survey could give us an idea on how things are for our

respondents; finally, by being exploratory, we could focus on taking advantage of

the respondent’s experience to identify capabilities of software variability tools.

To reach wider dissemination of this survey, we designed the questionnaire

using an online survey3. Before distributing this questionnaire, it was systemat-

ically evaluated by two experienced researchers on software variability.

Regarding the survey execution, we divided it into two phases. In Phase 1,

we invited by e-mail 44 practitioners from SME and large companies and people

involved in past SPL Hall of Fame4 projects. In addition, we asked practitioners

to forward the questionnaire or suggest other potential respondents. By sending a

personal invitation, in some cases, emails were exchanged to explain the intention

of the survey. We got 19 responses but unfortunately none from HoF projects.

However, in order to increase the confidence of the responses, we only considered

subjects with at least three years of experience using software variability tools. In

Phase 2, we extended the survey to researchers from academia with an experience

similar to the industry practitioners in the development, evaluation, and use of

variability tools. We invited 25 researchers, 9 of them answered the questionnaire.

Finally, we had a total of 28 respondents from 8 different countries.

3.2 SMS Planning and Execution

To systematize the SMS conduction, we followed the SMS guidelines [Petersen

et al., 2015, Kitchenham and Charters, 2007], and herein we present the main

elements of this protocol that was rigorously established to reduce the possibility

3 LimeSurvey, available in https://www.limesurvey.org.
4 http://splc.net/hall-of-fame/

1287Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

of biases. First of all, considering that the specific objectives of this SMS were to

identify existing variability tools or prototypes found in the literature and their

capabilities, we established the following research questions (RQs):

– RQ1: Which software variability tools (even as a prototype) have been pub-

lished in the literature?

– RQ2: Which are the main capabilities of these variability tools?

Regarding the search strategy, which supports the identification and retrieval

of as many relevant studies as possible, a search string was defined using terms

that entailed the most appropriate keywords pertaining to the scope of this SMS:

((”variability management” OR ”variation point” OR ”feature model*”) AND

(SPL OR ”product line” OR ”product-line” OR ”product family” OR ”family

of products” OR ”systems family” OR ”family of systems”) AND (tool*))

Following, primary studies were collected from February to April, 2019 from

the most important electronic databases for computing: ACM Digital Library

(ACM DL), IEEE Xplore Digital Library, Google Scholar, Ei Compendex, Sci-

ence Direct, and Scopus. The search string was used against the metadata (ti-

tles, keywords, and/or abstracts) of selected databases. In particular, as Google

Scholar does not support complex strings, the search was made using the ad-

vanced Google tool by combining the keyword according to search operators5.

Because of the variety in the search mechanisms of these databases, we run dif-

ferent search queries, totaling 1,138 studies recovered (112 from ACM DL, 107

from IEEE Xplore Digital Library, 109 from Google Scholar, 236 from Ei Com-

pendex, 97 from Science Direct, and 477 from Scopus). Studies were imported

into the Mendeley tool and 382 duplicated studies were automatically removed,

remaining 756 unique ones.

For the selection of studies, we defined one inclusion criterion (IC) and two

exclusion criteria (EC):

– IC1: The study is a peer-reviewed scientific publication that addresses soft-

ware variability tool(s).

– EC1: The study is related to software variability tools without describing

capabilities or availing any documentation.

– EC2: The study presents the same tool already presented in a more complete

study.

5 Advanced Operators for Google Searchhttp://www.googleguide.com/advanced_
operators_reference.html

1288 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

– EC3: The study is a short paper, editorial, keynote, opinion, tutorial, poster

or panel.

– EC4: The study is not written in English.

– EC5: The study is a non-peer-reviewed publication.

– EC6: The full text of the study is not available.

We applied these criteria in two rounds of selection. In the first one, the

first author of this paper read the title and abstract of each study and, in cases

where they were not enough to decide whether the study should be included or

excluded, the introduction and conclusion sections were also read. All borderline

papers were reviewed by the other three authors to double-check the fit under the

inclusion criteria. As a result, we removed 655 studies and selected 101. In the

second round, the full text of all selected studies was read by the four authors

to find out whether they meet the IC/EC criteria. All conflicting cases were

discussed by the four authors. When a study did not provide enough information,

we also looked for other related studies or external material describing the tool

(e.g., website and technical reports). This activity ended with a selection of 79

studies. It is worth highlighting in both rounds, we selected the more complete

study related to a given tool; therefore, we had identified 79 tools.

Furthermore, each of the 79 studies was carefully reviewed by applying the

snowballing technique [Wohlin, 2014, Wohlin et al., 2012]. All references from

each study were examined in the first backward snowballing iteration and 25 new

studies were included. Google Scholar was used in the first forward snowballing

iteration to verify citation from each study and 3 new studies were included. A

second snowballing iteration (backward and forward) was performed and no new

studies were found. Therefore, 28 new studies were added through snowballing,

totaling 107 studies (i.e., 107 tools) for further analysis.

4 Analysis of the Survey Results

We analyzed answers of 28 respondents, who took on average 8.2 minutes to

answer the questionnaire, which can possibly indicate no fatigue effect. Besides

identifying the respondents’ profile, we collected the list of tools, the usability

level, and the missing capabilities from the respondents’ perspective, as well as

open issues related to variability tools.

With regard to the roles and experience of the respondents in software

projects that have used variability tools, all participants have at least 3 years of

experience in the development, evaluation, and/or use of variability tools. Some

participants from the industry have more than one role as senior software engi-

neer (10 participants), software architect (8), software developer (4), enterprise

1289Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

architect (3), junior software engineer (2), business/technical/project manager

(2), business analyst/requirements engineer (1), and tester (1). Most of the re-

spondents (11 participants) have on average more than 10 years of experience in

their roles, 8 participants declared an average from 5 to 9 years of experience,

and 9 participants informed at least 4 years of experience.

Therefore, our respondents are well experienced in different roles in the soft-

ware development process and even as researchers in the area, which can provide

us some confidence in their answers regarding variability tools.

Regarding Q1: Variability tools used by practitioners, in general, participants

have experience with more than one tool. 29 different tools were mentioned; the

most cited ones were pure::variants (18 answers), followed by FeatureIDE (15),

SPLOT (13), fmp (9), CLAFER (8), Gears (8), FAMA (7), CVL (5), Hephaes-

tus (5), and CaptainFeature (3). Other 3 variability tools were mentioned twice:

Genarch, PLUM, and VariaMos. Besides that, 16 tools were mentioned once:

COVAMOF-VS, DecisionKing, Dopler, Hydra, Kumbang Tools, Lisa, Visit-FC,

V-Manage, XFeature, PlugSPL, FW Profile, EASy-Producer, Kconfig, Type-

Chef, CVM, and PreeVision. We observed the most of these tools were developed

by academia, what is a very interesting finding considering the direct impact of

academic results in the industry, except only pure::variants, Gears, FW-Profile,

PLUM, and Pree-vision that are from the industry; in particular, pure::variants

provides a community version.

To Q2: Ease to use software variability tools, respondents selected a scale

for each tool as: Very Easy, Easy, Moderate, Hard, and Very Hard. The top 10

tools (also mentioned in Q1) are listed in Table 1, together with their usability

level according to the respondents; e.g., the 18 respondents with experience in

pure::variants consider it Very Easy (for 3 respondents), Easy (4), Moderate (9),

Hard (2), and none Very Hard. Hence, observing this and other tools, they seem

to be easy or moderately easy to use, what is an important finding; however, as

usability is a quite subjective matter, results can be considered users’ impression.

With regard to Q3: Capabilities missed in variability tools (or capabilities

that should be improved), Figure 3 summarizes the 11 missing capabilities (C1 to

C11) mentioned by respondents and the percentage of respondents who pointed

them. Considering these capabilities are the core of our investigation, we decided

to detail them below:

C1 - Interoperability/Integration: This capability represents the ability

of software systems to interact among them and share information towards

mutually common goals. Interoperability incorporates content from indepen-

dent systems/tools to work together and exchange data among them in a

collaborative way [Chituc, 2017]. In the same perspective, integration en-

ables tools to work together as one solution, combining two or more compo-

nents/systems into a larger system to satisfy specific objectives. Regarding

1290 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

Table 1: Number of respondents that classified the top 10 variability tools ac-
cording to the scale of usability

Tools Very Easy Easy Moderate Hard Very Hard
pure::variants 3 4 9 2
FeatureIDE 4 7 2 2
SPLOT 7 4
CLAFER 1 4 2 1
fmp 2 4 1
Gears 1 4 2
CVL Tool 2 2 1
FAMA 1 3 1
Hephaestus 1 2 1
CaptainFeature 1 1 1

variability tools, interoperability was the main missing capability. In gen-

eral, these tools could better interoperate to IDE (Integrated Development

Environments), cloud-based environments, testing tools, and version con-

trol, such as GIT6 and Apache Subversion (SVN)7. Considering the top 10

tools (previously showed in Figure 1), commercial tools like pure::variants

and Gears provide a set of integrated tools, such as object-oriented model-

ing tools, requirement management systems, and consistency checks analysis

tools. Considering research and open-source tools, in particular, FeatureIDE,

CLAFER, CVL Tool, and FAMA, they provide some integration mechanisms

with modeling tools and consistency check tools. However, many tools should

still include this capability if the intention is their sustainability along the

time.

C2 - Code generation: This capability make it possible to automatically

obtain source code (even as a general structure) from variability models,

which could reduce errors and improve productivity. In particular, from our

survey, a code generator is a relevant capability in variability tools. Checking

the top 10 tools, pure::variants, Gears, FeatureIDE, and CVL Tool are the

unique tools with this capability, but considering the universe of variability

tools, many of them need still evolve to encompass it.

C3 - Impact analysis: This capability makes it possible to evaluate con-

sequences (or potential effects) of future changes upon software systems.

Regarding variability tools, addressing impact analysis is much more com-

plex than expected, due to a higher degree of dependencies among artifacts,

6 https://gitscm.com/
7 https://subversion.apache.org/

1291Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

9

4 4

3 3 3

2

1 1 1 1

0

1

2

3

4

5

6

7

8

9

10

A
n

sw
e

rs
 f

ro
m

 E
x

p
e

rt
s

Capabilities

Survey results

Figure 2: Missing capabilities in variability tools identified in the survey

which are affected by changes in requirements or decisions. For this reason,

tools must be implemented with policies governing how changes could be

reviewed and accepted by stakeholders.

C4 - Consistency checking: This capability makes it possible to evaluate

variability models against pre-defined conformance rules during the configu-

ration process. Results of our survey pointed out some tools presented in Ta-

ble 1, including SAT Solvers, BDD, and CSP, have to support to consistency

checking mechanisms; however, solvers and reasoners (that usually imple-

ment this capability) are known as NP-complete problems and can leverage

the analysis of features to exponential worst-case running time [Pohl et al.,

2013]. For this reason, a proper mechanism must be carefully selected to

improve efficiency when checking variability models.

C5 - Multiple views: This capability makes it possible to describes differ-

ent views of a system to support stakeholders to manage variability. Re-

spondents informed that different views are still needed to address different

stakeholders’ concerns. Observing the top 10 tools, some of them combine

graph visualization with a file tree and coding area.

C6 - Traceability: It is the capability to trace software artifacts both for-

1292 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

ward and backward along the software development process. Respondents

declared the need for traceability support between feature models and re-

quirements. In addition, they also required traceability from architectural

models to implementation code.

C7 - Collaborative support: It can manage the agreement among parties to

make possible their collaboration during software projects. Regarding vari-

ability tools, this capability could connect diverse, multidisciplinary teams

and improve their communication; however, such tools in general lack of this

capability;

C8 - Independent application: This capability makes variability tools be

fully independent system instead of extensions or plugins of another plat-

form/system. In this way, variability tools could be developed independently

with, for instance, a graphical editor and would facilitate the creation of vari-

ability models.

C9 - Model transformation: It refers to an automated or semi-automated

functionality in tools to modify and/or create software models. Then, vari-

ability tools could present this capability to support transformation between

different model formats, besides mechanism to generate output in different

formats, such as XML and XSL.

C10 - Scalability: It is the capability to handle large variability models with

multiple dependencies among them. Scalability has been a great challenge

when considering millions of features (and variants) in the variability model.

Ways to improve such scalability and usability of tools concerning adequate

model visualization are still a big challenge.

C11 - Integration with testing tool: This is the capacity to select fea-

tures (or variants) to be tested as part of software systems. This capabil-

ity could anticipate the finding of errors and, considering the top 10 tools,

pure::variants and Gears are the unique ones that support the integration

with test tools, which leverage the capacity of these variability tools; how-

ever, most tools do not provide this capability.

We observed there are many tools available and in use, but according to

the survey results, practitioners still miss important capabilities, in particular,

interoperability/integration with other development tools. Following, we present

the results of our SMS on variability tools aiming to extract whether such tools

have the capabilities required by practitioners.

1293Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

5 Analysis of the SMS Results

As a result of the SMS execution, we found 107 tools8 listed in chronological

order, together with the tool’s name (Column Tool), publication year9 (Year,

also a link to the reference of the study), capabilities (C1 to C11, further detailed

in RQ2), if developed (Dev) by academia (A) or industry (I), and if available for

download (Av). In addition, we summarize in Tables 2 and 3 which of the tools

analyzed support each of the eleven capabilities discussed below.

With regard to RQ1: Variability tools published in the literature, we found

this expressive number of tools developed in the last 25 years. Most of them

were developed by academia (100 tools), while 7 tools by industry: pure::system,

Gears, MetaEdit+, PLUM, 001, DOORS, and v.control. All tools mentioned

by practitioners in the survey (Section 4) were also found in our SMS, except

three: (i)Captain Feature is a feature modeling tool for modeling features and

encompasses an integrated configurator to create specialized feature diagrams of

software system families; (ii) PREEvision is a model-based development tool for

embedded systems for the automotive domain that enables developers to model

variant features according to AUTOSAR Adaptive Platform10; (iii) FW Profile

makes it possible to use a specific modeling language to model the behavior of

software applications separating functional and non-functional behavior through

variant properties. No publication is available, but only technical reports on its

website.

Regarding RQ2: Main capabilities of variability tools, Tables 2 and 3 (columns

C1 to C11) presents the capabilities extracted from each tool/study (cell marked

with a dot). It is worth saying that during the analysis and extraction of infor-

mation from each study, some studies did not provide sufficient data and/or

information was clearly described, then we decided to keep the cell empty. Fig-

ure 3 summarizes the number of tools that have each of the 11 capabilities, e.g.,

76 of 107 tools (i.e., 71%) provide C4 (consistency checking). To better under-

stand the distribution of capabilities developed during the period of a year by

each tool, we designed a bubble plot, as presented in Figure 4. This presents

the frequency of tools developed by a period of years. Capabilities such as C1 -

Interoperability /Integration, C2 - Code Generation, C4 - Consistency checking,

C9 - Model transformation, and C11 - Testing support have gain more atten-

tion during years 2006 to 2015. This can be explained by the transformation of

Industry into the fourth industrial revolution, which demands new ways to inter-

connect systems, create models, and evaluate the products in favor to increase

the production line [Ihme et al., 2014]. Following, we discuss in details on each

8 https://doi.org/10.5281/zenodo.3688405
9 The year might not be the same one of the tool’s release, as we selected the more
complete/relevant study related to that tool.

10 https://www.autosar.org/

1294 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

capability:

C1 - Interoperability/Integration: 56% of tools (i.e., 60 tools) have inte-

gration/interoperability capability. We can highlight three tools that most

present such capability: DOORS, Gears, and pure::variants. DOORS imple-

ments two interoperability options for DOORS Next Generation, which sup-

ports users to exchange data between IBM applications. pure::variants and

Gears have a strong focus on interoperability and extensibility with many

tools, such as Eclipse Modeling Framework (EMF), object-oriented mod-

eling tools, code generators, configuration management systems, UML and

SDL descriptors, and many other tools to support stakeholders during the

software development. These two tools interoperate with, for instance, AU-

TOSAR, Simulink11, UML/SysML modelers, among others, providing sup-

port to the entire software life cycle. Moreover, many other tools, including

Feature Plugin, Wecotin, fmp, PLUSS Toolkit, FAMA, FeatureMapper, CVL

tool, FMT, XToF, metadoc, VariaMos, CLAFER, Hydra, and FeatureIDE,

also integrate with EMF to generate tree-oriented models and with reasoners

and Boolean solvers to support consistency analysis of feature models. The

integration with EMF is important because it is one of the most disseminated

solutions to model features.

C2 - Code generation: Many tools (46.7% of studies, i.e., 50 tools) support

this capability due to the integration with EMF, which provides mechanisms

to support code generation to produce Java classes from the variability meta-

model. Examples of tools with EMF code generation are pure:variants, Fea-

ture Plugin, BVR tool, fmp, PLUSS Toolkit, FAMA, FeatureMapper, CVL

tool, FMT, metadoc, Kumbang, CLAFER, Hydra, and FeatureIDE. Differ-

ently from these tools, we can highlight three tools that provide other means:

(i) ASADAL generates code by processing macros embedded in various de-

sign models and components; (ii) GenArch uses code annotation to indicate

implementation of features and in the code; and (iii) MetaEdit+ uses a layer

to generate code with standard libraries to fit into a specific domain.

C3 - Impact analysis: This capability is related to policies addressing how

changes in the system requirements are managed and accepted to generate

new products. 23.4% of tools (25 tools) support this capability. This is the

case of tools like Gears, COVAMOF-VS, Metadoc, FAMILIAR, VariaMos,

BETTY, VULCAN, LISA, CLAFER, Odyssey, ToolDAy, Doors, Darwin-

SPL, FORCE, Holmes, ASADAL, and also pure::variants. In particular, we

can highlight how the impact analysis is performed by some of these tools.

Gears reduces the number of options during the impact analysis and sim-

11 https://www.pure-systems.com/products/pure-variants-for-simulink-288.html

1295Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

Table 2: Capabilities of Software Variability tools

Nr. Tool Ref C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Dev Av
1 001 001/Hamilton • • • • • • • • I Yes
2 Domain DSSA DssaDomain/Tracz • A No
3 DARE-COTS Dare/FrakesPF97 A No
4 Odyssey Odyssey99 • • • • • • A Yes
5 SSEP toolset SSEP/StuartSPCWC00 • • • A No
6 Hollmes Holmes/SucciYP01 • • • A No
7 XVCL XVCL02 • A No
8 V-Menage Menage/Mansell • • A Yes
9 Wecotin Wecotin03 • • • • A Yes
10 V-Menage Menage/Mansell • • A Yes
11 AHEAD Ahead/BatorySR04 • • • A Yes
12 DREAM Dream04 • A No
13 pure::Variants Purevariants/BeuchePS04 • • • • • • • • • • I Yes
14 RequiLine Requiline/MassenL03 • • • • A No
15 FeatureIDE FeatureIDE/Khan • • • • • • • A Yes
16 FeaturePlugin FMP/CzarneckiAKLP05a • • • • A Yes
17 fmp FMP/CzarneckiAKLP05a • • • A Yes
18 PLUSS Toolkit Pluss05 • • • • A No
19 XFeature Xfeature05 • • • A Yes
20 ASADAL Asadal/KimKASCK06 • • • • • A No
21 Covamof-VS Covamof/Sinnema • • • A No
22 REMAP Remap/SchmidKE06 • • A No
23 YaM Yam06 • • • • A No
24 DECIMAL Decimal/Dehlinger • • • • • A No
25 DecisionKing DecisionKing07 • • • • A No
26 FAMA Fama/Roos-FrantzGBC12 • • • • A Yes
27 GenArch Genarch/CiriloKL07 • • • • • A No
28 Kumbang Kumbang/MyllarniemiRM07 • • A Yes
29 MetaEdit+ Metaedit/Tolvanen07a • • • • I Yes
30 VMWT VMWT2007 • • A No
31 Cide Cide08 • • • A Yes
32 Easy-Producer EasyProducer/EichelbergerS08 • • • • A Yes
33 FeatureMapper FeatureMapper08 • • • A No
34 Flip Flip/SoaresCNMBA08 • • • A No
35 Gears Gears/Krueger08 • • • • • • • • • • • I Yes
36 Genie Genie08 • • • • • A No
37 LKC LKC08 • • A Yes
38 MoSPL Mospl08 • • A No
39 PLUM Plum/LopezM13 • • • • I No
40 Visit-FC Visitfc/BotterweckTCNP08 • A No
41 CVL tool CVL/Haugen • • • • • A Yes
42 CVM CVM10 • • • • A Yes
43 Hephaestus Hephaestus/TurnesBAL11 • • • • A Yes
44 Hydra Hydra09 • • A Yes
45 S2T2 S2t2/Botterweck • • • • A Yes
46 SPLOT SPLOT/Mendonca • • A Yes
47 CDL CDLKconfig10 • • • • • A Yes
48 FMT FMT/Laguna10 • • • • A No
49 Kconfig CDLKconfig10 • • • • • A Yes
50 MUSA Musa/Bashroush10 • • A No
51 TypeChef TypeChef10 • A Yes
52 XToF Xtof/GauthierCBHSM10 • • • A No
53 DOPLER Dopler/DhunganaGR11 • • • A Yes

1296 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

Table 3: Capabilities of Software Variability tools (continuation)

Nr. Tool Ref C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Dev Av
54 metadoc Metadoc/ThurimellaJ11 • • • • • • A No
55 FAMILIAR FAMILIAR11 • • • • • A Yes
56 MoSo-PoLiTe Mospolite/OsterZML11 • • A No
57 SPLVerifier SplVerifier/Apel • A Yes
58 ToolDAy Toolday/LisboaGAM11 • • • • • A No
59 View Infinity ViewInfinity11 • • • • A Yes
60 ABS tool Abs/WongAMPSS12 • • • • • • A No
61 BeTTy BeTTy12 • • • • • • A Yes
62 DPLfw DPLfw/GomezPCBL12 • A No
63 EPM EPM/AbeleLRWG12 • • • A No
64 ISMT4SPL Ismt4spl/ParkRB12 • • • • • • A No
65 LISA Toolkit Lisa/GroherW12 • • • • • • • A No
66 Moskitt4SPL Moskitt4SPL2012 • • • A No
67 PlugSPL PLUGSPL • A No
68 SNIP Snip/classen2012model • • • • A No
69 Sysiphus IVMM/ThurimellaB12 • • • A No
70 VariaMos Variamos/MazoMRST12 • • • • • • A Yes
71 VARMA Varma12 • • • A No
72 VULCAN Vulcan/LeeYK12 • • • • • A No
73 CLAFER Clafer/AntkiewiczBMOLC13 • • • • • • A Yes
74 DOORS Doors13 • • • • • • I Yes
75 Invar Invar/DhunganaSBRGBG13 • • • A No
76 SOASPL Soaspl/Abu-MatarG13 • • • • A No
77 Matelo Matelo/SamihB14 • • • • A No
78 MPLM-MaTeLo Matelo/SamihB14 • • A Yes
79 OPTI-SELECT OPTISELECT14 • • • • A No
80 SPL Config Splconfig • • • A Yes
81 Varies Varies/WagnerDHTGK14 • • • • A No
82 VITAL tool Vital14 • • • • A No
83 ViViD Vivid14 • • A Yes
84 VMC VMC14 • • A No
85 WebFML WebFML/BecanNAB14 • A Yes
86 BVR Tool BVR/VasilevskiyHCJS15 • • • • A Yes
87 CMT / FDE CMTFDE15 A Yes
88 SBAT Sbat15 • • A No
89 SPLicing SPLicingTabasco15 • • A No
90 SPL-TuPI SPL-TuPI • A No
91 SuperMod SuperMod15 • • • A Yes
92 UC2FM UC2FM15 • A No
93 v.control Vcontrol15 • • • • I Yes
94 XMAN Xman15 • • • A No
95 Archfeature ArchFeature16 • • A No
96 CardyGAn CardyGAn • • A Yes
97 RiPLE-HC RiPLEH16 • • A Yes
98 SVL tool SVLTool • A No
99 Zen-Config ZenConfigurator16 • • A Yes
100 DarwinSPL DarwinSPL17 • • • • • • A No
101 FixOnto FixOnto17 • • A No
102 FLAME Flame2017 • • • A Yes
103 FORMAT Format17 • • A Yes
104 MOPPET Moppet17 • • • • A No
105 FORCE Force2018 • • • • • A No
106 MIC MIC18 • • • • A No
107 Varion Varion18 • • • A Yes

1297Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

60

50

25

76

43

31

4

20

31

12

21

0

10

20

30

40

50

60

70

80

A
m

o
u

n
t

o
f

to
o

ls

Capabilities

Tools from SMS

Figure 3: Capabilities available in software variability tools identified in the SMS

plifies the choices when defining an SPL approach. COVAMOF-VS auto-

matically infers choices on a higher level of abstraction to reduce human

effort to configure products. Metadoc provides deficit analysis to create con-

sistent specifications of products. FAMILIAR uses the impact analysis to

automatically propagate software product choices. VariaMos analyzes all

valid products of an SPL and provides decision propagation. BETTY eval-

uates the performance of analysis in both average and pessimistic cases.

VULCAN supports the analysis of source code, recovering a feature model.

LISA supports continuous synchronization of an architecture to keep it up-

to-date. CLAFER supports trade-off analysis from pre-configured variants

versus optimal variants. Therefore, it is observed tools have adopted differ-

ent strategies to deal with impact analysis. Besides that, to facilitate the

impact analysis, tools also need to support traceability from requirements

to code; however, both capabilities (impact analysis and traceability) were

described only in studies related to 10 tools: pure::Variants, 001, Gears,

Metadoc, LISA, Odyssey, ToolDAy, Doors, DarwinSPL, and FORCE.

C4 - Consistency checking: This capability is supported by most tools (71%

or 76 tools). In general, variability tools integrate with consistency checking

tools that provide logical solvers or arithmetic verifiers (i.e., propositional

logic with SAT solvers, BDD, CSP, and Descriptive Logic). From the anal-

1298 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

ysis of SMS results, we conclude consistency checking is maturing with an

increasing number of contributions.

C5 - Multiple views: 40.2% of tools (43 tools) present more than one type of

view to support stakeholders during the variability management. These views

are generally split into two different aspects: problem space and solution

space. The former is managed with graphs through a feature model-based

approach or UML diagrams, while the latter can be represented by variabil-

ity mechanism in code-based assets or components and their interactions,

interfaces, and nodes. Furthermore, commercial tools like pure::variants and

Gears also consider different viewpoints to support requirement engineers,

domain analysts, developers, and software architects, due to the fact they

integrate to many different software development ecosystems.

C6 - Traceability: 29% of tools (31 tools) support traceability between prob-

lem space (i.e., requirements, feature models, and architecture models) and

solution space (i.e., code, components, and interfaces). Traceability helps

stakeholders to understand the impact that a variation has at the decision-

making process as it maps the domain space to the solution space. Traceabil-

ity can still be considered a challenge, as many tools cannot still explicitly

perform this capability.

C7 - Collaborative support: We found only 4 tools (3.7% of tools) describ-

ing some means to improve collaboration among their stakeholders. This is

the case of Gears, which provides an efficient means to create and evolve

its portfolio of features and requirements with a concise communication be-

tween business and engineering teams. DOORS makes possible global teams

to work together during the requirements management in software projects.

FeatureIDE provides a collaboration diagram to support communication

among different stakeholders. pure::variants, in its enterprise edition, pro-

vides online collaborative support enabling organizations to create docu-

ments and models. Although important, this capability is also a challenge if

variability tools will need to achieve another level of completeness.

C8 - Independent application: 18.7% of tools (20 tools) are described

as an independent systems, while the others are dependent of other sys-

tems/platforms and most of them were implemented in Java as plugins.

C9 - Model transformation: 29% of tools (31 tools) have this capability

that helps stakeholders to transform variability models into desired outputs,

which could be source code or another model. Most of these tools are sup-

ported by EMF to interpret models and create a product variant or config-

uration files. This is the case of pure::variants, FeatureMapper, FeatureIDE,

S2T2, Odyssey, CVL, LISA Toolkit, GenArch, XFeature, and PLUM. Other

1299Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

tools, such as PACOGEN, Varies, and VariaMos, use this capability to gen-

erate constraint models for configuring proper products. Model transforma-

tion in fact used to support stakeholders during the transition from problem

space to solution space; hence, it can automate many of the steps to generate

software products.

C10 - Scalability: Few studies (11.2% of studies or 12 tools) can deal with

scalability of variability models. MUSA adopts hyperbolic trees to represent

variability that can display more than one thousand features in a mind map-

ping visualization technique. AHEAD uses algebraic models to synthesize the

scalability of models. View Infinity supports scalability with different feature

model layouts and views. FAMILIAR supports the scalability of models by

separating them into different concerns with automated reasoning support.

Results from SMS indicate scalability is a key challenge of variability man-

agement tool, as it has been rarely described in the studies.

C11 - Integration with testing tool: 19.6% of tools (21 tools) support this

capability. Tools like pure::variants, Gears, ABS, and GenArch use unit test

cases to test the correctness of the implementation. In the same perspective,

Matelo and MPLM-Matelo extends model-based testing formalism to gener-

ate test cases for each variant. Tools that make it possible to test the feature

models are YAM, FORMAT, BeTTy, and Pacogen. MoSo-PoLiTe supports

the pairwise test by combining a feature model and a test model, which is

created for a selected configuration.

ASADAL provides methods to model a virtual test environment through

UML Statecharts and a simulation-based environment. Finally, this capa-

bility in variability tools can ensure more reliability of feature models and

products as well; however, this is not a widely disseminated capability.

Figure 5 summarizes the number of tools that present each capability. For

instance, 13 tools were published from 2001 to 2005, and 7 of them present C1

(Interoperability), 6 of them have C2 (Code generation), and so on. It is ob-

served there was a higher investment in these tools along a decade (from 2006

to 2015), when 76 tools were published, concerning in making them available

containing mainly C1 (Interoperability/Integration), C2 (Code generation), C4

(Consistency checking), and C5 (Multiple views). In the last 3 years and a half

(2016 to 2019), 13 tools were published with quite similar concerns with regard

to capabilities compared to a decade ago. Finally, we can observe that along

the 25 years developing variability tools, the amount of attention to each ca-

pability has been kept; in general, C1 (Interoperability/Integration), C2 (Code

generation), C4 (Consistency checking), and C5 (Multiple views) have been the

focus. However, important capabilities to the current software processes (which

1300 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

Before 2000 2001-2005 2006-2010 2011-2015 2016-2018

4 7

9 11

9 14 17

15

6

4 4

4

3

3 33

3

3

2

2

2

2 2

2

2

1

1

1

1

1

1

11

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

3 4

21 31

7 6

8 8

6

8 8

18

22

24

16

14

10

7

2

2

C
a
p
a
b
ili
ti
e
s

Years

Figure 4: Bubble plot of tools capabilities by period of year

encompass distributed teams developing large, complex systems) have been dis-

regarded, mainly C7 (Collaborative support) and C10 (Scalability). More specif-

ically, while only 3.8% and 11.2% of tools present C7 and C10, respectively, on

average 53.5% tools present C1, C2, C4, and C5.

6 Findings

This section discusses whether there is a gap between what the industry requires

in variability tools and what in fact exists in the literature. Figure 6 puts together

results of our survey (i.e., percentage of practitioners who indicated capabilities

C1 to C11 as missing) and findings through our SMS (i.e., percentage of tools

that present such capabilities). Although both quantities refer to different things,

this figure is important to show a comparison with regard to each capability, as

discussed below:

1301Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

C1 - Interoperability/Integration:While practitioners claim tools fail to in-

tegrate with new technologies (e.g., microservices and cloud computing) and

do not support all development life cycle (from requirement engineering to

testing and maintenance), only a few tools (more specifically, pure::variants

and Gears) in fact provide this large integration covering the entire develop-

ment processes. Although 56% of tools present some integration with other

tools, such integration refers to specific tools like for modeling and consis-

tency analysis. A more complete integration must be further included in

variability tools to deal with the entire development life cycle of the current

and future large, complex software systems. For instance, The work of [Dami-

ani et al., 2018a, Damiani et al., 2018b] provides interoperability support of

software product variants in different development life cycle activities. The

OASIS standard on interoperability12 could contribute to providing inter-

operability to variability tools, since it encompasses several guidelines to

mitigate interoperability and portability in software implementations.

C2 - Code generation and C9 - Model transformation: Being two capa-

bilities closely related, they were also most pointed out by practitioners. A

good portion of the tools already presents them (46.7% and 29% to C2 and

C9, respectively), while 19.2% of tools present both capabilities.

Hence, in more general analysis, there is still room to adequately address

these capabilities in an integrated way, including the management of the vari-

ability dynamically after deployment. More recently, template-based code

generators have been taken into consideration for modeling variability and

generating single source code from different abstraction levels/layers [Roth

et al., 2016, Syriani et al., 2018]. In addition, feature patterns might be used

to generate source code from variability models via transformation [Strüber

et al., 2018]. Product model derivation can also be achieved by applying

model transformation techniques based on model element relationships, as

explored in [Taentzer et al., 2017].

C3 - Impact analysis and C6 - Traceability: Most tools (23.4% and 29.0%

of the tools for C3 and C6, respectively) do not provide these important

capabilities, what is in some extent aligned to the impression of practi-

tioners. Both capabilities working together could possibly reduce software

development cost/effort, by better following the impact of any changes in

variability along the whole development life cycle (not only among a small

number of artifacts as currently occur). Therefore, these are in fact required

capabilities that could leverage the completeness of variability tools applied

in a large scenario of software development. Traceability techniques could

12 https://www.oasis-open.org/policies-guidelines/
interoperability-guidelines

1302 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

Total of Tools

Total of Tools

per Period

per Period

5 13 33

43 13

3

7

18

25

7

2

6

22

18

2

2 3 3

15

2

2

9

21

33

11

2

9

14

17

1

3 4

7

11

6

0
2 1

1 0

1 2

8

8

1

2 3

15

7

4

0

3 2

5

2

1 1

8

8

3

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

Until 2000 2001-2005 2006-2010

2011-2015 After 2016

A
m

o
u

n
t

o
f

to
o

ls

A
m

o
u

n
t

o
f

to
o

ls

Year

Year

C4 - Consistency checking C5 - Multiple views C6 - Traceability

C7 - Collaboration support C8 - Independent application C9 - Model transformation

C10 - Scalability C11 - Testing support

Interoperability /Integration Impact analysisC1 - C2 - Code Generation C3 -

Capabilities

Figure 5: Evolution of software variability tools that exhibit the capabilities C1
to C11

be more systematically explored to link different variability assets, support-

ing impact analysis, and bridging the semantic distance among such assets

in different abstraction levels [Jirapanthong and Zisman, 2009]. In addition,

traceability shall also go beyond supporting the evolution of software sys-

tems after their deployment. Traceability strategies, such as the creation of

links, metamodeling, model transformation, feature tagging, mapping tables,

package-merge mechanism, and trace recovery, should be more explored to

promote such capability in variability tools [Vale et al., 2017].

C4 - Consistency checking: While practitioners indicated the need for this

capability in variability tools, it is the most recurrent one in tools found in

our SMS, i.e, in 71%. Trying to understand this discrepancy, we found out

five tools mentioned by practitioners (Covamof-VS, DecisionKing, PlugSPL,

Visit-FC, and V-Manage) do not have consistency checking and, therefore,

these practitioners indicated it as a missing capability. We believe in the

1303Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

relevance of these tools (as they are academic tools known/used in indus-

try) and, hence, these and other tools missing this capability could invest

the effort to evolve them, including the constraint management at runtime

[Bosch et al., 2015, Berger et al., 2013]. Variability consistency checking rules

[Kim and Kim, 2013] and flexible, scalable mechanisms (as in DOPLER tool

[Vierhauser et al., 2010]) could be an inspiration to other tools.

C5 - Multiple views: Most tools (40.2%) provide more than one view, but

most of them still require multiple views and viewpoints considering different

stakeholders involved in the development processes, such as architects, ana-

lysts, developers, testers, and so on. Hence, the impression of practitioners

regarding this capability should be considered to achieve more effective tools

with more powerful representation/visualization techniques in a scenario of

the entire software development. Several different visualization techniques

are the potential to be explored for different roles and perspectives. For in-

stance, data analytics for the project manager perspective [Smiley et al.,

2015], information retrieval [Santos et al., 2012] and scalable visualizations

[Cross et al., 1998] both for the software architect perspective are some ex-

amples that deserve more attention.

C7 - Collaborative support, C8 - Independent application, and C11 -

Integration with a testing tool: In the current scenario of distributed,

global development, support to collaborative work is indispensable in any

tools, in particular, when dealing with large, complex systems where there

is a tangle of relations among apparently distinguished parts. That is also

especially true when considering the capability of independence of variabil-

ity tools, where such diverse teams can adopt different development tools,

platforms, and environments; adoption of dependent variability tools can

make their large adoption impossible. In the same perspective, the test of

large systems is a current real challenge and whether variability tools can

link smoothly to testing tools, taking advances of the power of testing tools

to generate test cases to test artifacts (in particular, feature models) and,

at the same time, provide information to testing tools to test software prod-

ucts would be in fact a more perfect scenario. Examples such as SPLOT

[Pereira et al., 2013], which provides collaborative support for multiple users

to configure a single product, should be considered.

C10 - Scalability: Scalability of variability models should be a key concern

of the tools in the development of large, distributed, and complex software

systems. Solutions to deal with a huge amount of combinations of variants,

their relationship, and even constraints should be still deeply investigated

and made available in variability tools. In a recent work [Pett et al., 2019],

it is proposed the scalability analysis for a large number of features based

1304 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

on product sampling algorithms and constraint-based solvers such as SAT

solvers.

C1 - Interoperability

 Integration

%

Capabilities

0 30 40

SMS SURVEY

50 60 70 8010 20

Figure 6: Percentage of missing capabilities in existing software variability tools
answered by industry practitioners

Research gaps: Derived from the findings discussed above we summarize

here some research gaps that could potentially lead to new research lines to

improve the tools presented in this paper.

– Gap 1: None of the tools investigated provide support for runtime variabil-

ity mechanisms, maybe because customers still don’t demand these kinds of

solutions but quite suitable if we want to start a dynamic software product

line or just use a runtime variability manager. Only some recent variabil-

ity languages like VEL (Variability eXchange Language) suggest runtime

binding of variants but not dynamic changes in the structural variability.

1305Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

– Gap 2: Visualization capabilities to show large feature models is still a big

challenge. Tools are able to show large feature models as a tree-like struc-

ture but many times these are unmanageable when configuring hundreds of

features. Therefore, advanced visualization capabilities are still needed.

– Gap 3: Interoperability between different tools is still needed as we have

different data formats to store feature models and other software artifacts.

Hence, we still need a common language to capture any kind of variability

construct that can be supported by most used tools.

– Gap 4: Reducing the gap between variability modeling and implementations

needs to be improved, and not only provide skeletons of features but generate

code in a more complete manner. Therefore, we need to reduce the gap

between configuration and implementation cycles.

– Gap 5: Collaborative capabilities between to support concurrent updates

of feature models is a feature not supported by many tools and useful for

distributed teams adopting a multi-product line approach.

7 Threats to Validity

Results obtained by this study might have been affected by some threats:

Construct Validity: with respect to our survey, we minimized threats to

this validity by designing a focused, multiple-choice questionnaire with a

text area to the addition of extra information from respondents. We also

thoroughly chose all potential participants, assuring to get relevant answers

coming from industrial practitioners or researchers with high expertise in

variability tools.

To minimize this threat during our SMS, we systematically followed the

guidelines found in [Petersen et al., 2015, Kitchenham and Charters, 2007].

Besides, we used possibly all terms related to “variability management”,

“SPL”, and “tool”, which are broadly adopted by the community in stud-

ies involving variability tools, to construct our search string. Moreover, we

combined both automatic and manual searches to increase the coverage of

our search, together with the application of the snowballing technique.

Internal Validity: a threat to internal validity in our survey is that respon-

dents could misunderstand the questions. Hence, before distributing the

questionnaire, each question was validated by three experts in variability

tools, aiming to mitigate this threat.

The main threats to the internal validity with regard to our SMS refers to

the selection of primary studies. To ensure that this SMS is complete and no

1306 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

important study is missing, we used seven publications databases, including

all ones recommended for the software engineering area. We also accurately

performed a manual search in relevant conference/workshops proceedings

and journals. With regard to bias threat, the selection process carried out

by one researcher was constantly reviewed by others, together with a rigorous

application of the inclusion and exclusion criteria.

External Validity: we did not provide a randomized sample of respondents;

however, we mitigated it by selecting outstanding practitioners and researchers

from strategic institutions working with variability tools for several years.

For the survey, we selected a representative set of questions on variability

tools, designing our questionnaire in a way we could preserve the type of

information acquired.

With regard to our SMS, we carefully defined a set of inclusion and exclu-

sion criteria to avoid bias in the selection of the primary studies. We also

mitigated the potential threat to generalize our results as we came up with

a significant sample size of 107 software variability tools. Therefore, we be-

lieve our research findings derived from the analysis of this sample size are

valuable and complement similar related studies.

Conclusion Validity: it is related to the ability to make correct conclusions.

With regard to the survey, our conclusions were based on information pro-

vided by respondents in an online questionnaire, which might reflect on be-

liefs rather than real facts. We mitigated this threat by inviting only experts

in variability tools. Another threat is the small number of respondents of our

survey; then, aiming at considering their answer valid to a wider population,

we only invited those practitioners with deep knowledge on variability tools

and years of experience in software development.

To mitigate this threat in our SMS, we applied a rigorous data extraction

process based on the guidelines found in [Kitchenham and Charters, 2007,

Petersen et al., 2015]. Data from primary studies were extracted using a

data extraction form. However, a potential threat might be the reliability of

data extraction with respect to types and capabilities of variability tools, as

some data extracted had to be interpreted; therefore, to ensure the validity

of data extracted and/or interpreted, such data was meticulously reviewed

by all authors of this work.

8 Conclusion

With software systems demanding continuous adaptation and faster deployment

capabilities, software variability techniques became a valuable technique to sup-

port easy configuration and adaptation to changing environments. Much effort

1307Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

has been devoted to advance the state and practice of the tools analyzed in this

research and its use by product line processes. However, the increasing complex-

ity of software-intensive systems has brought new challenges to model, manage

and visualize large variability models; how this information can be implemented

in systems and how to achieve better interoperability between variability models.

Therefore, our intention in this research was twofold: (i) support the stakehold-

ers in the selection of adequate variability tools by identifying the important

capabilities relevant for industry practitioners; and (ii) identify the existing and

missing capabilities in the most popular tools.

Consequently, in this work, we highlighted the perception of industry practi-

tioners about the use of current variability tools in order to identify the impor-

tant missing capabilities required by industry needs. Thus, the opinions collected

during the online survey and direct interviews offer a complementary view to

identify some important needs and to improve the most used tools. In particu-

lar, the lack of interoperability between tools and a stronger connection between

variability modeling and implementation is needed, such as tools like GEARS

promote automatic configuration mechanisms for the bill of features in the ap-

plication engineering cycle. Also, we believe the integration between static and

dynamic variability approaches is a characteristic that will be demanded in the

next future. In addition, the compliance with software product line and software

variability standards is another challenge for companies that want to adopt a

product line strategy as they need to know if standardized software processes

are supported by current tools. Additionally, we foresee a new generation of

software variability tools with enhance visualization capabilities where feature

models can be shown not as a whole, but separated into functional areas and

easily to be manage.

For the next future, we plan to extend in the future our study comparing the

results from more companies with those from SPL Hall of Fame projects, as we

were unfortunate to get more results from companies using software variability

tools.

Acknowledgments

This research was supported by the Brazilian funding agencies CAPES, Brazil,

UEM (code 001), FAPESP (grants: 2016/05919-0, 2017/06195-9, 2018/20882-1,

2019/19730-5) and CNPq (grant: 312634/2018-8), and Spanish research network

MCIU-AEI TIN2017-90664-REDT.

References

[Bashroush et al., 2017a] Bashroush, R., Garba, M., Rabiser, R., Groher, I., and Bot-
terweck, G. (2017a). CASE tool support for variability management in software
product lines. ACM Comput. Surv., 50(1):14:1–14:45.

1308 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

[Bashroush et al., 2017b] Bashroush, R., Garba, M., Rabiser, R., Groher, I., and Bot-
terweck, G. (2017b). CASE tool support for variability management in software
product lines. ACM Comput. Surv., 50(1):14:1–14:45.

[Benavides et al., 2010] Benavides, D., Segura, S., and Cortés, A. R. (2010). Auto-
mated analysis of feature models 20 years later: A literature review. Information
Systems, 35(6):615–636.

[Berger et al., 2014] Berger, T., Nair, D., Rublack, R., Atlee, J. M., Czarnecki, K.,
and Wasowski, A. (2014). Three cases of feature-based variability modeling in in-
dustry. In 17th International Conference on Model-Driven Engineering Languages
and Systems (MODELS), MODELS ’14, pages 302–319, Valencia, Spain. Springer
International Publishing.

[Berger et al., 2013] Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czar-
necki, K., andWsowski, A. (2013). A survey of variability modeling in industrial prac-
tice. In 7th International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), VAMOS ’13, pages 7:1–7:8, Pisa, Italy. ACM.

[Bhumula, 2013] Bhumula, M. R. (2013). Comparative study and analysis of variabil-
ity tools. Computing Resource Repository, abs/1304.3912:1–35.

[Bosch et al., 2015] Bosch, J., Capilla, R., and Hilliard, R. (2015). Trends in systems
and software variability. IEEE Software, 32(3):44–51.

[Capilla et al., 2013] Capilla, R., Bosch, J., and Kang, K. C., editors (2013). Systems
and Software Variability Management - Concepts, Tools and Experiences. Springer.

[Chituc, 2017] Chituc, C. (2017). Interoperability standards for seamless communi-
cation: An analysis of domain-specific initiatives. In OTM, OTM ’17, pages 36–46.
Springer International Publishing.

[Cross et al., 1998] Cross, J. H., Hendrix, T. D., Barowski, L. A., and Mathias, K. S.
(1998). Scalable visualizations to support reverse engineering: a framework for eval-
uation. In Proceedings Fifth Working Conference on Reverse Engineering (Cat.
No.98TB100261), WCRE ’98, pages 201–209.

[Damiani et al., 2018a] Damiani, F., Hähnle, R., Kamburjan, E., and Lienhardt, M.
(2018a). Interoperability of software product line variants. In Proceedings of the
22Nd International Systems and Software Product Line Conference - Volume 1, SPLC
’18, pages 264–268, New York, NY, USA. ACM.

[Damiani et al., 2018b] Damiani, F., Hähnle, R., Kamburjan, E., and Lienhardt, M.
(2018b). Same Same But Different: Interoperability of Software Product Line Vari-
ants, pages 99–117. Springer International Publishing, Cham.

[Hilliard, 2010] Hilliard, R. (2010). On representing variation. In 4th European Con-
ference on Software Architecture (ECSA), ECSA ’10, pages 312–315, Copenhagen,
Denmark. ACM.

[Ihme et al., 2014] Ihme, T., Pikkarainen, M., Teppola, S., Kääriäinen, J., and Biot,
O. (2014). Challenges and industry practices for managing software variability in
small and medium sized enterprises. Empir. Softw. Eng., 19(4):1144–1168.

[ISO/IEC, 2012] ISO/IEC (2012). Software and systems engineering - tools and meth-
ods for product line requirements engineering (ISO/IEC 26551).

[ISO/IEC, 2013a] ISO/IEC (2013a). Software and systems engineering - Reference
model for product line engineering and management (ISO/IEC 26550).

[ISO/IEC, 2013b] ISO/IEC (2013b). Software and systems engineering - Tools and
methods for product line technical management (ISO/IEC 26555).

[Jirapanthong and Zisman, 2009] Jirapanthong, W. and Zisman, A. (2009). Xtraque:
traceability for product line systems. Software & Systems Modeling, 8(1):117–144.

[Kim and Kim, 2013] Kim, J. A. and Kim, S. (2013). Consistency checking rules of
variability in software product lines. In 2013 Eighth International Conference on
Broadband and Wireless Computing, Communication and Applications, BWCCA ’13,
pages 595–597.

[Kitchenham and Charters, 2007] Kitchenham, B. and Charters, S. (2007). Guidelines

1309Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

for performing systematic literature reviews in software engineering. Technical re-
port, Keele University and Durham University Joint Report.

[Lisboa et al., 2010] Lisboa, L. B., Garcia, V. C., Lucrédio, D., de Almeida, E. S.,
de Lemos Meira, S. R., and de Mattos Fortes, R. P. (2010). A systematic review
of domain analysis tools. Information and Software Technology, 52(1):1–13.

[Mahdavi-Hezavehi et al., 2013] Mahdavi-Hezavehi, S., Galster, M., and Avgeriou, P.
(2013). Variability in quality attributes of service-based software systems: A system-
atic literature review. Inf. Softw. Technol., 55(2):320–343.

[Molléri et al., 2016] Molléri, J. S., Petersen, K., and Mendes, E. (2016). Survey guide-
lines in software engineering: An annotated review. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement, ESEM ’16, pages 58:1–58:6, New York, NY, USA. ACM.

[Pereira et al., 2015] Pereira, J. A., Constantino, K., and Figueiredo, E. (2015). A
systematic literature review of software product line management tools. In 14th
International Conference on Software Reuse for Dynamic Systems in the Cloud and
Beyond (ICSR), ICSR ’15, pages 73–89, Miami, FL, USA. Springer International
Publishing.

[Pereira et al., 2013] Pereira, J. A., Souza, C., Figueiredo, E., Abilio, R., Vale, G., and
Costa, H. A. X. (2013). Software variability management: An exploratory study
with two feature modeling tools. In 2013 VII Brazilian Symposium on Software
Components, Architectures and Reuse, SBCARS ’13, pages 20–29.

[Petersen et al., 2015] Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guide-
lines for conducting systematic mapping studies in software engineering: An update.
Information & Software Technology, 64(C):1–18.

[Pett et al., 2019] Pett, T., Thüm, T., Runge, T., Krieter, S., Lochau, M., and Schae-
fer, I. (2019). Product sampling for product lines: The scalability challenge. In
Proceedings of the 23rd International Systems and Software Product Line Conference
- Volume A, SPLC ’19, pages 78–83, New York, NY, USA. ACM.

[Pohl et al., 2005] Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Soft-
ware Product Line Engineering: Foundations, Principles and Techniques, volume 26.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Pohl et al., 2013] Pohl, R., Stricker, V., and Pohl, K. (2013). Measuring the struc-
tural complexity of feature models. In 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), ASE ’13, Silicon Valley, CA, USA.

[Raatikainen et al., 2019] Raatikainen, M., Tiihonen, J., and Männistö, T. (2019).
Software product lines and variability modeling: A tertiary study. J. Syst. Softw.,
149:485–510.

[Roth et al., 2016] Roth, A., Greifenberg, T., Müller, K., Rumpe, B., Schulze, C., and
Wortmann, A. (2016). Modeling variability in template-based code generators for
product line engineering. In Lecture Notes in Informatics, Modellierung ’16, pages
141–156.

[Santos et al., 2012] Santos, W. B., de Almeida, E. S., and de L. Meira, S. R. (2012).
Tirt: A traceability information retrieval tool for software product lines projects. In
2012 38th Euromicro Conference on Software Engineering and Advanced Applica-
tions, SEAA ’12, pages 93–100.

[Sierszecki et al., 2014] Sierszecki, K., Steffens, M., Hojrup, H. H., Savolainen, J., and
Beuche, D. (2014). Extending variability management to the next level. In 18th
Software Product Line Conference (SPLC), SPLC ’14, pages 320–329, Florence, Italy.
ACM.

[Smiley et al., 2015] Smiley, K., Schmidt, W., and Dagnino, A. (2015). Evolving an
industrial analytics product line architecture. In Proceedings of the 19th International
Conference on Software Product Line, SPLC ’15, pages 263–272, New York, NY, USA.
ACM.

[Strüber et al., 2018] Strüber, D., Peldzsus, S., and Jürjens, J. (2018). Taming multi-
variability of software product line transformations. In Russo, A. and Schürr, A.,

1310 Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

editors, Fundamental Approaches to Software Engineering, FASE ’18, pages 337–355,
Cham. Springer International Publishing.

[Syriani et al., 2018] Syriani, E., Luhunu, L., and Sahraoui, H. (2018). Systematic
mapping study of template-based code generation. Computer Languages, Systems &
Structures, 52:43 – 62.

[Taentzer et al., 2017] Taentzer, G., Salay, R., Strüber, D., and Chechik, M. (2017).
Transformations of software product lines: A generalizing framework based on cat-
egory theory. In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), MODELS ’17, pages 101–111.

[Vale et al., 2017] Vale, T., de Almeida, E. S., Alves, V., Kulesza, U., Niu, N., and
de Lima, R. (2017). Software product lines traceability. Inf. Softw. Technol.,
84(C):1–18.

[Vierhauser et al., 2010] Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., and
Heider, W. (2010). Flexible and scalable consistency checking on product line vari-
ability models. In Proceedings of the IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’10, pages 63–72, New York, NY, USA. ACM.

[Wohlin, 2014] Wohlin, C. (2014). Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In 8th International Conference on
Evaluation and Assessment in Software Engineering (EASE), EASE ’14, pages 1–10,
London, England. ACM.

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B.,
and Wesslén, A. (2012). Experimentation in Software Engineering: An Introduction.
Springer-Verlag, Norwell, MA, USA, 2 edition.

1311Allian A.P., OliveiraJr E., Capilla R., Nakagawa E.Y.: Have Variability ...

