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1 Introduction

Replayable CCA (RCCA) security is a relaxed variant of CCA security for

Public-Key Encryptions (PKE). It is proved to be sufficient for several cryp-

tographic tasks [Canetti and Krawczky 2003, Coretti et al. 2013, Li et al. 2019,

Maurer et al. 2012, Yu et al. 2017], and is believed to be sufficient for almost all

the uses of CCA-secure encryptions [An et al. 2002, Shoup 2004]. In addition,

it makes it possible to consider secure rerandomizable encryptions [Gröth 2004,

Prabhakaran and Rosulek 2007].

In the definition of RCCA security, the decryption oracle answers ‘test’ when-

ever a queried ciphertext decrypts to one of the questioned messages m0 or m1.

This allows an adversary to modify a challenge ciphertext to another if the un-

derlying plaintext is unchanged. Then by requiring such modification can be

detected, RCCA security is strengthened. According to such detection can be

done given only the public key or even the secret key, two stronger variants of

RCCA security are introduced in [Canetti and Krawczky 2003], i.e, publicly de-

tectable RCCA (pd-RCCA) and secretly detectable RCCA (sd-RCCA) security.

It is known that CCA⇒ pd-RCCA⇒ sd-RCCA⇒ RCCA, and all the impli-

cations are strict. The two leftmost are shown in [Canetti and Krawczky 2003],

and the rightmost is shown in [Prabhakaran and Rosulek 2007]. Nevertheless,

almost all existing RCCA secure schemes satisfy the stronger pd-RCCA secu-

rity, such as the schemes adding arbitrary padding to ciphertexts in the en-

cryption while discarding it in the decryption, those allowing for more than one

representation of ciphertexts, and even a recently proposed very natural LWE

based schemes [El Bansarkhani et al. 2014]. “Natural” RCCA secure schemes

satisfying only the weaker sd-RCCA security are left as an open problem in

[Canetti and Krawczky 2003]. We will show such schemes in this paper. We sim-

ply denote sd-RCCA but not pd-RCCA security as sd-RCCA security later.

Now, let us first recall the two existing sd-RCCA secure constructions in

[Canetti and Krawczky 2003], which are designed to show the gap between sd-

RCCA and pd-RCCA security. The first one appends an encryption of m under

an already sd-RCCA secure (possibly pd-RCCA secure since it implies sd-RCCA)

scheme with an encryption of 0 under an independent pk. One can substitute

the encryption of 0 by another, but the validity can be checked only secretly.

Appending an encryption of 0 seems unnatural in practice.

Another one is related to rerandomizability. A PKE is rerandomizable if it is

possible to convert an encryption c of m into another ciphertext c′ that is indis-

tinguishable from a fresh encryption of m. Depending on this can be done with

just pk or still sk, the scheme could be publicly or secretly rerandomizable. Since

a publicly rerandomizable RCCA scheme could be sd-RCCA secure but never

pd-RCCA [Canetti and Krawczky 2003], this becomes a line for constructing sd-

RCCA secure schemes. The second construction in [Canetti and Krawczky 2003]
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is given in this way. It applies an ElGamal encryption on an ciphertext under

an already sd-RCCA secure (also possibly pd-RCCA secure) scheme to make it

publicly rerandomizable. However, it seems difficult to build a natural scheme

whose ciphertexts have only one group element to match the message space of

ElGamal.

The two constructions in [Canetti and Krawczky 2003] are unnatural in prac-

tice. We follow another line in this paper, which simply follows the popular

KEM+DEM hybrid paradigm [Cramer and Shoup 2003].

In the paradigm, KEM uses asymmetric techniques to encrypt a key, which

is then used as the key by a symmetric cipher DEM to encrypt the message. It

is well known that the combination of a CCA secure KEM with a (one-time)

CCA secure DEM yield a CCA secue PKE. For RCCA security, similar result

holds. For our purpose, we can relax one of the KEM and DEM to be sd-RCCA

secure. In fact, sd-RCCA secure KEMs seem as difficult to be built as PKEs, so

we seek for sd-RCCA secure DEMs.

We note that it has already been pointed out in [Canetti and Krawczky 2003]

that an RCCA secure DEM can be achieved by combining a passive secure DEM

with a regular (but not strong) secure message authentication code (MAC),

since for a regular MAC it is possible to forge a new MAC value for an old

message. Now, if for such MACs the validity of the forgery can be verified only

secretly, then we obtain the desired DEMs. However, almost all practical MACs

are deterministic, for which regular and strong security are equivalent, then we

should find such natural MAC schemes from multi-value or probabilistic ones.

Existing multi-value MACs are just conceptual or unnatural [Krawczyk 2001],

so we turn to probabilistic MACs.

Probabilistic MACs have been recently proven to be useful and can be con-

structed efficiently from some standard hardness assumptions [Alwen et al. 2014,

Dodis et al. 2012]. Some schemes in [Dodis et al. 2012] appear to meet our re-

quirements. One may think that probabilistic MACs are overkilled since only

one-time security for MACs is required, and information-theoretically secure

ones exist. However, we are focus on such a stage that if the MAC in a CCA

secure scheme is slightly weakened, then it might be naturally degenerated to

an sd-RCCA secure one. This is the main reason why we deem our paradigm

as “natural”. Another reason is that when instantiating some hybrid encryp-

tions with proper probabilistic MACs, we obtain sd-RCCA secure PKEs with

very “natural” number theoretic operations as those in CCA secure ones. This

mainly dues to the structures of these MACs. Also, if the efficiency is the prob-

lem, then our schemes are more efficient than the RCCA secure double-strand

Cramer-shoup RCCA (rerandomizable) PKE [Prabhakaran and Rosulek 2007].

In section 2 and 3, we formalize the related notions and results mentioned

above, there are some subtitles in the definition of sd-RCCA security for DEMs.

160 Chen Y., Dong Q., Li Y., Lai Q., Wang Z.: Natural sd-RCCA ...



In section 4, we show two natural examples of MAC schemes as desired. The first

one follows the construction from hash proof systems (HPS) in [Dodis et al. 2012],

which is instantiated directly with a universal2 HPS by Cramer and Shoup

[Cramer and Shoup 2002], without the variant used in [Dodis et al. 2012]. The

second one comes directly from [Dodis et al. 2012], which is the (so-called) full

secure variant of the key-homomorphic weak PRF based construction when in-

stantiated by a DDH-based example. From these MAC schemes, we further in-

stantiate two natural PKE schemes as desired.

1.1 Further Discussions and Related Notions

Building RCCA secure schemes more efficient than CCA secure ones is another

open problem left in [Canetti and Krawczky 2003]. Although a MAC scheme

satisfying our requirement and more efficient than existing strong secure MAC

schemes seems helpful, our schemes fail for that purpose. The reason is informally

given in section 5.2.

Detectability is studied in isolation in [Hohenberger et al. 2012], where a no-

tion called DCCA security is defined when danger can be detected publicly.

Pd-RCCA is a natural case for DCCA security, but generally sd-RCCA is not.

However, our schemes are obviously DCCA secure, thus show an overlap between

sd-RCCA and DCCA security.

In our schemes, the underlying MACs are rerandomizable. However, the

schemes as a whole are not fully rerandomizable. So, our paradigms do not

help to provide RCCA secure rerandomizable PKEs.

2 Preliminaries

2.1 RCCA Security for PKE

Definition 1 (PKE). A public-key encryption (PKE) scheme consists of three

algorithms. Probabilistic PKE.Gen that on input the security parameter k, gen-

erates public and private-keys (pk, sk), pk defines the message spaceM. Prob-

abilistic PKE.Enc encrypts a message m ∈ M into a ciphertext c by using pk.

PKE.Dec decrypts cf by using sk, outputs either m ∈ M or a special symbol

⊥/∈ M. Correctness is required, i.e, for all (pk, sk) generated by PKE.Gen, and

m ∈M, PKE.Decsk(PKE.Encpk(m)) = m.

Definition 2 (RCCA security for PKEs). We say a PKE scheme PKE =

(PKE.Gen,PKE.Enc,PKE.Dec) is RCCA secure if for every probablistic polyno-

mial time oracle machine (PPT) AE that plays the following game, its advantage

AdvrccaΠ,AE
(k) = |Pr[b̃ = b]− 1

2 | is negligible in k.

[RGAME.PKE]
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Step 1. (pk, sk)← PKE.Gen(1k)

Step 2. (m0,m1, v)← A
O
E (pk)

Step 3. b← {0, 1}, c← PKE.Encpk(mb).

Step 4. b̃← AO
E (v, c)

By O, we denote PKE.Decsk(·), except that in step 4 O returns ‘test’ for any

ciphertext decrypts to m0 or m1.

In RCCA secure schemes, a “replay” of plaintexts by modifying the ciphertext

is allowed. Publicly-detectable (pd) and secretly-detectable (sd) RCCA security

are defined according to whether the “replay” can be detected given pk or sk.

The definitions are related to a notion of compatible relations. We now give the

definitions in [Canetti and Krawczky 2003].

Definition 3 (Compatible relations for PKEs). For a PKE scheme PKE =

(PKE.Gen,PKE.Enc,PKE.Dec), we say a family of binary relations ≡ on cipher-

text pairs is compatible, if for any (pk, sk) of PKE , we have:

(a) For any ciphertexts c, c′, if c ≡ c′, then PKE.Decsk(c) = PKE.Decsk(c
′).

(b) For any m ∈ M, if c and c′ are two independent encryptions of m, then

Pr[c ≡ c′] is negligible in k.

Given c and c′, if ≡ can be computed efficiently with the sole knowledge of pk,

then we say ≡ is publicly computable, and rewrite it as ≡pk, if the computation

needs also the knowledge of sk, then we say ≡ is secretly computable, and rewrite

it as ≡sk.

Definition 4 (pd-RCCA/sd-RCCA security for PKEs). We say PKE is

pd-RCCA secure if there exists a publicly computable compatible relation ≡pk,

such that PKE is secure according to the above definition of RCCA security

with the modification that O returns test for any c′ with c′ ≡pk c. Denote the

game as pd-RGAME.PKE. We say PKE is sd-RCCA secure if the above holds for

a secretly computable ≡sk. Denote the game as sd-RGAME.PKE.

An observation In [Canetti and Krawczky 2003], it is pointed that (b) is re-

dundant for pd-RCCA but necessary for sd-RCCA. However, we find that it

is obscure to say that without (b), sd-RCCA security is trivially equivalent to

RCCA. In fact, sd-RCCA security can never be achieved under compatible re-

lations which do not satisfy (b).

For pd-RCCA, (b) is implied by CPA security, that is, if there is a publicly

computable compatible relation ≡pk such that PKE is pd-RCCA secure, then

(b) must be satisfied by this ≡pk. This can be shown by constructing a CPA

attacker A as follows: since there exists an m such that two independent encryp-

tions satisfy ≡pk with non-negligible probability in k, then A let m0 = m and
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randomly choose m1, when the challenge ciphertext c∗ is obtained, generate a

random encryption c′ of m0, then check whether or not c∗ ≡pk c′ publicly, if

‘test’ is returned, then return 0, else return 1. It’s easy to see that the advantage

of A is non-negligible.

For sd-RCCA, the compatible relation ≡sk cannot be computed publicly,

so the above attacker does not work. However, this time A can query c′ to its

decryption oracle, if ‘test’ is returned, then return 0, else return 1. It’s easy to

see that the advantage is non-negligible if (b) is not satisfied by ≡sk.

Therefore, if (b) is not required, then to achieve a meaningful notion, ‘test’

must also be returned for the encryptions of m1−b, that is just what RCCA

security requires.

It is shown in [Canetti and Krawczky 2003] that “CCA ⇒ pd-RCCA ⇒ sd-

RCCA ⇒ RCCA”. We also noted that:

Remark 1: For any pd/sd-RCCA secure scheme, c ≡ c whatever ≡ is, oth-

erwise the scheme can never be pd/sd-RCCA secure.

Remark 2: Since we are interested in RCCA secure schemes which are not

CCA secure, the compatible relation ≡ showing the pd- or sd-RCCA security

must not be the equality relation: c′ ≡ c if c′ = c. Therefore, we address that

for such ≡, publicly or secretly computable, it must be satisfied that it is easy

to find a c′ 6= c, such that c′ ≡ c. That is, there exists a PPT machine, when

given pk, c as inputs, it outputs a c′ 6= c, such that c′ ≡ c with non-negligible

probability. Otherwise, pd-RCCA or sd-RCCA secure schemes are trivially CCA

secure.

2.2 KEM+DEM and related security notions

Definition 5 (KEM). A key encapsulation mechanism (KEM) consists of three

algorithms. Probabilistic KEM.Gen that on input 1k outputs a public/private key

pair (pk, sk), pk defines the key space KK . Probabilistic encapsulation algorithm

KEM.Enc that on input 1k and a public key pk, outputs a pair (dk, ψ), where

dk ∈ KK is a key and ψ is its ciphertext. Decapsulation algorithm KEM.Dec,

on input sk and ψ, outputs either a key dk ∈ KK or the special symbol ⊥.

Correctness is required, i.e, for all (pk, sk) generated by KEM.Gen, and all

(dk, ψ)← KEM.Encpk(1
k), KEM.Decsk(ψ) = dk.

Definition 6 (CCA for KEMs). We say a KEM scheme KEM =(KEM.Gen,

KEM.Enc, KEM.Dec) is CCA secure if for every PPT AK that plays the following

game, its advantage AdvccaΠ,AK
(k) = |Pr[δ̃ = δ]− 1

2 | is negligible in k.

[GAME.KEM]

Step 1. (pk, sk)← KEM.Gen(1k)

Step 2. (dk1, ψ)← KEM.Encpk(1
k), dk0 ← KK , δ ← {0, 1}.

Step 3. δ̃ ← AO
K(pk, ψ, dkδ)
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O denotes KEM.Decsk(·). In Step 3, AK is restricted not to ask ψ to O.

Definition 7 (DEM). A data encapsulation mechanism (DEM) is a one-time

symmetric-key encryption, consists of two algorithms. DEM.Enc that takes as

input 1k, a key dk and a message m ∈M (M is usually assumed to be {0, 1}∗),

outputs a ciphertext χ. DEM.Dec that takes as input a dk and a ciphertext

χ, outputs a message m or the special symbol ⊥. For our purpose, we al-

low DEM.Enc to be probabilistic. Correctness is required, i.e, for all m ∈ M,

DEM.Decdk(DEM.Encdk(m)) = m.

Definition 8 (OT/CCA/RCCA security for DEMs). We say that a DEM

DEM = (DEM.EncDEM.Dec) is OT/CCA/RCCA secure, if for every PPT AD

that plays the following game, its advantage Adv
ot/cca/rcca
Π,AD

(k) = |Pr[b̃ = b] − 1
2 |

is negligible in k.

[GAME.DEM]

Step 1. (m0,m1, v)← AD(1k)

Step 2. dk ← KD, b← {0, 1}, χ← DEM.Encdk(mb).

Step 3. b̃← AO
D(v, χ)

For the OT security, O is null. For the CCA security, O is DEM.Decdk(·),

and in Step 3 AD is restricted not to ask χ to O. For the RCCA security, all is

the same except that in step 3 O returns ‘test’ for any ciphertext that decrypts

to m0 or m1.

KEM+DEM hybrid paradigm works as follows, and it is well known that if

KEM and DEM are IND-CCA secure then the following HPKE is IND-CCA

secure (as a public-key encryption) [Cramer and Shoup 2003].

HPKE.Encpk(m) HPKE.Decsk(c)

(dk, ψ)← KEM.Encpk() (ψ, χ)← c

χ← DEM.Encdk(m) dk ← KEM.Decsk(ψ)

Output c = (ψ, χ) m← DEM.Decdk(χ)

Output m

2.3 Detectable RCCA security for DEMs

To define pd-RCCA and sd-RCCA security for DEMs, we should first define

compatible relations for them. We note that (b) in the definition of compatible

relations for PKEs is not necessary now. Although our DEMs are randomized,

it seems impossible for an adversary to generate random encryptions for both

m0 and m1, since for DEMs we only require one-time security, so no encryption

oracle is provided, thus the attack mentioned for PKEs doesn’t work for DEMs.

Due to this, we define compatible relations for DEMs without this requirement,

which are simpler but sufficient for our purpose.
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Definition 9 (compatible relations for DEMs). For a DEM scheme DEM

= (DEM.Enc,DEM.Dec), we say a family of binary relations ≡ on ciphertext

pairs is compatible, if for any dk of DEM and any ciphertexts c, c′, if c ≡ c′,

then DEM.Decdk(c) = DEM.Decdk(c
′).

Given c and c′, if ≡ can be computed efficiently without the knowledge of dk,

then we say ≡ is publicly computable, if the computation needs the knowledge

of dk, then we say ≡ is secretly computable, and rewrite it as ≡dk.

Definition 10 (pd-RCCA/sd-RCCA for DEMs). We say thatDEM is pd-

RCCA secure if there exists a publicly computable compatible relation ≡, such

that DEM is secure according to the definition of RCCA security with the

modification that O returns test for any c′ with c ≡ c′. Denote the game as pd-

RGAME.DEM. We say DEM is sd-RCCA secure if the above holds for a secretly

computable ≡dk. Denote the game as sd-RGAME.DEM.

In fact, our definition of sd-RCCA security degrades to RCCA security. Nev-

ertheless, it is sufficient for our purpose, and we still denote it as sd-RCCA to

distinguish from pd-RCCA.

Theorem11. Let DEM = (DEM.Enc,DEM.Dec) be an RCCA secure DEM

scheme, then DEM is also sd-RCCA secure under the compatible relation ≡dk,

where χ ≡dk χ
′ if and only DEM.Decdk(χ) = DEM.Decsk(χ

′).

To prove this, we first show the following lemma.

Lemma12. Let DEM = (DEM.Enc,DEM.Dec) be an RCCA secure DEM, then

for any pair of messages m0,m1 ∈ M, no efficient adversary can generate a

random encryption of m1 given that of m0 with non-negligible security.

Proof. If there exist a pair of messages m0,m1 ∈ M, such that there is an

efficient adversary A, which can generate an encryption of m1 given that of m0,

then we construct an RCCA attacker B as follows:

B lets M0 = m0, M1 be a random m ∈M, then after receiving its challenge

ciphertext χ∗, it runsA on χ∗. Let the result be χ′, B submits χ′ to its decryption

oracle, if m1 is returned then output 0, else output 1.

Now, Theorem 1 follows immediately.

Note that by requiring (b), a stronger notion of pd-RCCA/sd-RCCA for

DEMs is obtained, and our reradomizable DEMs in Section 5 in fact show a gap

between them.
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3 Sd-RCCA secure hybrid public-key encryptions from
sd-RCCA secure DEMs

It’s easy to see that sd-RCCA secure KEMs lead to sd-RCCA secure hybrid

encryptions, but such KEMs are almost as hard to be achieved as for PKEs. So,

we seek for the other way. It can be proved that sd-RCCA security for DEMs is

also sufficient.

Theorem13. If KEM is CCA-secure and DEM is sd-RCCA secure (but not

pd-RCCA secure), then the hybrid scheme HPKE (as a PKE ) by following

KEM+DEM paradigm is sd-RCCA secure (but not pd-RCCA secure). In partic-

ular, for every H, there exist AK and AD with

Advsd−rcca
HPKE,H(k) ≤ 2AdvccaKEM,AK

(k) +Advsd−rcca
DEM,AD

(k). (1)

The proof follows the common game-modifying method, and we use the

Shoup’s Lemma [Cramer and Shoup 2003].

Lemma14. Let P , Q, and F be events defined on some probability space, such

that Pr[P ∧ ¬F ] = Pr[Q ∧ ¬F ], then |Pr[P ]− Pr[Q]| ≤ Pr[F ].

Proof Proof of Theorem 2. We first prove the sd-RCCA security of HPKE

from the security of KEM and DEM.

Let ≡dk be a compatible relation for DEM, we define a compatible rela-

tion for HPKE as follows: (ψ, χ) ≡sk (ψ′, χ′) if ψ = ψ′ and χ ≡dk χ′ where

dk = KEM.Decsk(ψ) = KEM.Decsk(ψ
′). It is straightforward to verify ≡sk is

compatible for HPKE as long as ≡dk is compatible for DEM.

Now, let H be an adversary playing sd-RGAME.PKE. Let (ψ∗, χ∗) be the

challenge ciphertext, dk∗ is the encapsulated key in ψ∗. We modify the game

by using a random key dk+ in place of dk∗ in both the encryption and de-

cryption oracle, i.e, dk+ is used to form the challenge ciphertext, and a de-

cryption oracle query is replied by using dk+ whenever dk∗ should be used.

Call this game sd-RGAME.PKE′. Let F and F ′ be events that b̃ = b in sd-

RGAME.PKE and sd-RGAME.PKE′, respectively. Then we claim that |Pr[F ] −

Pr[F ′]| = 2AdvccaKEM(k), which is shown by constructing AK that attacks the

underlying KEM scheme by using H.

AK asks to obtain the challenge (pk, dkδ, ψ
∗) in GAME.KEM, then sends pk

toH. AfterH chooses itsm0 andm1, AK randomly chooses b ∈ {0, 1}, computes

χ∗ = DEM.Encdkδ
(mb), and sends (ψ∗, χ∗) to H.

AK answers H’s decryption query (ψ, χ) as follows:

– If ψ = ψ∗ and so that χ 6= χ∗, then

- If χ ≡dkδ
χ∗ then AK returns ‘test’ (note that AK knows dkδ).
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- Else AK uses dkδ to decrypt χ, and returns the result to H.

– If ψ 6= ψ∗, thenAK just forwards ψ to its own decryption oracle KEM.Decsk(·).

- If ⊥ is returned, then AK returns ⊥ to H.

- If dk is returned, then AK uses this dk to decrypt χ, and returns the

result to H.

This perfectly simulates the decryption oracle for H. When H outputs b̃, AK

checks whether or not b̃ = b, if so it outputs δ̃ = 1, else outputs δ̃ = 0. Now, we

have Pr[b̃ = b|δ = 1] = Pr[F ]|, and Pr[b̃ = b|δ = 0] = Pr[F ′], then

AdvccaKEM,AK
(k) = |Pr[δ̃ = δ]− 1

2 | =
1
2 |Pr[δ̃ = 1|δ = 1]− Pr[δ̃ = 1|δ = 0]|

= 1
2 |Pr[b̃ = b|δ = 1]− Pr[b̃ = b|δ = 0]| = 1

2 |Pr[F ]− Pr[F ′]|

That is, |Pr[F ]− Pr[F ′]| = 2AdvccaKEM,AK
(k).

Next we argue that H in sd-RGAME.PKE′ in fact conducts an attack against

the sd-RCCA security of DEM, i.e. |Pr[F ′]− 1
2 | = Advsd−rcca

DEM,AD
(k), where AD is

constructed as follows. AD first runs PKE.Gen to generate (pk, sk), then sends

pk to H. After H chooses its (m0,m1), AD gives them to its own encryption

oracle and gets χ∗. Then AD runs KEM.Enc to generate (dk∗, ψ∗), and gives

(ψ∗, χ∗) to H . It should be noticed that now the key dk+ used in encryption

oracle of GAME.DEM is chosen randomly from KD, so is independent of dk∗.

AD answers H’s decryption query (ψ, χ) as follows:

– If ψ = ψ∗ and so that χ 6= χ∗, then AD forwards χ to its own decryption

oracle, and returns the result to H.

– If ψ 6= ψ∗, then AD uses sk to decrypt ψ.

- If the result is ⊥, then AD returns ⊥ to H.

- If dk is returned, then AD uses this dk to decrypt χ, and returns the

result to H.

When H outputs b̃, AD outputs b̃, too. AD perfectly simulates the game

sd-RGAME.PKE′, and AD wins if H does. So, |Pr[F ′]− 1
2 | = Advsd−rcca

DEM,AD
(k).

Finally, we have:

Advsd−rcca
HPKE,H(k)−Advsd−rcca

DEM,AD
(k) = |Pr[F ]−

1

2
| − |Pr[F ′]−

1

2
|

≤ |Pr[F ]− Pr[F ′]|

= 2AdvccaKEM,AK
(k).

Then (1) follows immediately.
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The major factors of the running time of AD and AK is that of H and

that for simulating the decryption oracle which grow linearly in the number of

decryption queries.

It remains to show HPKE is not pd-RCCA secure.

Since DEM is sd–RCCA secure but not pd-RCCA secure, there exists a

compatible relation showing the sd-RCCA security, which is secretly but not

publicly computable, let ≡dk be the compatible relation. We claim that if χ

satisfies χ ≡dk χ
∗, then for any publicly computable compatible relation ≡pk,

we must have (ψ∗, χ) 6≡pk (ψ∗, χ∗). If this is admitted, then the decryption of

(ψ∗, χ) is mb and the decryption oracle will not return ’test’ , so HPKE is not

pd-RCCA secure.

We now prove our claim. Intuitively, χ ≡dk χ
∗ cannot be publicly computed,

but if when given ψ∗ this ≡dk can be publicly computed, then ψ∗ must reveal

the information of dk∗, which contradicts with the CCA security of KEM.

More formally, if there exist some publicly computable ≡pk, such that (ψ∗, χ)

≡pk (ψ∗, χ∗), then we construct a CCA adversary A against KEM as follows:

given (pk, ψ∗, dkδ), A uses dkδ to generate two DEM ciphertexts χ and χ′ with

χ ≡dk χ
′, then checks whether or not (ψ∗, χ) ≡pk (ψ∗, χ′), if so output 1, else

output 0.

Since ≡dk cannot be publicly computed, if ψ∗ encapsulates a dk independent

of dkδ, then except for a negligible probability, we have (ψ∗, χ) 6≡pk (ψ∗, χ∗).

(Else χ ≡dk χ∗ can be publicly computed by randomly generating a ψ∗ first,

then publicly check whether or not (ψ∗, χ) ≡pk (ψ∗, χ∗).)

Then it is easy to see Pr[A = δ] is almost 1.

4 sd-RCCA secure DEMs from regular secure and secretly
detectable MACs

It has already been pointed out that RCCA secure SKEs can be given by the

“encrypt-then-authenticate” paradigm by using a regular but not necessarily

strong secure MAC. For sd-RCCA secure DEMs, we follow the same paradigm.

However, the underlying MAC needs to be regular secure (but not strong one-

time secure), and the validity of a successful forge can be verified only secretly

(but not publicly). We now formalize these notions for MACs.

4.1 MAC and related security notions

Definition 15 (MAC). MAC is a pair of algorithms (MAC.Sign, MAC.Ver). A

key space KM is defined by security parameter k.MAC.Sign takes a keymk ∈ KM

and a messagem ∈ 0, 1∗ as inputs, and outputs a string σ.MAC.Ver takes a triple

(mk,m, σ) as input and outputs a decision of whether or not (m,σ) is valid with

respect to mk.
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If MAC.Sign is deterministic, then MAC.Ver can be done just by checking if

σ =MAC.Signmk(m). However, since we will use randomized MACs to achieve

sd-RCCA secure DEMs, MAC.Sign is allowed to be probabilistic, but MAC.Ver

is still deterministic.

For probabilistic MACs, a proper security notion should allow an adversary

to make MAC.Sign(mk, ·) and MAC.Ver(mk, ·) queries [Bellare et al. 2004]. How-

ever, for our setting we need only one-time security, i.e, only once access to MAC

sign is permitted. In fact, the weaker notion without access to MAC.Ver(mk, ·)

is sufficient.

Definition 16 (regular/strong security for MACs). We say that a MAC

schemeMAC = (MAC.Sign,MAC.Ver) is secure against one-time chosen message

attack, or shorten as regular one-time secure, if for every PPT oracle machine F

that plays the following game, the probability that the game output 1 (i.e, the

advantage of F , denoted as AdvforgeMAC,F (k)) is negligible in k.

[GAME.MAC].

Step1. m← F(1k)

Step2. mk ← KM , σ ← MAC.Signmk(m)

Step3. (m′, σ′)← F(σ)

Step4. If m′ 6= m and MAC.Vermk(m
′, σ′) = 1 then output 1 else output 0

Strong one time security is defined all the same except that m′ 6= m is

replaced with (m′, σ′) 6= (m,σ) in step 4.

For deterministic MACs, the two definitions are equivalent. However, for a

regular randomized MACs, it might be possible to efficiently generate another

valid MAC value σ′ for m, which is not allowed for a strong secure one. For such

forgery, we distinguish two cases:

Definition 17 (Publicly/secretly detectable forgery). LetMAC be a reg-

ular secure (but not strong one-time secure) MAC and (m′, σ′) be a forgery

output by an adversary when given (m,σ) with m′ = m. Then we sayMAC is

publicly-detectable if given (m,σ, σ′), the validity of σ′ can be verified efficiently

without the knowledge of mk, else we sayMAC is secretly-detectable.

4.2 Sd-RCCA secure DEMs from the “encrypt-then-authenticate”

paradigm

One can obtain an sd-RCCA secure DEM easily by following the “encrypt-then-

authenticate” paradigm from a regular MAC and a one-time secure DEM, and

it is well known that the latter can be just a one-time pad. We now formalize

the paradigm.
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Theorem18. Let DEMot be a one-time secure (deterministic) DEM,MAC be

a MAC which is regular secure (but not strong one-time secure), and is secretly-

detectable (but not publicly-detectable), then the following DEM DEMsd−rcca

is sd-RCCA secure (but not pd-RCCA secure). In particular, the secretly com-

putable compatible relation ≡dk,mk should be χ = (c, σ) ≡dk,mk χ
′ = (c′, σ′) if

and only if c = c′ , σ 6= σ′, and both MAC.Vermk(c, σ) = 1 and MAC.Vermk(c
′, σ′)

= 1.

DEM.Encdk,mk(m) DEM.Decdk,mk(χ)

c← DEM.Encdk(m) parse χ as c‖σ

σ ← MAC.Signmk(c) If MAC.Vermk(c, σ) = 1 then

Output χ = (c‖σ) m← DEM.Decdk(c)

Else output ⊥ EndIf

Output m.

Proof. The compatibility of ≡e is obvious. We first prove the sd-RCCA security.

Let AD be an adversary playing sd-RGAME.DEM, we construct a passive

adversary B against DEMot by using AD as follows:

B forwards 1k to AD. Given (m0,m1) from AD, B requests (m0,m1) to the

encryption oracle of GAME.DEM to obtain c∗. Then B randomly chooses mk

from KM , computes σ∗ =MAC.Signmk(c
∗), sends χ∗ = (c∗, σ∗) to AD.

For a decryption query χ = (c, σ) from AD, if c = c∗, then B checks if

MAC.Vermk(c
∗, σ) = 1 by using mk, if so, it returns ’test’, for all other cases B

just returns ⊥.

Finally, when AD outputs b̃, B outputs b̃, too.

The simulation is correct unless MAC.Ver(c, σ) = 1 for some c 6= c∗. Let Forge

denote this event, we have Pr[Forge] ≤ qD ·Adv
forge
MAC,AD

.

It remains to show DEMsd−rcca is not pd-RCCA secure. Assume that there

exist a publicly computable relation such that DEM is pd-RCCA secure, let ≡ be

the relation. Since the underlyingMAC is secretly but not publicly detectable,

it is possible to forge a new and valid σ′ efficiently for c∗, but the validity of

(c∗, σ′) cannot be verified publicly. However, we note that it must be the case that

(c∗, σ′) ≡ (c∗, σ∗), else the decryption of (c∗, σ′) is mb, thus DEM
sd−rcca cannot

be pd-RCCA secure for this ≡. Since ≡ is a publicly computable relation, this

means that the validity of σ′ can be verified publicly, which leads to a contradict.

5 Achieving sd-RCCA security from regular MACs by other
paradigms

There are also some other methods using MACs to achieve CCA secure hybrid

encryptions, such as a CCCA secure KEM plus an authenticated encryption

(which is shortened as AE and can be built from a passively secure DEM and
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a MAC) [Hofheinz and Kiltz 2007], a CCA secure Tag-KEM (which can be con-

structed by a LCCA secure KEM and a MAC) plus a passively secure DEM

[Abe et al. 2008], an RCCA secure KEM plus a CCA secure Tag-DEM (which

can be constructed by an OT secure DEM and a MAC)[Chen and Dong 2014],

and so on. Instantiating the MAC underlying these constructions with a regular

one-time secure (but not strong one-time secure), secretly-detectable (but not

publicly-detectable) one will also yield sd-RCCA secure hybrid encryptions.

In section 5, we also instantiate a scheme for the CCCA secure KEM plus

AE paradigm, so we formalized the paradigm here, the formal definition for the

CCCA security for KEMs follows directly from [Hofheinz and Kiltz 2007] and is

given in Appendix A.

Definition 19 (AE). An authenticated encryption (AE) scheme is a one-time

symmetric-key encryption, consists of two algorithms. AE.Enc that takes as input

1k, a key dk and a message m ∈ M, outputs a ciphertext χ. AE.Dec that takes

as input a dk and a ciphertext χ, outputs a message m or the special symbol ⊥.

For our purpose, we allow AE.Enc to be probabilistic. Correctness is required,

i.e, for all m ∈M, AE.Decdk(AE.Encdk(m)) = m.

Definition 20 (OT/ROT security for AE). The one-time(OT) security of

AE captures privacy and authenticity simultaneously, which is defined by the

following game, where O is a decrypt-or-reject oracle, which returns AE.Decdk(χ)

if b = 1, else always returns ⊥. In Step 3, AA is allowed only one query to O,

which is restricted not to be χ.

[GAME.AE]

Step 1. (m0,m1, v)← AA(1
k)

Step 2. dk ← KD, b← {0, 1}, χ← AE.Encdk(mb).

Step 3. b̃← AO
A(v, χ)

Replayable one-time security (ROT) for AEs is defined similarly except that

in step 3 O returns ‘test’ for any ciphertext that decrypts tom0 orm1, regardless

of band we make no restriction on the number of such queries.

The compatible relations for AEs are defined almost the same as for DEMs,

then pd-ROT and sd-ROT security for AEs follow immediately, also with no

restriction on the number of queries when ‘test’ is returned.

Remark In the definition of ROT, restricting once access to O when the

ciphertexts decrypts to m0 or m1 is not reasonable, since this means even one

more such replaying ciphertext query might be dangerous. However, we have

mentioned that to make replayable style security meaningful, it should be easy

to generate (more than one in our case) such replaying ciphertexts.

Theorem21. If KEM is CCCA-secure and AE is sd- but not pd-ROT secure,

then the hybrid scheme HPKE by following KEM+DEM paradigm with the DEM

substituted by an AE is sd- but not pd-RCCA secure(as a PKE).
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The proof for sd-RCCA security is similar as in [Hofheinz and Kiltz 2007],

and the proof for not pd-RCCA security is almost the same as for Theorem 2.

We show the details in Appendix A.

For sd- but not pd-ROT secure AEs, we can still follow the “encrypt-then-

authenticate” paradigm.

Theorem22. Let DEMot be a one-time secure (deterministic) DEM, MAC

be a MAC which is regular (but not strong) one-time secure, and is secretly-

detectable (but not publicly-detectable), then the AE defined the same as in The-

orem 3 is sd-RCCA secure (but not pd-RCCA secure).

The proof is also almost the same as for Theorem 4.1, so we omit it here.

6 Instantiations

6.1 Instantiations of regular but not strong, secretly but not

publicly detectable MACs

There are motivations for probabilistic MACs as pointed in [Dodis et al. 2012].

And such MACs give rise to natural regular but not strong MACs. For example,

the constructions from labeled hash proof systems (HPS) when instantiate it di-

rectly with the universal2 HPS by Cramer and Shoup [Cramer and Shoup 2002],

the DDH-based constructions achieving full security from key homomorphic

weak-PRFs, and the second LPN-based construction. We only briefly sketch

the two DDH-based ones here without the tedious descriptions of HPS and key-

homomorphic weak-PRFs.

Firstly, consider the probabilistic MAC constructions from labeled hash proof

systems (HPS) in [Dodis et al. 2012]. We recall the notions about HPS and re-

lated constructions in Appendix B.

When instantiating it directly with the universal2 HPS by Cramer and Shoup

[Cramer and Shoup 2002] without the modification done in [Dodis et al. 2012],

we obtain a regular but not strong MAC.

Let G be a group of prime-order p and let g1, g2 be two independent genera-

tors of G. DefineM = Zp, then

– Gen(1k): Pick mk = (x1, x2, y1, y2) randomly in Z
4
p.

– MAC.Signmk(m): Pick r randomly in Zp, let C = (u, v) = (gr1, g
r
2) and K =

ux1m+y1vx2m+y2 , then output σ = (C,K).

– MAC.Vermk(m,σ): Parse σ as ((u, v),K) and output accept if and only if

K = ux1m+y1vx2m+y2 .
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Theorem23. The above MAC scheme is regular but not strong one-time secure

and secretly-detectable but not publicly-detectable under the DDH assumption on

G.

Proof. The regular security is directly from [Dodis et al. 2012]. Since given a

mac value σ = (C,K) = ((u, v),K) of m, one can generate another valid mac

value σ′ of m by randomly chooses a r′ ∈ Zp then let σ′ = ((ur
′

, vr
′

),Kr′). The

validity is obvious, in fact, σ′ is the mac value of m under the randomness rr′.

Thus, the scheme is not strongly secure.

The validity of σ′ cannot be verified publicly given (m,σ, σ′). In fact, since

a valid (m,σ′) pair has the same distribution as (m,σ), if there is an algorithm

A which can publicly verify the validity of σ′ given (m,σ, σ′) , then it can

distinguish whether or not (m,σ′) has the same distribution as (m,σ). Thus,

we can construct an efficient DDH and random tuple distinguisher D: given

(g1, g2, g3, g4), randomly choose (x1, x2, y1, y2) ∈ Z
4
p and m ∈ Zp, let u = gr1, v =

gr2,K = ux1m+y1vx2m+y2 , u′ = gr3, v
′ = gr4,K

′ = u′
x1m+y1v′

x2m+y2 , and σ =

((u, v),K), σ′ = ((u′, v′),K ′), run A on (m,σ, σ′). If σ′ is valid, then output 1

to indicate DDH tuple, else output 0. It is obvious that if A wins then D wins,

too.

It is interesting to note that a HPS is naturally a KEM, but the malleability

of the HPS cannot yield RCCA security for the KEM, for example, in σ′, the

encapsulate key is not K anymore. However, when the HPS is used as a MAC,

σ′ is still a valid mac value of m.

Secondly, consider the DDH-based construction achieving full security from

key-homomorphic weak-PRFs. Let G be a group of prime-order p and let g be

a generator of G. DefineM = {0, 1}k, then

– Gen(1k): Pick mk = (x, x′1, x
′
2, ..., x

′
k) randomly in Z

k+1
p .

– MAC.Signmk(m): Pick r randomly in Zp, let u = gr and w = ux+
∑

x′

i
mi ,

then output σ = (u,w).

– MAC.Vermk(m,σ): Parse σ as (u,w) and output accept iff w = ux+
∑

x′

i
mi .

Theorem24. The above MAC scheme is regular but not strong one-time secure

and secretly-detectable but not publicly-detectable under the DDH assumption on

G.

Proof. The regular security is directly from [Dodis et al. 2012]. Since given a

mac value σ = (u,w) of m, one can generate another valid mac value σ′ of m

by randomly chooses a r′ ∈ Zp then let σ′ = (ur
′

, wr′). The validity is obvious,

in fact, σ′ is the mac value of m under the randomness rr′. Thus, the scheme is

not strongly secure.
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The validity of σ′ cannot be verified publicly given (m,σ, σ′). In fact, since

a valid (m,σ′) pair has the same distribution as (m,σ), if there is an algorithm

A which can publicly verify the validity of σ′ given (m,σ, σ′) , then it can

distinguish whether or not (m,σ′) has the same distribution as (m,σ). Thus, we

can construct an efficient DDH and random tuple distinguisher: given (g1, g2 =

gx1 , g3 = gr1, g4), randomly choose (x′1, x
′
2, ..., x

′
k) ∈ Z

k
p and m ∈ {0, 1}k, then it

should be noted that σ = (g1, g2g
∑

x′

i
mi

1 ) is a valid mac value of m under the

key mk = (x, x′1, x
′
2, ..., x

′
k). Let σ

′ = (g3, g4g
∑

x′

i
mi

3 ), run A on (m,σ, σ′). If σ′

is valid, then output 1 to indicate DDH tuple, else output 0.

6.2 Instantiations of sd-RCCA secure hybrid encryptions

According the two different paradigms provided in Section 4, we find appropriate

KEM and DEM parts to make the ciphertexts fit for the message space of the

corresponding MAC scheme.

Firstly, follow CCAKEM+ sd (but not pd)-RCCA DEM paradigm in Section

4, we instantiate the refined Cramer-Shoup hybrid scheme in [Shoup 2000] with

our first MAC scheme to obtain our first sd-RCCA secure scheme.

Let G be a group of prime-order p and let g1, g2 be two independent gener-

ators of G, TCR be a target collision resistant hash functions, and KDF be a

key derivation function with proper domain and range. DefineM = Zp, then

– Gen(1k): Pick x1, x2, y1, y2, z1, z2 randomly in Z
6
p, then let pk = (c, d, h) =

(gx1

1 gx2

2 , gy1

1 g
y2

2 , g
z1
1 g

z2
2 ), sk = (x1, x2, y1, y2, z1, z2), output (pk, sk).

– HPKE.Encpk(m): Pick r, r′ randomly in Zp, let u = gr1, v = gr2 and α =

TCR(u, v), then let w = (cαd)r, K = hr and (dk,mk) = KDF (K), where

mk = (x′1, x
′
2, y

′
1, y

′
2), then let e = dk + m, u′ = gr

′

1 , v′ = gr
′

2 , and w′ =

u′x
′

1e+y′

1v′x
′

2e+y′

2 , output C = (u, v, w, e, u′, v′, w′).

– HPKE.Decsk(C): Parse C as (u, v, w, e, u′, v′, w′), let α = TCR(u, v),K = hr

and (dk,mk) = KDF (K), parse mk as (x′1, x
′
2, y

′
1, y

′
2), output m

′ = e − dk

if and only if w = ux1α+y1vx2α+y2 and w′ = u′x
′

1e+y′

1v′x
′

2e+y′

2 .

For the naturalness, we note that HPSs are natural components for PKEs.

Here shows that a slightly careless use of HPSs might result in sd-RCCA.

Now, consider some variants of this scheme.

For the HPS in the MAC, with the knowledge of r′, it is possible to generate

w′ publicly. Then if mk = (x′1, x
′
2, y

′
1, y

′
2) is not derived from K, but added in

the sk, thus (c′, d′) = (g
x′

1

1 g
x′

2

2 , g
y′

1

1 g
y′

2

2 ) must be added in pk, then the resulting

scheme might be more natural as a PKE and can avoid the use of a KDF.

However, the scheme is not secure any more, since the knowledge of r′ allows
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one to generate the MAC value for any messages publicly. Our scheme provides

a natural way to solve this problem, and can reduce the size of the public-key.

Another way to solve this is to use a common randomness, that is letting

r′ = r, so that without the knowledge of r it is impossible to generate valid

(u′, v′, w′). However, this will directly results in CCA security, and is not suitable

for our purpose. The original CCA secure Cramer-Shoup can be seen as such an

scheme, and which further integrates w and w′ by letting α = TCR(u, v, e).

This also somewhat explains the difficulty to build an RCCA secure PKE

more efficient than existing CCA secure ones. The similar thing also happens to

our second scheme.

If efficiency is in consideration for naturalness, then the scheme is much more

efficient than the RCCA but not sd-RCCA secure, secretly rerandomizable dou-

ble strand Cramer-Shoup in [Prabhakaran and Rosulek 2007], which uses dozens

of group elements and exponentiation operations.

Secondly, follow the CCCAKEM+AE (OT DEM+ regular MAC) paradigm,

by using the CCCA-secure KEM in [Hofheinz and Kiltz 2007] with an authenti-

cated encryption, we will instantiate a hybrid scheme, where our second DDH-

based MAC is used.

Let G be a group of prime-order p and let g be a generator of G, TCR be a

target collision resistant hash functions, and KDF be a key derivation function

with proper domain and range. DefineM = {0, 1}k, then

– Gen(1k): Pick x, y, z randomly in Z
3
p, let pk = (c, d, h) = (gx, gy, gz), sk =

(x, y, z), output (pk, sk).

– HPKE.Encpk(m): Pick r, r′ randomly in Zp, let u = gr, w = (cαd)r where

α = TCR(u), then let K = hr and (dk,mk) = KDF (K), where mk =

(x′, x′1, x
′
2, ..., x

′
k), then let e = dk⊕m, u′ = gr

′

, and w′ = u′x+
∑

x′

i
ei , output

C = (u,w, e, u′, w′).

– HPKE.Decsk(C): Parse C as (u,w, e, u′, w′) and let α = TCR(u), K = hr

and (dk,mk) = KDF (K), parsemk as (x′, x′1, x
′
2, ..., x

′
k), outputm

′ = e⊕dk

if and only if w = uxα+y and w′ = u′x
′+

∑
x′

i
ei .

Our sd-RCCA secure schemes are less efficient than existing CCA secure ones.

In fact, in an efficient CCA secure hybrid encryption scheme, it is often the case

that the KEM ciphertext is deterministically related to the encapsulation key,

which makes it impossible to achieve RCCA security. However, regular MACs

more efficient than strong ones still bring us a light.

7 Conclusion

We introduce regular (but not strong) probabilistic MACs into KEM+DEM

style hybrid paradigm to construct sd-RCCA secure public-key encryptions. We
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show two examples of such MACs under the DDH assumption based on the work

in [Dodis et al. 2012]. Instantiating proper DDH-based hybrid encryptions with

these MACs, we obtain “natural” instances of sd-RCCA secure ones. This solves

an open problem left in [Canetti and Krawczky 2003].
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A Sd-RCCA secure hybrid encryptions from CCCA secure
KEMs and sd-RCCA secure AEs

Definition 25 (CCCA for KEMs). This is defined very similar to CCA secu-

rity for KEMs, with the modification that in step 3, the decryption oracle is con-

strained, denoted by KEM.Decsk(·, ·), which takes a predicate pred : K → {0, 1}

and a ciphertext c as inputand returns a response as follows:

KEM.Decsk(pred(·), c) =

{

dk, If KEM.Decsk(c) = dk 6=⊥ and pred(K) = 1

⊥, Otherwise

For an adversary A and an environment E , a parameter called plaintext uncer-

tainty uncertAE
(k) is defined by

uncertA,E(k) =
1

Q

∑

1≤i≤Q

Pr
dk∈KK

[predi(dk) = 1 when A runs with E ],

where predi is the predicate A submits in its ith decapsulation query, and Q is

the number of decapsulation queries A makes. A CCCA adversary A is valid if

1. A is PPT.
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2. For all environment E running in less time than tCCCA, uncertA,E(k) is

negligible in k, where tCCCA is the runtime of the CCCA game excluding

that of A and that for evaluating predicts.

Then a KEM KEM is CCCA secure if for every validA, its advantage AdvcccaΠ,A(k)

(defined similar as for CCA security)is negligible in k.

For a CCCA attacker AK , we also denote the maximum of the uncertA,E(k)

over all environment with tE ≤ tCCCA as uncertAK
(k), which is negligible in k

for all valid AK .

Proof of Theorem 4. The proof for not pd-RCCA security is almost the same

as for Theorem 2, so we just prove the sd-RCCA security here.

Let ≡dk be a compatible relation for AE , we define a compatible relation

for HPKE as follows: (ψ, χ) ≡sk (ψ′, χ′) if ψ = ψ′ and χ ≡dk χ
′ where dk =

KEM.Decsk(ψ) = KEM.Decsk(ψ
′). It is straightforward to verify ≡sk is compat-

ible for HPKE as long as ≡dk is compatible for AE .

Now, let H be an adversary playing sd-RGAME.PKE. Let (ψ∗, χ∗) be the

challenge ciphertext, dk∗ is the encapsulated key in ψ∗. We modify the game by

using a random key dk+ in place of dk∗ in both the encryption and decryption

oracle, i.e, dk+ is used to form the challenge ciphertext, and a decryption oracle

query is replied by using dk+ whenever dk∗ should be used. Call this game

sd-RGAME.PKE′. Let F and F ′ be events that b̃ = b in sd-RGAME.PKE and

sd-RGAME.PKE′, respectively. Then

Advsd−rcca
HPKE,H(k) = |Pr[F ]−

1

2
|,

and we claim that

Lemma26. |Pr[F ] − Pr[F ′]| ≤ 2AdvcccaKEM,AK
(k) for some valid CCCA adver-

sary AK , which has uncertAK
(k) = 2AdvrotAE,BA

(k) for some BA.

The proof of this lemma is followed later.

We modify the game sd-RGAME.PKE′ further by rejecting all ciphertext

(ψ∗, χ) with χ 6≡dk+ χ∗. Call this game sd-RGAME.PKE′′. Let F ′′ be events

that b̃ = b in sd-RGAME.PKE′′, respectively. Since ψ∗ is independent of dk+, the

authenticity of AE implies

|Pr[F ′′]− Pr[F ′]| ≤ Q ·AdvrotAE,AA
(k)

where Q is the number of decryption queries made by H, and AA just uniformly

choose one of the AE part of decryption queries made by H to submit to its

decrypt-or-reject oracle.
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Finally, we argue that H in sd-RGAME.PKE′′ in fact conducts an attack

against the sd-ROT security of AE, i.e. |Pr[F ′′]− 1
2 | = Advsd−rot

AE,A′

A

(k), where A′
A

is constructed as follows. A′
A first runs PKE.Gen to generate (pk, sk), then sends

pk to H. After H chooses its (m0,m1), A
′
A gives them to its own encryption

oracle and gets χ∗. Then A′
A runs KEM.Enc to generate (dk∗, ψ∗), and gives

(ψ∗, χ∗) to H . It should be noticed that now the key dk+ used in encryption

oracle of GAME.AE is chosen randomly from KD, so is independent of dk∗.

A′
A answers H’s decryption query (ψ, χ) as follows:

– If ψ = ψ∗ and so that χ 6= χ∗, then A′
A forwards χ to its own decryption

oracle, and returns the result to H.

– If ψ 6= ψ∗, then A′
A uses sk to decrypt ψ.

When H outputs b̃, A′
A outputs b̃, too. A′

A perfectly simulates the game

sd-RGAME.PKE′′, and A′
A wins if H does. So, |Pr[F ′′]− 1

2 | = Advsd−rot
AE,A′

A

(k).

Collecting all the probability proves the theorem.

Proof of Lemma 3 We show there is a CCCA adversary AK against the

underlying KEM scheme by using H.

AK asks to obtain the challenge (pk, dkδ, ψ
∗) in GAME.KEM, then sends pk

toH. AfterH chooses itsm0 andm1, AK randomly chooses b ∈ {0, 1}, computes

χ∗ = DEM.Encdkδ
(mb), and sends (ψ∗, χ∗) to H.

To answer H’s i-th decryption query (ψi, χi), AK defines predi : KK →

{0, 1} as follows:

predi(dk) =

{

0, If AE.Decdk(χi) =⊥ or χi ≡dkδ
χ∗

1, Otherwise

Clearly, predi is efficiently computable:

– If ψi = ψ∗ then

- If χ ≡dkδ
χ∗ then AK returns ‘test’ (note that AK knows dkδ).

- Else AK returns ⊥.

– If ψi 6= ψ∗ then AK queries (predi, χi) to its own oracle KEM.Decsk(·, ·),

- If ⊥ is returned, then AK returns ⊥ to H.

- If dk is returned, then AK uses this dk to decrypt χ, and returns the

result to H.

This perfectly simulates the decryption oracle for H. When H outputs b̃, AK

checks whether or not b̃ = b, if so it outputs δ̃ = 1, else outputs δ̃ = 0. And we

have Pr[b̃ = b|δ = 1] = Pr[F ]|, and Pr[b̃ = b|δ = 0] = Pr[F ′], then

2AdvcccaKEM,AK
(k) = |Pr[F ]− Pr[F ′]|.
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It is left to show that uncertAK
(k) = 2AdvrotAE,BA

(k) for some BA.

We build BA against the ROT security of AE as follows. BA inputs 1k and

internally simulates an interaction between AK and H as above completely

faithful (the sk is known to BA). In this process, BA randomly picks an in-

dex j∗ ∈ {1, . . . , Q}, where Q is the number of decryption oracle queries made

by H. When AK makes its j∗-th decryption query (ψj∗ , χj∗), BA submits χj∗ to

its own oracle, and outputs b̃ = 0 iff ⊥ is returned.

Note that our BA never ask for its challenge ciphertext χ∗, just make its guess

by an query to its own decrypt-or-reject oracle, so ‘test’ cases never happen.

Now, if b = 0 then BA always output b̃ = 0. And in case of b = 1, b̃ = 1

iff χj∗ is valid, that is, for an independently random key dk (used in the ROT

game for AE), AE.Decdk(χj∗) 6=⊥. So

AdvrotAE,BA
(k) = |

1

2
Pr[b̃ = b|b = 0]−

1

2
Pr[b̃ = b|b = 1]−

1

2
|

=
1

2
Pr[b̃ = b|b = 1] =

1

2
Pr[dk ← KD : AE.Decdk(χj∗) 6=⊥]

=
1

2QA

∑

1≤j∗≤Q

Pr[predj∗(dk) = 1] ≤
1

2
uncertAK

(k).

B HPS related notions and the label HPS based MAC

Let us first recall labeled hash proof systems (HPS) in [Cramer and Shoup 2002].

Let C, K be sets, V ⊂ C a language. In the setting of PKEs, a (labeled)

HPS can be viewed as a (labeled) KEM with some special properties. One can

think of C as the sets of all possible ciphertexts, V ⊂ C as the set of all valid

ciphertexts, and K as the set of all possible encapsulated keys.

Let Λl
k : C × L → K be a labeled hash function indexed with k ∈ SK and

label l ∈ L, where SK and L are sets. Λl
k is projective if there exists a projection

µ : SK → PK, such that µ(k) ∈ PK defines the action of Λl
k over the subset V.

That is, for every C ∈ V, the value K = Λl
k(C) is uniquely determined by µ(k)

and C. In contrast, nothing is guaranteed for C ∈ C \ V, and it might not be

possible to compute Λl
k(C) from µ(k) and C, but Λl

k(C) can be computed from

k and C (which is denoted by extracting in [Dodis et al. 2012]).

A projective hash function is universal2 if for all C, C∗ ∈ C \V with C 6= C∗,

l,l∗ ∈ L with l 6= l∗,

(µ(k), Λl
k(C

∗), Λl
k(C)) = (µ(k), Λl

k(C
∗),K)

for randomly chosen k and K.

A labelled HPS HPS consists of three algorithms(HPS.Param, HPS.Pub,

HPS.Priv). Probabilistic HPS.Param that on input 1k outputs instances of params

= (group, C, V, K, PK, SK, L, Λ
(·)
(·) : C → K, µ : SK → PK), where group may
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contain some additional structural parameters. Deterministic HPS.Pub that on

input the projection key µ(k), C ∈ V, a witness r of the fact C ∈ V, and a

label l ∈ L, outputs Λl
k(C). Deterministic HPS.Priv that on input k ∈ SK out-

puts Λl
k(C), without knowing a witness. We further assume that µ is efficiently

computable and that there are efficient algorithms given for sampling k ∈ SK,

sampling C ∈ V uniformly with a witness r.

As computational problem we require that the subset membership problem

is hard in HPS, that is, random C ∈ V are computationally indistinguishable

from random C ′ ∈ C \ V.

The probabilistic MAC based on labeled HPS in [Dodis et al. 2012] uses the

message as a label:

– Gen(1k): Sample k ∈ SK and output mk = k.

– MAC.Signmk(m): Sample C ∈ V , compute K = Λm
k (C), and output σ =

(C,K).

– MAC.Vermk(m,σ): Parse σ as (C,K) and output accept iff K = Λm
k (C).

The scheme is proved to be regular secure (even when the forger is given oracle

access toMAC.Signmk(·) for many times). In Section 5.1, we instantiate it directly

with the universal2 HPS by Cramer and Shoup to achieve our desired property.

However, this is different with the example given in [Dodis et al. 2012], which has

a variant form and is called “explicit rejection variant” and is given as follows.

Let G be a group of prime-order p and let g be a generator of G. Define

M = Zp. Let H : G2 ×M→ Zp be a (target) collision resistant hash function,

then

– Gen(1k): Pick mk = (ω, x1, x2) randomly in Z
3
p.

– MAC.Signmk(m): Pick r randomly in Zp, let C = (u, v) = (gr, uω) and

K = ux1l+x2 , where l = H(u, v,m), then output σ = (C,K).

– MAC.Vermk(m,σ): Parse σ as ((u, v),K) and output accept iff v = uω and

K = ux1l+x2 , where l = H(u, v,m).

For this scheme, it is impossible to generate another valid σ′ for m given a

valid σ, so it is not proper for our purpose.
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