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Abstract: In many applications implemented in mistrusted environments all opera-
tions with the secret key during an encryption operation are “obfuscated” in a way
that while an attacker has access to all routines of operations, it will nevertheless be
hard for him to determine the value of the secret key used during these operations.
This kind of execution of encryption operation is called a white-Box implementation.
The design of a secure cryptosystem robust in the context of white-box attack is a
difficult task which has been addressed by many researchers in the last two decade.
The existing implementations of white-box algorithms have been mainly based on AES
block cipher, however, all the known systems have been broken. In this paper a design
and security analysis of a novel white-box encryption based on SAFER+ block cipher
algorithm is presented which is shown to be secure against major attacks successfully
applied to AES-based cryptosystems, such as the so-called BGE attack and others.
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1 Introduction

In the so called “black-box” encryption model cryptographic keys are protected

by different methods such as passwords or in tamper-resistant modules. In this

case the attacker of the system can see only inputs and outputs of the en-

cryption engine and has no access to intermediate values inside the black box.

In the white-box context an encryption routine is represented via lookup ta-

bles based on encryption secret keys which are accessible to the public in each

of rounds. The main purpose of these look-up tables is to hide cryptographic

keys when performing correct encryption operations. As such white-box encryp-

tion allows anyone who has access to the white-box look-up tables to imple-

ment an encryption operation in the way that only the owner of a secret key

can decrypt a result and get a valid plaintext. The security of the white-box

encryption is the complexity of guessing a secret key or making a decryption

operation without knowing a secret key. In this way white-box look-up tables

can be considered as a Public key in the sense that anyone can encrypt a mes-

sage, but only the holder of a secret key can decrypt it. Based on this idea
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the white-box encryption (or analogously, decryption) can find numerous ap-

plications where it would be much more efficient to use white-box encryption

and symmetric decryption instead of computationally expensive public key op-

erations. The major problem with white-box cryptography is its security. The

academic study of white-box cryptography was initiated in the seminal work

by Chow et al. [Chow et al., 2003, Chow et al., 2002].Subsequently there were

numerous attempts to design white-box encryption routine based on Advanced

Encryption Standard(AES), all of which were later broken [Bringer et al., 2006,

Chow et al., 2002, Yaying et al., 2009, Lepoint et al., 2013, Lepoint et al., 2014,

Billet et al., 2003]. Attempts to securely implement AES white-box encryption

were further continued in [Karrroumi, 2011] (broken in [Mulder et al., 2013b]),

[Yaying et al., 2009](broken in [Mulder et al., 2013a]). However, all of these im-

plementations share the same ideas and their cryptanalysis are mainly based on

the BGE approach [Billet et al., 2003] to be described later in this paper. For

example, implementation in [Karrroumi, 2011] based on AES dual ciphers was

claimed to be secure against BGE attack in the original paper, however it is

shown that the BGE attack can be applied with minor modifications to this im-

plementation. The same applies to algorithms described in [Yaying et al., 2009].

In the present paper we propose a white-box encryption based on SAFER+ al-

gorithm [Massey et al., 1998] and show that it is secure against different types

of attacks including those that found out to be successful against AES white-

box implementations. It should be mentioned that a similar attempt to use

SAFER+ algorithm was proposed by [Khachatrian at al., 2016], however later

this approach showed some security flaws.

The paper is organized as follows: In the section 2 black and white-box en-

cryption rationale of SAFER+ is represented. Section 3 is devoted to the detailed

security analysis of SAFER+ white-box encryption. Section 4 includes results

of the computational speed of SAFER+ white-box encryption and memory re-

quirements. The paper ends with the conclusion.

2 White Box Design Based on SAFER+

The underlying symmetric encryption algorithm for the white-box encryption

is based on SAFER+ algorithm with a 128-bit key running 6 identical rounds

plus an extra key addition at the end of 6-th round. This algorithm in fact is

a ”Black-box” SAFER+ since only input and output values can be accessible

to an attacker while all intermediate values, which involves secret keys, remain

unknown. The first operation of the round r is the “addition” of the round subkey

k2r−1 to the 16 byte round input. The result of the “addition” is then processed

by a non-linear layer. The second round subkey k2r is then added to the output

of the non-linear layer. The 16 byte result of this addition is then multiplied by
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for regular XOR of X and Y while the add operation stands for sum between X

and Y with mod 256.

For the SAFER+ white-box(further called SAFER+WB) we‘re merging sev-

eral steps of encryption rounds into look-up tables, which will be named E-

boxes and addition tables, and obfuscate the table‘s inputs and outputs with

input/output encodings (bijections) similar to those first introduced by Chow

at.al in [Chow et al., 2003, Chow et al., 2002]. As in SAFER+ we split the 16

bytes indices for each round into two sets according to the order in which

exponential (exp) and logarithmic (log) functions are applied. As such, set

A = {1, 4, 5, 8, 9, 12, 13, 16} and B = {2, 3, 6, 7, 10, 11, 14, 15}. The round con-

fusion operations, namely key additions and non-linear layer evaluation, can

be combined into 16 tables which map 1 byte of input to 1 byte of output in

following manner:

For 1 ≤ r ≤ 6

Er
i (x) := exp(x⊕ kri1) + kri2 for i ∈ A,

Er
i (x) := log(x+ kri1)⊕ kri2 for i ∈ B.

For security reasons to be explained later we randomly split the outputs of

these tables into 2 numbers that sum up to the real value modulo 256. These

boxes hereinafter referred to as E-boxes. As such taking this into account, we

will need 16 tables which map 1 byte to 2 bytes for round 1 and 2 bytes to 2 bytes

for rounds 2 to 6. This is because when E-box output after first round is split

into two parts these two parts transfer after multiplication with the matrix M

another two parts which in turn become inputs for the next round E-box. And

this process is propagated through all six rounds. Random permutations are also

applied into outputs of E-boxes. Sixteen random permutations fi(i = 1 . . . 16)

will be generated at a white-box table generation phase, where fi : Z256 → Z256.

Let us denote the ith mapping for the input value x for the round r = 1 by

E1
i1(x) and E1

i2(x), and correspondingly ith mapping for input values x1 and

x2, for rounds r = 2 . . . 6, by Er
i1(x1, x2) and Er

i2(x1, x2) respectively. Thus our

E-boxes will have the following structure:

For r = 1

fi(E
1
i1(x)) := fi(exp(IP

−1(x)⊕ k1i1) + k1i2 +Ri1) for i ∈ A,

fi(E
1
i2(x)) := fi(Ri2) for i ∈ A,

fi(E
1
i1(x)) := fi(log(IP

−1(x) + k1i1)⊕ k1i2 +Ri1) for i ∈ B,
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fi(E
1
i2(x)) := fi(Ri2) for i ∈ B.

For 2 ≤ r ≤ 6

fi(E
r
i1(x1, x2)) := fi(exp((Z

−1
ri

(x1) + Z−1
ri

(x2))⊕ kri1) + kri2 +Ri1) for i ∈ A,

fi(E
r
i2(x1, x2)) := fi(Ri2)for i ∈ A,

fi(E
r
i1(x1, x2)) := fi(log((Z

−1
ri

(x1) + Z−1
ri

(x2)) + kri1)⊕ kri2 +Ri1) for i ∈ B,

fi(E
r
i2(x1, x2)) := fi(Ri2) for i ∈ B.

Ri1 and Ri2 are generated randomly such that Ri1 + Ri2 ≡ 0 (mod 256).

IP denotes an initial permutation which is applied at the beginning of WB

implementation. More detailed explanation of IP is given later. It should be

mentioned that Z−1
ri

denotes a reverse permutation applied to the output of

previous round for the i-th byte. A corresponding list of Z−1
ri

permutations is

given in (5). For example Zr1 corresponds to Z9. For the security reason which

will be clear from security analysis, Ri1 is chosen such that

(Ei1
r(x) +Ri1) ≤ 128.

A schematic structure of E-boxes is given in Fig. 2 (for the first round) and

Fig. 3 (for rounds 2-6).

                          T                                                                                T  

                                                                                               

       B @6Ü55 :T;A         B @6Ü65 :T;A                                       B @6Ü55 :T;A         B @6Ü65 :T;A 

   IP-1 (x) 

U L #@@:G5á+2:T;; 

 

����:U; 
 

6 L :14:Gtáá U; 
  B:6s;         B:6t; 

IP-1 (x) 

U L :14:G5á+2:T;; 

 

����:U; 
 

6 L #@@:Gtáá U; 
  B:6s;         B:6t; 

Figure 2: Schematic structure of E-boxes for the first round.
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                  T5         T6                                                                       T5         T6  

                                                                                    

 

 

 

 

 

 

 

 

                                                                                                 

   Bk6Ü5
å (T5, T6)o        Bk6Ü6

å (T5, T6)o                                      Bk6Ü5
å (T5, T6)o        Bk6Ü6

å (T5, T6)o           

 

<?5(T5)        <?5(T6)            

 T = <?5(T5) + <?5(T6) 

 

U = #@@(G5,T) 

 

log (U) 

 

6 = :14(G2,, U) 

  B(61)         B(62) 

 

<?5(T5)        <?5(T6)            

 T = <?5(T5) + <?5(T6) 

 

U = :14(G5,T) 

 

exp (U) 

 

6 = #@@(G2,, U) 

  B(61)         B(62) 

 

Figure 3: Schematic structure of E-boxes for rounds 2-6.

One should note that in SAFER+ a matrix multiplication operation comes

next after second subkey addition. Assuming that the round input is

x̄ = (x1,1, x1,2, x2,1, x2,2 . . . x16,1, x16,2) for rounds r = 2 to 6 (for round r = 1

x̄ = (x1, x2 . . . x16)). Then the round output vector ȳ = (y1, y2 . . . y16) can be

presented as follows:

ȳr = (Er
1,1(x1,1, x1,2) + Er

1,2(x1,1, x1,2);E
r
2,1(x2,1, x2,2) + Er

2,2(x2,1, x2,2);

. . . Er
16,1(x16,1, x16,2)+Er

16,2(x16,1, x16,2))×M = (Er
1,1(x1,1, x1,2);E

r
2,1(x2,1, x2,2);

. . . Er
16,1(x16,1, x16,2))×M + (Er

1,2(x1,1, x1,2);E
r
2,2(x2,1, x2,2);

. . . Er
16,2(x16,1, x16,2))×M = ȳr1 + ȳr2,

where M =







m1,1 . . . m1,16

...
. . .

...

m16,1 . . . m16,16






is the SAFER+ diffusion matrix described in

Fig. 1 and + stands for vector addition operation modulo 256.

Thus,

yri,1 = Er
1,1(x1,1, x1,2) ·m1,i + Er

2,1(x2,1, x2,2) ·m2,i+

· · ·+ Er
16,1(x16,1, x16,2) ·m16,i (1)

and

yri,2 = Er
1,2(x1,1, x1,2) ·m1,i + Er

2,2(x2,1, x2,2) ·m2,i+

· · ·+ Er
16,2(x16,1, x16,2) ·m16,i.

In white-box implementation two split outputs are multiplied with matrix

M separately. Thus as a round output we will have two 16-tuple vectors.
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In order to obfuscate the linear part of SAFER+ transformation i.e. result of

matrix multiplication it will be implemented by using Addition tables. Addition

tables are look-up tables which have two x and y bytes as inputs and map them

to one output byte z. There will be two types of addition tables, each type

addition table uses three different Zl, f
−1

i , f−1

j byte to byte permutations and

for the first type there is a functionality:

Ti1 = Zl1(f
−1

i (x) + f−1

j (y)),

and for the second type there is a functionality

Ti2 = Zl2(2f
−1

i (x) + f−1

j (y)).

            BÜ(T)             BÝ(U)                                                       BÜ(T)            BÝ(U) 

                                                                                                                
P = Bg

?5(T) + Bh
?5(U) 

<ß(P) 

P = 2BÜ
?5(T) + BÝ

?5(U) 

<ß(P) 

Figure 4: Scematic structure of addition tables.

where i 6= j, i, j = 1 . . . 16 and l = 1 . . . 14 and f−1

i is an inverse permutation

applied to the output of E-box for the i-th byte. Zl is a permutation applied

to the output of lookup table. All lookup tables will be of two types as men-

tioned earlier and will be based on permutations f−1

i , f−1

j , Zl or Z
−1

l . It is easy

to see that in each column of matrix M elements m2i−1,j and m2i,j are either

equal to each other or 2m2i−1,j = m2i,j . In each odd column of M they are

(16, 8)(4, 4)(2, 2)(1, 1) pairs and in each even column they are (8, 4)(2, 2)(1, 1)

pairs. As such matrix multiplication phase of SAFER+ encryption can be exe-

cuted by using two types of look-up tables mentioned above. For example the

execution of the first byte of the output vector can be represented via look-up

tables as follows: For shortness Er
i,j(xi,1, xi,2) will be denoted by Er

i,j .

Thus, according to (1) we will have

yr+1

1,i = 2Er
1,1+Er

2,1+Er
3,1+Er

4,1+4Er
5,1+2Er

6,1+Er
7,1+Er

8,1+2Er
9,1+2Er

10,1+

+4Er
11,1 + 2Er

12,2 + 4Er
13,1 + 4Er

14,1 + 16Er
15,1 + 8Er

16,1 =

= (2(2(2(2Er
15,1 + Er

16,1) + (Er
13,1 + Er

14,1)) + (Er
9,1 + Er

10,1)) + (Er
7,1 + Er

8,1))+

+(2(2Er
5,1 + Er

6,1) + (Er
3,1 + Er

4,1)) + (Er
1,1 + Er

6,1). (2)
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The formulae (2) can be implemented via 15 two types lookup tables in a

cascade manner to obfuscate the correct inputs for the next round. This schemat-

ically is shown in Fig. 5. Lookup tables will be numbered like Ti and they will

be specified by input and output permutations. For example T1 := Z1(f
−1
1 ; f−1

2 )

and T13 := Z−1
6 (2f−1

9 ; f−1
10 ) meaning that for the table T1 input permutations

are f−1
1 and f−1

2 and an output permutation is Z1 while for the table T13 input

permutations are f−1
9 and f−1

10 , an input corresponding to f−1
9 is multiplied by

two and an output permutation is Z−1
6 . A complete list of lookup tables will be

provided later in List 1. In Fig. 5 tables numbers are indicated in the center of

boxes. For lookup tables also showing corresponding input and output permu-

tations used for a given table. The basic principle of using a cascade of lookup

tables which will be clear from security analysis is that tables are chosen such

that input permutations for any lookup table are chosen to be different.

One should note that Fig. 5 corresponds to the transformation for the first

byte of the next round which is determined by the first column of the matrix

M . The schematic view for the rest 15 bytes will be determined according to

corresponding columns of the diffusion matrix M i.e. the schematic view for

the i-th byte will be determined by the i-th column of the Matrix M . Now

it will be shown that for the implementation for all 16 bytes in the manner

described for the first byte only 43 different lookup tables will be needed instead

of 15×16 = 240 which means that many lookup tables can be reused. Note that

the same set of 43 lookup tables will be used for each round. Another additional

16 lookup tables will be used for the final round in order to combine split outputs

and sum up the last key of SAFER+.

Below the complete list of 43 addition tables is introduced which are used to

implement the matrix multiplication.

T1 := Z1(f
−1
1 ; f−1

2 );T2 := Z2(f
−1
3 ; f−1

4 );T3 := Z3(f
−1
5 ; f−1

6 );T4 := Z4(f
−1
7 ; f−1

8 );

T5 := Z5(f
−1
9 ; f−1

10 );T6 := Z6(f
−1
11 ; f−1

12 );T7 := Z7(f
−1
13 ; f−1

14 );T8 := Z8(f
−1
15 ; f−1

16 );

T9 := Z5(2f
−1
1 ; f−1

2 );T10 := Z7(2f
−1
3 ; f−1

4 );T11 := Z6(2f
−1
5 ; f−1

6 );

T12 := Z1(2f
−1
7 ; f−1

8 );T13 := Z6(2f
−1
9 ; f−1

10 );T14 := Z4(2f
−1
11 ; f−1

12 );

T15 := Z3(2f
−1
13 ; f−1

14 );T16 := Z2(2f
−1
15 ; f−1

16 );T17 := Z8(2Z
−1
1 ;Z−1

6 );

T18 := Z4(2Z
−1
2 ;Z−1

7 );T19 := Z1(2Z
−1
3 ;Z−1

8 );T20 := Z2(2Z
−1
4 ;Z−1

5 );

T21 := Z6(2Z
−1
5 ;Z−1

4 );T22 := Z5(2Z
−1
6 ;Z−1

2 );T23 := Z3(2Z
−1
7 ;Z−1

1 );

T24 := Z7(2Z
−1
8 ;Z−1

3 );T25 := Z9(Z
−1
5 ;Z−1

4 );T26 := Z7(Z
−1
2 ;Z−1

4 );

T27 := Z10(Z
−1
3 ;Z−1

8 );T28 := Z1(Z
−1
3 ;Z−1

7 );T29 := Z4(Z
−1
2 ;Z−1

5 );

T30 := Z11(Z
−1
6 ;Z−1

7 );T31 := Z8(Z
−1
1 ;Z−1

3 );T32 := Z8(Z
−1
1 ;Z−1

6 );
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T33 := Z2(Z
−1
5 ;Z−1

6 );T34 := Z6(Z
−1
1 ;Z−1

8 );T35 := Z5(Z
−1
4 ;Z−1

7 );

T36 := Z12(Z
−1
1 ;Z−1

2 );T37 := Z3(Z
−1
2 ;Z−1

8 );T38 := Z4(Z
−1
5 ;Z−1

9 );

T39 := Z14(Z
−1
6 ;Z−1

10 );T40 := Z7(Z
−1
4 ;Z−1

6 );T41 := Z6(Z
−1
1 ;Z−1

10 );

T42 := Z13(Z
−1
3 ;Z−1

10 );T43 := Z4(Z
−1
1 ;Z−1

5 );

List 1: Complete list of addition tables.

The cascade implementation based on lookup tables like in Fig. 5 can be also

represented via successive application for respective lookup tables taken from

the List 1. For example, a cascade implementation for the byte 1 depicted in

Fig. 5 can also be represented as

T25(T9;T18(T26(T4;T20(T22(T2;T11);T14));T20(T5;T18(T16;T7)))).

It can be easily checked that an implementation according to the formulae

(2) corresponds to the implementation according to Fig. 5.

     B5
?5

  B6
?5

   B7
?5

   B8
?5

    B9
?5

  B:
?5

     B;
?5

  B<
?5

   B=
?5

   B54
?5

      B55
?5

    B56
?5

     B57
?5

   B58
?5

     B59
?5

   B5:
?5

  

              V9       V6               V:           V8           V9            V8               V;             V6 

 

                                                                                                                                      

                                 V9                                                             V9
?5        V8

?5                   

                                            V9
?5     V8

?5                                                      

                                                                                                     V6   

                                                                  V6
?5

            V8
?5

                                                

                                                                                            

                                                                          V;                       

                                                              V;
?5

             V6
?5 

                                     V9
?5

      V8
?5

                         188    

                                                                                    V8 

                                        

                                              V= 

2  6=  1      1  66 1 2  655 1      

11111

1  68 1 1  69  1 2  658 1      

1 

1  6; 1     

1 

2 65: 1 

1 666  2 

1  65< 2 

1 664 2 

1 65<  2 

2 

1 66: 1 

1 664  2 

1 669  1 

Figure 5: Cascade implementation of matrix multiplication via addition tables.
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Now we are able to prove the following lemma:

Lemma 1: Cascade implementations to determine outputs for all 16 bytes by

using lookup tables can be implemented as follows:

Byte1 output T25(T9;T18(T26(T4;T20(T22(T2;T11);T14));T20(T5;T18(T16;T7))))

Byte2 output T35(T38(T9;T25(T22(T2;T11);T4));T26(T14;T20(T5;T18(T7;T16))))

Byte3 output T27(T8;T23(T28(T24(T23(T1;T10);T12);T15);T24(T3;T17(T13;T6))))

Byte4 output T39(T34(T28(T23(T1;T10);T24(T3;T17T13:T6
)));T3);T27(T15;T8))

Byte5 output T30(T21(T22(T2;T21(T9;T4));T29(T22(T11;T20(T5;T14));T16));T7)

Byte6 output T40(T11;T29(T16;T35(T29(T22(T2;T21(T9;T4));T20(T5;T14));T7)))

Byte7 output T31(T23(T10;T13);T19(T23(T1;T24(T3;T12));T32(T6;T19(T8;T15))))

Byte8 output T30(T10;T41(T27(T23(T1;T24(T3;T12));T32(T13;T6));T19(T15;T8)))

Byte9 output T25(T18(T7;T16);T22(T21(T4;T22(T2;T11));T33(T5;T21(T9;T14)))))

Byte10 output T35(T40(T21(T22(T2;T11);T4);T18(T7;T16));T38(T5;T25(T9;T14)))

Byte11output T27(T3;T17(T19(T8;T23(T1;T10));T34(T12;T19(T15;T17(T13;T6)))))

Byte12output T30(T42(T3;T27(T8;T15));T34(T19(T12;T23(T1;T10));T17(T9;T14)))

Byte13output T36(T1;T20(T35(T10;T18(T16;T24(T3;T12)));T18(T7;T20(T5;T14))))

Byte14output T43(T1;T35(T10;T29(T16;T35(T24(T3;T12);T18(T7;T20(T5;T14))))))

Byte15 output T30(T21(T9;T4);T24(T17(T6;T19(T15;T8));T37(T2;T17(T11;T13))))

Byte16 output T39(T21(T9;T4);T27(T32(T11;T13);T37(T2;T17(T6;T19(T15;T8)))))

To prove the lemma it must be shown that cascade implementations for

all 16 bytes render the same result as the multiplication of the output for

the current round by the matrix M . The proof will be provided only for the

first output byte. The proof for the rest of output bytes can be shown in sim-

ilar way. According to SAFER+ structure in order to compute the output

for the first byte of the next round the output of the current round should

be multiplied with the first column of matrix M . As such an expression (2)

must be computed. Note that each tables input permutations are inverse per-

mutations applied to the output of previous E-boxes. On the other hand, in

accordance with List 1 tables T9, T2, T11, T4, T5, T14, T7, T16 will be presented

respectively as Z5(2E
r
1,1 + Er

2,1);Z2(E
r
3,1 + Er

4,1);Z6(2E
r
5,1 + Er

6,1);Z4(E
r
7,1 +

Er
8,1);Z5(E

r
9,1+Er

10,1);Z4(2E
r
11,1+Er

12,1);Z7(2E
r
13,1+Er

14,1);Z2(2E
r
15,1+Er

16,1);

where Er
i,1(xi,1, xi,2) is the first output of respective i-th E-box. Next let us con-
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sider tables T18 and T22. Since inputs for tables T18 and T22 will be respectively

outputs of tables T2, T11 and T7, T16, the outputs of tables T18, T22 will be re-

spectively Z5(E
r
3,1+Er

4,1+4Er
5,1+2Er

6,1) and Z4(E
r
13,1+Er

14,1+4Er
15,1+2Er

16,1).

The output of table T22 together with output of table T18 are inputs for table

T20 and the output of table T18 together with output of table T5 are inputs

for another table T20. As such an output of two different tables T20 will be

Z2(E
r
3,1+Er

4,1+4Er
5,1+2Er

6,1+2Er
7,1+2Er

8,1) and Z2(2E
r
13,1+2Er

14,1+8Er
15,1+

4Er
16,1 + Er

9,1 + Er
10,1). The output one of tables T20 along with the output

of table T4 merges into table T26 which in its turn joins with the output of

the next table T20 into the table T18. Thus, at the output of table T18 we will

have Z4(E
r
3,1 + Er

4,1 + 4Er
5,1 + 2Er

6,1 + Er
7,1 + Er

8,1 + 2Er
9,1 + 2Er

10,1 + 4Er
11,1 +

2Er
12,2 + 4Er

13,1 + 4Er
14,1 + 16Er

15,1 + 8Er
16,1). And for the last table inputs are

output of table T18 and table T9.Finally the output of our last table T25 will be

Z9(2E
r
1,1 + Er

2,1 + Er
3,1 + Er

4,1 + 4Er
5,1 + 2Er

6,1 + Er
7,1 + Er

8,1 + 2Er
9,1 + 2Er

10,1 +

4Er
11,1 +2Er

12,2 +4Er
13,1 +4Er

14,1 +16Er
15,1 +8Er

16,1) which is just equivalent to

the result of multiplication of the first column of the matrix M with an output

of the current r-th round permuted by Z9. Note that Z9 is compensated in the

next round E-box by applying a reverse permutation Z−1
9 . Q.E.D.

At the end of 6th round there will be 16 pairs of outputs. As indicated above

16 look-up tables will be generated which have the following functionality

z = FP (f−1

i (x) + f−1

j (y) + k13i )

and

z = FP ((f−1

i (x) + f−1

j (y))⊕ k13i )

where FP is a final permutation.

Similar to AES white-box SAFER+WB also uses external encoding. The

latter consists of two 128-bit to 128-bit bijections, one of which called initial

permutation (IP), is applied on the input of the plaintext, and another - a Fi-

nal permutation - (FP) is applied on the output of the ciphertext. Thus for

external encoding two 128-bit to 128-bit initial permutation (IP) and (FP)

should be generated. More precisely 16 concatenated randomly selected 8 bit

to 8 bit bijections as a external encoding will be used. The purpose of external

input/output encodings is to prevent attackers from exploiting specific weak-

nesses [Jacob at al., 2003]. Thus in order to decrypt ciphertext resulted from

SAFER+WB implementation one should compute

IP ◦Dk ◦ FP−1,

where Dk is an ordinary cipher decryption function based on a secret key k.

Lemma 2: The above described white box encryption result is equivalent to

the “black- box” encryption result of SAFER+ accurate to the input and output

permutations applied to the white-box input and output.
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Proof: The proof is straightforward: The way how E-boxes are implemented

implies that after each permutation at the output a reverse permutation is ap-

plied at the input of the next E-box which cancels the previous permutation.

The same is true for the implementation of matrix multiplication implemented

via cascade of addition tables in Fig. 5.

First we will prove it for rounds r = 1 . . . 5. And after that we will prove it

for the round 6.

Let us assume that on the input of round r, (r = 1..5) the input values

of SAFER+WB coincide with the input values of SAFER+. This means that

the sum of two input values of SAFER+WB coincides with the input value of

SAFER+. It will be proved that at the output of round r the sum of white-

box output values coincides with the value of the SAFER+. Let the input val-

ues for the round r of SAFER+ be (x1;x2; · · · ;x16) and the input values of

SAFER+WB be (Z9(x1,1), Z9(x1,2), Z2(x2,1), Z2(x2,2) · · · , Z14(x16,1), Z14(x16,2))

for the first round (x1;x2; · · · ;x16). Note that xi = xi,1 + xi,2 mod 256.

According to SAFER+ structure the j-th output byte of round r is equal to

yj =



























16
∑

i=1

(exp(xi ⊕ kri1) + kri2) ·mi,j i ∈ A

16
∑

i=1

(log(xi + kri1)⊕ kri2) ·mi,j i ∈ B

According to SAFER+WB design yj is split into two parts as follows:

yr1,j = Z9

(

16
∑

i=1

Er
i,1(xi,1, xi,2) ·mi,j

)

yr2,j = Z9

(

16
∑

i=1

Er
i,2(xi,1, xi,2) ·mi,j

)

.

It should be mentioned that first and second type look-up tables are chosen

in the way that mi,j is equal to the corresponding element of the Matrix M .

Now let us consider the sum of yr1,j and yr2,j . Taking into account that out-

put permutations is annihilated in the next round we will consider the above

mentioned sum without output permutations.

yr1,j + yr2,j =
16
∑

i=1

(Er
i,1(xi,1, xi,2) ·mi,j + Er

i,2(xi,1, xi,2) ·mi,j) =

=

16
∑

i=1

(Er
i,1(xi,1, xi,2) + Er

i,2(xi,1, xi,2)) ·mi,j =
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=



























16
∑

i=1

(exp((xi,1 + xi,2)⊕ kri1) + kri2 +Ri1 +Ri2) ·mi,j i ∈ A

16
∑

i=1

(log((xi,1 + xi,2) + kri1)⊕ kri2 +Ri1 +Ri2) ·mi,j i ∈ B

=



























16
∑

i=1

(exp(x⊕ kri1) + kri2) ·mi,j i ∈ A

16
∑

i=1

(log(x+ kri1)⊕ kri2) ·mi,j i ∈ B

(3)

Since these two inputs are added up at the beginning of the r-th (r = 1 . . . 5)

round the result presented in (3) will be obtained, which in fact coincides with

the output of the r-th (r = 1 . . . 5) round of SAFER+. The i-th byte of the last

round output of SAFER+ has the view:

yi =



























16
∑

i=1

(exp(xi ⊕ kri1) + kri2) ·m1,i ⊕ kr+1

i1 i ∈ A

16
∑

i=1

(log(xi + kri1)⊕ kri2) ·m1,i + kr+1

i1 i ∈ B

Meantime the analogous i-th byte output for SAFER+WB has the view:

yj =

{

(yj1 + yj2)⊕ kr+1

i1 i ∈ A

(yi1 + yi2) + kr+1

i1 i ∈ B
=

=



























16
∑

i=1

(Er
i,1(xi,1, xi,2) + Er

i,2(xi,1, xi,2)) ·mi,j ⊕ kr+1

i1 i ∈ A

16
∑

i=1

(Er
i,1(x1,1, x1,2) + Er

i,2(x1,1, x1,2)) ·mi,j + kr+1

i1 i ∈ B

=



























16
∑

i=1

(exp((xi)⊕ kri1) + kri2 +Ri1 +Ri2) ·m1,i ⊕ kr+1

i1 i ∈ A

16
∑

i=1

(log((xi) + kri1)⊕ kri2 +Ri1 +Ri2) ·m1,i + kr+1

i1 i ∈ B

=



























16
∑

i=1

(exp(xi ⊕ kri1) + kri2) ·m1,i ⊕ kr+1

i1 i ∈ A

16
∑

i=1

(log(xi + kri1)⊕ kri2) ·m1,i + kr+1

i1 i ∈ B
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and coincides with the same byte output for SAFER+ after six rounds including

an addition of final keys. Hence the Lemma 2 is proved.

Thus SAFER+WB encryption for each of six rounds can be accomplished

by applying values of respective E-boxes as an inputs to corresponding addition

tables (see Fig. 6). After six rounds of such iteration, the final ciphertext covered

by Final Permutation (FP) will be the result of the application of last sixteen

addition tables to the output of the sixth round.

    �.. 

 �. 

 í î ï ð ñ ò       Plaintext  12 13 14 15 16 

E-Box1 

Round1 

E-Box2 

Round1 

E-Box15 

Round1 

E-Box16 

Round1 

Figure 6: SAFER+ round implementation via look-up tables.

3 SAFER+ White-Box Encryption Security Analysis

Previous efforts have demonstrated a detailed cryptanalysis of SAFER+ algo-

rithm (see [Massey et al., 1998, Nakahara et al., 2001, Zhao et al., 2013]) where

it was shown that SAFER+ is secure against differential and linear cryptanal-

ysis attacks after 6 rounds of encryption. White box encryption considered in

this paper is using two additional permutations of bytes applied at the beginning

and at the end of SAFER+ 6 round encryption. Clearly these 2 additional layers

will not reduce the security of black box encryption from the point of view of

differential and linear cryptanalysis.

881Khachatrian G., Abrahamyan S.: Towards Secure ...



As in real cryptography we assume that an attacker has an access to all E-

boxes (knows all pairs of inputs and outputs) and can see all encryption steps.

We also assume that a potential attacker knows all details of our SAFER+

encryption and white-box encryption steps as we have described earlier in this

paper. The only thing an attacker does not know is a secret Master key. It will

be shown now that an attacker having a complete information about white-box

design will not be able to decrypt a randomly chosen ciphertext such that the

resulting decrypted message (after passing all white-box encryption steps) will

result in the same randomly chosen plaintext. Note that the major attack against

white-box is a Billet et al. [Billet et al., 2003] attack which will be called as BGE

attack and we will analyze why this attack can not be applied for SAFER+ WB

design. Let us explain first how BGE attack works for AES.

Billet et al. [Billet et al., 2003] found that for each output encodings Qi (Zi

for our case) of AES white-box it is possible to build an approximation Q̆i that

differs from it by unknown affine transformation that is Q̆i = Qi ◦ Ai where Ai

consists of an invertible linear transformation followed by an exclusive-or with

a constant. These approximations are built by analyzing a set of look-up tables.

In AES white-box round output y0 is a function of four variables:

y0 = f(x0, x1, x2, x3) = Q0(02 ·T
′

0(x0)⊕03 ·T ′

1(x1)⊕01 ·T ′

2(x2)⊕01 ·T ′

3(x3)), (4)

where T ′

i (xi) is a look-up table that maps bytes to bytes and implements part

of round table (AddRoundKey and Sub-Bytes transformations) and Q0.

However if x2, x3 are kept constant then y0 can be considered as a function of

only x0, x1. For the fixed x2, x3 let fx1
(x0) denotes the function f(x0, x1, c2, c3).

Let us construct a look-up table for y0 = f00(x0) and y0 = f01(x0). From

equation (4) we see that f00(x0) = Q0(02 · T ′

0(x0) ⊕ β) and f01(x0) = Q0(02 ·

T ′

0(x0)⊕ β′) where β and β′ are unknown 8 bit constants.

From the look-up tables f00 and f01 one can construct a look-up table for

f00 ◦ f−1
01 which has the following structure: f00 ◦ f−1

01 = Q0(Q
−1
0 ⊕ β′′) where

β′′ = β′+β. By changing the value of β′′ it is possible to construct 256 bijections

of the form Q0(Q
−1
0 ⊕ β). Using this 256 bijections a new bijection Q̆i = Qi ◦Ai

can be constructed, which differs from Qi by an unknown affine transformation.

Then applying this bijection, it is possible to simplify the output encodings.

The simplification is achieved by composing new output encodings with the

existing ones. After each Qi the bijection Q̆−1

i is applied. These two bijections

are composed to render

Q̆−1

i ◦Qi = A−1

i ◦Q−1

i ◦Qi = A−1

i

which is in fact an affine bijection. Note that output encodings for a given

round correspond to input encodings for the subsequent round and the output

encoding approximations also lead to input encoding approximations. Therefore
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the input encodings can also be simplified. Each Qi has the form Mi(x) ⊕ qi,

where Mi is a linear bijection and qi is an 8-bit constant. The next step in the

attack recovers Mi and qi (see the original paper for details). As a result, the

value of the input and output encodings as well as outputs of the T-boxes can be

determined completely. By possessing input and output encodings an attacker

can easily recover key byte from a look-up table.

For SAFER+WB output y0 is a function of sixteen variables which in fact

can be presented as 32 variables since according to our white-box construction

every output is split into two outputs. Thus the analogue of the equation (4) in

the case of our white-box will be

y01 = Z9

(

∑16

j=0
(mi,0T

r
j1(x1, x2))

)

and y02 = Z9

(

∑16

j=0
(mi,1T

r
j2(x1, x2))

)

.

In fact according to SAFER+WB construction instead of y0 we have y01 and

y02 where y0 = y01 + y02. If 31 inputs of the round input are kept constant then

we have y01 = fc(x0) = Z9(mi,0T
r
i1(x1, c1) + β) where a value c1 corresponds

to the second input for the first byte and β corresponds to constant values

for remaining 30 inputs. Changing one of 30 values for the same constant c1

will result fc1(x0) = Zt(mi,0T
r
i1(x1, c1) + β′). In order to mount BGE attack in

analogue with AES cipher we need to construct fc ◦ f
−1
c1 = Zt(Z

−1
t + β′′) where

β′′ = β+β′ mod 256. However Er
i1(x1, c) is not a bijection due to the condition

(2) which implies that any byte at the input of such permutation has an output

which is restricted to have a value not more than 128. Therefore y01 = fc1(x0) is

not a bijection and consequently fc ◦ f
−1
c1 = h0(h

−1
0 + β′′) cannot be a bijection

as well. Thus it is impossible to construct an approximation bijection that differs

from the real one by an affine transformation which will allow to mount an attack

described in [Billet et al., 2003].

One way-ness of SAFER+ based white-box encryption: One way-

ness feature prevents an attacker to perform a decryption operation based on

E-box information without knowing actual keys used inside each box. This kind

of attack can also be called a reverse Engineering attack. Let us analyze the

complexity of making correct decryption operation for the rounds r ≤ 6. This is

equivalent to determine the output and input permutations

f1(), f2(), . . . , f16() and

Z9;Z2;Z10;Z14;Z11;Z7;Z8;Z11;Z9;Z5;Z10;Z11;Z12;Z4;Z11;Z14 (5)

used in E-boxes. Note that indexes for Z-permutations correspond to respec-

tive bytes, for example Z10 is the permutation used for 3-th and 11-th bytes

as it follows from (5). If these outputs are determined there is no need to know

what keys are used inside of each box and we simply can determine E-box inputs

based on their outputs and as such to get decryption implemented for the current

round. Thus the complexity of determination for the given xi(i = 1; 16) E-boxes
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outputs f1(), f2(), . . . , f16() needs to be estimated. Let us assume that (a) all val-

ues of Z−1(xi) are known, which is equivalent to know all secret permutations

used for the last tables of transformation, and (b) all 16 secret permutations

f1(), f2(), . . . , f16() used at the outputs of the E-boxes are known. In that case

the vector Z−1
9 (y1), Z

−1
2 (y1), . . . , Z

−1
14 (y16) could be multiplied by the reverse

matrix M−1 of SAFER+ linear transformation. Finally, it would be possible to

obtain fi(E
r
i1(x1, x2)) i.e. output values for E-boxes by using the knowledge of

all 16 permutation functions fi(). Now it must be shown that it is impossible

to extract any information about the above mentioned permutations by using

information provided by all the addition tables. Let us start with table 1 that

has two inputs f1() and f2() and one output Z1() The white-box ambiguity for

the given table is the number of distinct constructions resulting in the same ta-

ble. This number should be large enough not to allow finding the permutations

through exhaustive search. By fixing any two of the f1, f2 and Z1 permutations,

the third permutation always can be chosen in order to get a specified addition

table. However, given one input permutation and the value of a specified element

transformed by the other input permutation, the third permutation can easily

be found. Thus the white-box ambiguity of such tables is 256!*256, which makes

the exhaustive search infeasible. The same reasoning applies to any of 15 similar

tables. On the other hand, if one of the tables is using permutations fi, fj at the

input and fij permutation at the output, and if any 2 out of 3 of these permu-

tations are the same, then it can be shown that not more than 256 permutation

values will be found for a given table. This is the major reason why all lookup

tables used in cascade implementation are chosen to have different permutations

for both inputs and an output.

4 Complexity of Implementation and Memory Requirements

Our reference software implementation for SAFER+WB showed that perfor-

mance degradation compared with corresponding SAFER+ black box imple-

mentation is about 20%. Usually the performance estimation is made in terms

of number of clock cycles. However in the case of white-box it is a common

practice to made a performance estimation based on number of look-up tables

used during implementation, as well as on the number of other operations such

as “xor” or other.

In fact during SAFER+WB implementation only table lookup operations

are used. For each round 16 table lookup operations are used for implementing

E-boxes and for each round‘s output bytes 15 table lookup operations are used

in order to carry out matrix multiplication operation. Taking into account that

SAFER+WB consists of 6 rounds and each round has 32 output bytes 6(16 +

32 × 15) = 2976 successive table lookup operations will be required in the case
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if no parallel processing is possible. In this case the similar operations can be

implemented by using 6(1+1× 5) = 36 successive lookup operations at the cost

of 32 parallel processors. As follows from the Fig. 5 by using parallel processors

a cascade implementation of calculating an output byte can be carried out in 5

successive steps.

Now let us estimate a memory required for SAFER+WB implementation.

SAFER+WB encryption uses 96 E-box tables. First 16 E-box tables for the

first round have the size of 256× 2 bytes. Another 80 E-box tables for rounds 2

to 6 each of them having size of 256× 256× 2bytes = 128KB. The size of each

addition box is 65536 bytes = 64KB, and there are 43+ 16 boxes in total. Thus

the total required memory size will be approximately 14MB.

5 Conclusions and Future Work

In this paper a novel white-box design based on SAFER+ is presented. It is

shown that the new design called as SAFER+WB is secure against the so called

BGE attack presented in [Billet et al., 2003]. It is also shown that SAFER+WB

is secure against so called reverse Engineering attack. Implementation speed

and memory requirements for SAFER+WB are also provided. In the next step

of our research we will focus on the integration of SAFER+WB with DRM and

public-key systems.
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