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Abstract: Deterministic public-key encryption, encrypting a plaintext into a unique
ciphertext without involving any randomness, was introduced by Bellare, Boldyreva,
and O’Neill (CRYPTO 2007) as a realistic alternative to some inherent drawbacks in
randomized public-key encryption. Bellare, Kiltz, Peikert and Waters (EUROCRYP-
T 2012) bring deterministic public-key encryption to the identity-based setting, and
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propose deterministic identity-based encryption scheme (DIBE). Although the con-
structions of chosen plaintext attack (CPA) secure DIBE scheme have been studied
intensively, the construction of chosen ciphertext attack (CCA) secure DIBE scheme
is still challenging problems. In this paper, we introduce the notion of identity-based
all-but-one trapdoor functions (IB-ABO-TDF), which is an extension version of all-
but-one lossy trapdoor function in the public-key setting. We give a instantiation of
IB-ABO-TDF under decisional linear assumption. Based on an identity-based lossy
trapdoor function and our IB-ABO-TDF, we present a generic construction of CCA-
secure DIBE scheme.

Key Words: deterministic identity-based encryption, identity-based lossy trapdoor
functions, identity-based all-but-one trapdoor functions, chosen ciphertext security

Category: C.2.0, D.4.6, E.3

1 Introduction

The semantic security for public key encryption requires that the encryption al-

gorithm must be a random process. This creates a significant performance bottle-

neck if, for example, one wants to perform fast search over many encrypted data

items. To address this issue, Bellare, Boldyreva, and O’Neill [Bellare et al. 2007]

first introduced the notion of deterministic public-key encryption (DPKE), in

which the encryption algorithm does not use randomness, i.e., its encryption

algorithm is required to be a deterministic function of the message. The mo-

tivating application of deterministic PKE is to perform fast search over many

encrypted data items. The technique is more effective in scenarios where frequent

search queries are performed over a huge database of unpredictable data item-

s. Deterministic encryption permits logarithmic time search on encrypted data,

while randomized encryption only allows linear time search, meaning a search

requires scanning the whole database. Moreover, since deterministic encryption

does not use randomness, it is an important class of PKE dealing with the

subsequently revealed problem of randomness subversion [Bellare et al. 2009].

The DPKE is used as a building block of hedged PKE [Bellare et al. 2015b,

Boldyreva et al. 2017] and nonce-based PKE [Huang et al. 2018], which achieve

best possible security in the face of bad randomness.

Because the encryption algorithm of DPKE is a deterministic process, of

course deterministic public key encryption cannot satisfy the meaningful notion

of security of randomized public key encryption. Bellare et al. [Bellare et al. 2007]

provided the “strongest possible” notion of security for this primitive, called

PRIV, which can be realized for relatively high-entropy plaintext distributions.

Constructions of DPKE schemes satisfying the notions of security were proposed

in the random oracle model by Bellare et al. [Bellare et al. 2007]. Later, Bellare

et al. [Bellare et al. 2008] and Boldyreva et al. [Boldyreva et al. 2008] refined

and extended the security notion and presented constructions in the standard

model. Especially, Boldyreva et al. [Boldyreva et al. 2008] gave general construc-

tions of both CPA and CCA secure deterministic public key encryption schemes
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which are based on lossy trapdoor functions (LTDF) [Peikert et al. 2008]. They

showed that any LTDF is a deterministic PKE scheme which is PRIV-secure for

high min-entropy block-sources (namely, each message to be encrypted has high

min-entropy given the other messages) as long as the lossy mode acts as a uni-

versal hash function. Emerging as a practically-motivated notion of theoretical

depth and interest, several significant foundational works then further investi-

gated security for deterministic encryption and presented standard model con-

structions [Brakerski et al. 2011, Mironov et al. 2012, Raghunathan et al.2013,

O’Neill 2010, Cui et al. 2014, Zhang et al. 2014, Wee 2012, Bellare et al. 2015a,

Fuller et al. 2012, Koppula et al. 2016].

Identity-based encryption (IBE) is a public key encryption that enables one

to encrypt a message using a recipient’s identity, rather than its public key.

It simplifies public key and certificate distribution and management and thus

has a wide range of applications [Yu et al. 2017, Li et al. 2019]. Due to the in-

herent advantage of IBE, Bellare, Kiltz, Peikert and Waters [Bellare et al. 2012]

extended the notion of deterministic encryption into the identity-based setting.

They proposed a CPA-secure deterministic identity-based encryption (DIBE)

scheme by first constructing identity-based lossy trapdoor function (IB-LTDF).

The DIBE allows quickly logarithmic-time searchable identity-based encryption

of database entries while maintaining the maximal possible privacy. Later, Escala

et al. [Escala et al. 2014] provided an alternative definition of partial lossiness of

IB-LTDF and constructed a hierarchical identity-based lossy trapdoor functions

(HIB-LTDF), based on which they achieved DHIBE scheme for block-sources,

this DHIBE scheme is secure against chosen plaintext attack (CPA). After that,

several follow-up works [Xie et al. 2012, Fang et al. 2016, Zhang et al. 2017] fur-

ther investigated security of DIBE and presented CPA-secure DIBE schemes

from the hardness of learning with error (LWE) problem. So far, existing DIBE

schemes only achieve chosen-plaintext security.

Security against adaptive chosen-ciphertext attack (CCA) is a de facto se-

curity notion for public-key encryption in practice. Active adversary might also

obtain the decryption of ciphertexts under any identity of its choice. Thus it is

necessary to consider the stronger security notion of DIBE, i.e., PRIV-ID-CCA

security (we will explain it in section 2). Inspired by CHK transformation ap-

proach [Canetti et al. 2004] in randomized PKE, which converts IND-ID-CPA

secure 2-level hierarchical IBE to IND-ID-CCA secure IBE using a strongly un-

forgeable one-time signature. The natural idea is to adapt this approach to the

deterministic encryption. That is to say, one can construct PRIV-CCA-secure

deterministic IBE based on a PRIV-CPA-secure 2-level deterministic HIBE. Un-

fortunately, we observe that it is not natural to do so. Since in the determinis-

tic setting, the strongly unforgeable one-time signature is replaced by a target

collision-resistant hash function of the plaintext. Similarly, following CHK trans-
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formation, the hope is that the proof tries to reduce the security of deterministic

IBE against adaptive chose-ciphertext attacks to that of the 2-level selective-id

secure deterministic HIBE against chose-plaintext attacks. That is, the reduction

attempts to determine which message was actually encrypted in deterministic

IBE with the help of an adversary who breaks the deterministic HIBE. The anal-

ysis from CHK transformation, however, does not quite work since it crucially

relies on the fact that the plaintexts corresponding to the challenge ciphertexts

are chosen by the adversary in randomized encryption setting. While, in the

deterministic encryption setting, the plaintexts corresponding to the challenge

ciphertexts are not chosen by the adversary, such that the challenger cannot

perform the simulations. For the above reasons, in this paper, we attempt to

construct a deterministic IBE scheme which can achieve CCA security.

1.1 Our contributions

Identity-Based All-But-One TDFs. In STOC’08 [Peikert et al. 2008], Peikert and

Waters introduced a new powerful primitive called lossy trapdoor functions

(LTDF) and a richer abstraction called all-but-one trapdoor functions (ABO-

TDF). LTDF operates in one of two possible “mode”, an injective one and an

un-invertible lossy one, for which the outputs are indistinguishable. ABO-TDF

is a generalization of the LTDF whose first input is drawn from a set of branch-

es, one of which is lossy. Freeman et al. [Freeman et al. 2010] generalized the

definition of ABO-TDF by allowing possibly many lossy branches (other than

one).

We introduce the notion of identity-based all-but-one trapdoor functions (IB-

ABO-TDF), which is an extension of all-but-one trapdoor functions (ABO-TDF)

in the public key setting. As for identity-based ABO-TDF, which is essential-

ly specific ABO-TDF whose identity set can be viewed as the set of branch-

es, each function has many lossy branches just as the generalized definition

in [Freeman et al. 2010], but each branch is now represented by a pair of (id, b).

The first component id is the user’s identity, and the second component b is the

tag. That is to say, the IB-ABO-TDF can be viewed as a specific ABO-TDF

with the set of branch IDSp×TagSp, where IDSp is identity space and TagSp is

tag space. The lossy identity id and the lossy tag b determine together the lossy

branch. Lossy identities are determined by a auxiliary input which is hidden in

the public parameters. The security requires that it is computationally indistin-

guishable to tell a lossy branch from an injective branch. Meanwhile, given a

lossy branch, it is hard to find one-more lossy branches without the trapdoor.

Based on the basic IBE scheme of Bellare et al. [Bellare et al. 2012], we

present a concrete construction of IB-ABO-TDF, and its security is proved in

the selective-id security model based on the hardness of decisional linear Diffie-

Hellman assumption (DLIN assumption). In our construction, each identity func-
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tion takes as input (mpk, id, b, x), where mpk is public parameter, id is identity,

b is branch and x is the input value, and outputs a ciphertext, which is a matrix

encryption of the basic IBE scheme.

CCA-secure deterministic IBE. Based on an IB-LTDF and our IB-ABO-

TDF, we present a generic construction of CCA-secure deterministic identity-

based encryption scheme in the standard model. Its security is proved under

the selective-id security model. In this paper, we stick to the original setting

of Bellare et al. [Bellare et al. 2007] and require that the plaintext distribu-

tions can not depend on the master public key of the system. In the case

of block-sources [Boldyreva et al. 2008], Boldyreva et al. proved that PRIV1-

security (i.e., for single-message challenge security) is equivalent to PRIV-security

(i.e., for multi-message challenge security) in the sense of indistinguishability-

based definitions. In this work, we follow the simplified indistinguishability-based

notion, called PRIV1-IND as introduced in [Boldyreva et al. 2008].

Our construction of DIBE scheme builds on the framework of Boldyreva

et al. [Boldyreva et al. 2008] for constructing CCA-secure deterministic PKE

scheme in the standard model. In our construction, the deterministic encryp-

tion algorithm E(id, b,m), where id is identity, b is branch and m is the mes-

sage, requires to find a deterministic method to sample the branch. Follow-

ing [Boldyreva et al. 2008], let b = Htcr(m), where Htcr is a universal and target

collision-resistant hash function. If message m has sufficient entropy, the branch

looks random due to the Leftover Hash Lemma [Dodis et al. 2004]. The differ-

ences are, in the identity-based setting, the simulator must answer the decryp-

tion queries for any identity (including the challenge identity) from adversary.

Because the branch is a pair (id, b), let (id∗, b∗) be the lossy branch, only if

the branch (id, b) 6= (id∗, b∗), with overwhelming probability, the identity-based

ABO-TDF works as an injective trapdoor function. Therefore, the simulator

can answer the adversary’s decryption queries corresponding to the challenge

identity as long as b 6= b∗.

1.2 Related work

Bellare et al. introduced the notion of deterministic identity-based encryption

in [Bellare et al. 2012]. They constructed an identity-based lossy trapdoor func-

tions (IB-LTDF) from pairing and built a DIBE scheme with selective-id security

as an application of IB-LTDF. Soon afterwards, Escala et al. [Escala et al. 2014]

introduced the notion of hierarchical identity-based lossy trapdoor functions

(HIB-LTDF), based on which they constructed deterministic hierarchical identity-

based encryption scheme (DHIBE) from pairings. In [Xie et al. 2012], Xie et al.

considered deterministic identity-based public key encryption in the auxiliary-

input setting and proposed a DIBE scheme from lattices that is adaptively

secure. Fang et al. [Fang et al. 2016] constructed a selective-id secure DHIBE
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scheme based on the hardness of learning with rounding over small modu-

lus [Bogdanov et al. 2016]. In fact, a selective-id secure DHIBE implies a DIBE

with a selective security. Recently, Zhang et al. [Zhang et al. 2017] constructed

an adaptive secure DIBE scheme with shorter public parameters from partition-

ing function [Yamada et al. 2017] under the learning with error assumption.

Below we compare our construction with the related works [Xie et al. 2012,

Fang et al. 2016, Zhang et al. 2017] in terms of property and security in Table

1. The second column shows whether the scheme is constructed in a generic

way. The third to fifth column show the security, the adversary type and the

underlying assumption for guaranteeing the security. It can be learnt from Table

1 that only our scheme achieves chosen ciphertext security.

Scheme Generic security level Adversary type Assumption

[Bellare et al. 2012]
√

CPA selective-id DLIN

[Xie et al. 2012] × CPA adaptive-id LWE

[Escala et al. 2014]
√

CPA adaptive-id DBDH+DDH

[Fang et al. 2016] × CPA selective-id LWR

[Zhang et al. 2017] × CPA adaptive-id LWE

Our scheme
√

CCA selective-id DLIN

Table 1: Comparison of performance

1.3 Organization

The rest of the paper is organized as follows. In section 2, we review some

standard notions and cryptographic definitions. We introduce the notion of IB-

ABO-TDF and present a concrete construction of IB-ABO-TDF in section 3.

In section 4, we propose a generic construction of CCA-secure DIBE scheme

based on our IB-ABO-TDF and an IB-LTDF. Finally, we state our conclusion

in section 5.

2 Preliminaries

2.1 Notation

We use uppercase Roman letters A, B,. . . to represent sets, lowercase Roman

letters to elements of a set x ∈ X, and bold to vectors x ∈ Xn. Bold uppercase

letters A = [aij ] represents matrices of scalars. If x is a vector, then |x| denotes
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the number of its coordinates and x[i] denotes its i-th coordinate. If X is a set,

Xn denotes the set of n dimensional vector over X. Xa×b denotes the set of a

by b matrices with entries in X. The (i, j)-th entry of a 2 dimensional matrix X

is denoted by X[i, j]. If S is a set, then s
$←− S denotes the operation of sampling

an elements uniformly at random from S. Notation 〈a,b〉 represents standard

scalar product of vector a and b with equal-length.

The security parameter is denoted by λ throughout the paper. We let negl(λ)

denote some unspecified function such that it approaches zero faster than recip-

rocal of every polynomial f(λ), saying that such a function is negligible.

2.2 Hashing

A family of hash functions H = {Hi : {0, 1}n → R} is universal if for all

x1 6= x2 ∈ {0, 1}n, Pr[H(x1) = H(x2) : H
$←− H] ≤ 1

|R| .

A hash function H = (K,H) is a target collision-resistant (tcr) if for every

polynomial time adversary A, the tcr-advantage

AdvtcrH (A) = Pr[H(k, x1) = H(k, x2) : (x1, st)
$←− A; k ← K;x2

$←− A(k, st)]

of A against H is negligible [Boldyreva et al. 2008].

2.3 Randomness extractor

Here we review a few concepts related probability distributions and extracting

uniform bits from weak random sources.

The statistical distance between two probability distributions X and Y over

the same domain D is ∆(X,Y ) = 1
2Σa∈D |Pr[X = a] − Pr[Y = a]|. The min-

entropy of a random variable X is H∞(X) = − log(maxxPr[X = x]). A distri-

bution X over {0, 1}l is called a (t, l)-source if H∞(X) ≥ t. A distribution X is

ǫ-close to a t-source if there exists a t-source Y such that ∆(X,Y ) ≤ ǫ. Average

min-entropy, which captures the remaining unpredictability of X conditioned on

the value of Y , is H̃∞(X|Y ) = − log(Ey←Y [2
−H∞(X|Y=y)]).

Lemma 2.1 (Generalized leftover hash lemma(LHL) [Dodis et al. 2004]).

Let H be a family of universal hash functions with range R. Let X and Y

be random variables such that X ∈ {0, 1}n and H̃∞(X|Y ) ≥ log |R| + 2 log( 1
ǫ
).

Then for h
$←− H, we have ∆((Y, h, h(X)), (Y, h, U)) ≤ ǫ, where U is the uniform

distribution over the range R.

Lemma 2.2 (Chain Rule [Dodis et al. 2004]). If Y has 2r values and Z is

any random variable, then H̃∞(X|(Y, Z)) ≥ H̃∞(X|Z)− r.
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2.4 Identity-based lossy trapdoor functions

The notion of IB-LTDF, introduced by Bellare et al. [Bellare et al. 2012], is an

extension of LTDF in the identity-based setting. In an identity-based lossy trap-

door functions collection, which mode (injective or lossy) the function operates

depends on the identity. To properly define lossiness in the identity-based setting,

Bellare et al. added an auxiliary input from auxiliary input space AuxSp when

generating the parameters. Depending on the value of this auxiliary input, it can

obtain the injective trapdoor function or lossy function. aux ∈ AuxSp denotes a

particular auxiliary input independent of any identity, which results in an injec-

tive setup. That is, under the injective setup, the evaluation function is injective

for any identity. Aux(·) (called auxiliary input generator in [Bellare et al. 2012])

denotes an algorithm that takes as input an identity from identity space IDSp

and returns an auxiliary input in AuxSp. aux(id) denotes an auxiliary input pro-

duced by an auxiliary input generator Aux(id) taking as input special identity

id, which results in a lossy setup. That is, under the lossy setup, the identity id

lead to lossy evaluation functions, used in the security proof. The requirement

is that it is hard to distinguish lossy identities from injective ones. Next, we

review the notion of identity-based lossy trapdoor functions proposed by Bellare

et al. [Bellare et al. 2012] in the selective-id case.

Definition 1 (IB-LTDF). A collection of identity-based (n, k)-lossy trapdoor

functions with the identity space IDSp, input space InSp, and auxiliary input

space AuxSp is a tuple of (possibly probabilistic) polynomial time algorithms

(Setup, KG, Eval, Inv) with the following specifications:

Setup(1λ, aux). For fixed particular auxiliary input aux ∈ AuxSp, the algorithm

outputs (mpk,msk), where mpk is public parameters and msk is its master

secret key.

KG(mpk,msk, id). Given mpk,msk, identity id ∈ IDSp the probabilistic algo-

rithm outputs a private key skid with respect to the given id.

Eval(mpk, id, x). The deterministic algorithm takes as input mpk, identity id ∈
IDSp, and x ∈ {0, 1}n, outputs a value y.

Inv(mpk, skid, y). The deterministic algorithm takes as input mpk , private key

skid, and a value y, outputs either x ∈ {0, 1}n or ⊥.
We require that the following correctness and lossiness requirements hold:

– Injective correctness and invertibility. For any id ∈ IDSp, the evaluation

algorithm computes a deterministic injective function over the input space

{0, 1}n, which can be inverted using the private key skid corresponding to

the given id. Formally, for aux ∈ AuxSp, (mpk,msk) ← Setup(1λ, aux),

skid ← KG(mpk,msk, id), and x ∈ {0, 1}n,

Pr[Inv(mpk, skid,Eval(mpk, id, x)) 6= x] ≤ negl(λ)
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– Lossiness. Sample an identity id
$←− IDSp, for auxiliary input aux(id) ←

Aux(id), (mpk,msk) ← Setup(1λ, aux(id)), the image of the algorithm

Eval(mpk, id, ·) has size at most 2n−k. That is |Eval(mpk, id, ·)| ≤ 2n−k.

– Indistinguishability of lossy identities and injective identities. For the auxil-

iary inputs aux, aux(id) ∈ AuxSp, the first output mpk0 of Setup(1λ, aux)

and the first output mpk1 of Setup(1λ, aux(id)) are computationally indis-

tinguishable. That is, for every probabilistic polynomial time adversary A

AdvIND
IB-LTDF,A(λ) =

|Pr[A(mpk0, 1
λ)KG(·) = 1]− Pr[A(mpk1, 1

λ)KG(·) = 1]|
is negligible, where KG(·) denotes that A can make private key query on

identity id by calling KG algorithm. For d ∈ {0, 1}, A(mpkd, 1
λ) is defined

as follows:

(1) The adversary A outputs an identity id∗ as the target identity.

(2) The challenger C samples aux ∈ AuxSp and aux(id∗) ← Aux(id∗),

and computes (mpk0,msk0) ← Setup(1λ, aux), (mpk1,msk1) ← Setup(1λ,

aux(id∗)). The challenger then sends mpkd to A.
(3) The adversary A makes private secret query for identity id with restric-

tion that id 6= id∗. C returns skid to A by calling the algorithm KG.

(4) A outputs a guess d′ ∈ {0, 1}.

2.5 Deterministic identity-based encryption

An deterministic identity-based encryption (DIBE) scheme DEIB is a tuple of

polynomial time algorithm (DIB.Setup, DIB.Der, DIB.Enc, DIB.Dec). The prob-

ability algorithm DIB.Setup takes as input a security parameter 1λ, and outputs

a master key pair (mpk,msk), where mpk is master public key and msk is master

secret key. The key derivation algorithm DIB.Der takes as input an identity id

and master secret key. It returns the private key skid associated with the identity

id. The deterministic encryption algorithm DIB.Enc takes as input the master

public key mpk, and identity id and a message m. It outputs a ciphertext C. The

decryption algorithm DIB.D takes as input identity id, its associated private key

skid, and a ciphertext C. It returns a message m or the symbol ⊥.
PRIV1-IND-ID-CCA security. An DIBE scheme DEIB is PRIV1 selective-

id secure against chosen-ciphertext attack for (t, n)-source M0 and M1 and all

polynomial time adversary A = (A1,A2), the advantage

AdvPRIV1-IND-ID-CCA
DEIB,A (λ) =

|Pr[GuessCCA
DEIB,A

(M0) = 1]− Pr[GuessCCA
DEIB,A(M1) = 1]|

of A against DEIB is negligible. Where GuessCCA
DEIB,A

(Mb) for b ∈ {0, 1} is defined
as follows:
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– The adversary A outputs an identity id∗ as the target identity.

– The challenger runs (mpk,msk)← DIB.Setup(1λ), and sends mpk to A2.

– A2 is allowed to make a number of private key queries and decryption queries

for identity id:

Private key query. The adversary A2 asks for the private key correspond-

ing to any identity id as long as id 6= id∗. The challenger correctly generates

private key skid for id and returns to A2.

Decryption query.A2 issues decryption queries C for identity id. The chal-

lenger responds with DIB.Dec(C, id, skid) using private key skid correctly

generated for id.

– The challenger samplesm from distributionMb ((M0,M1, state)
$←− A1(1

λ)),

and computes C∗ = DIB.Enc(mpk, id∗,m), and then sends C∗ to A2.

– A2 outputs its guess b′ ∈ {0, 1}.

3 Identity-based ABO-TDF and its construction

In this section, we first introduce the notion of identity-based ABO-TDF. Then

based on the basic IBE scheme of Bellare et al. [Bellare et al. 2012], we propose a

concrete construction of IB-ABO-TDF under decisional linear (DLIN) assump-

tion. Let G be a finite cyclic group of prime order p specified by a randomly

chosen generator g. The DLIN assumption says that gr1+···+rd
d+1 is pseudorandom

given g1, . . . , gd+1, g
r1
1 , . . . , grdd where g1, . . . , gd+1

$←− G; r1, . . . , rd
$←− Zp.

3.1 Identity-based ABO-TDF

Identity-based ABO-TDF can be viewed as a specific kind of ABO-TDF with

two variable (id, tag) as a branch. The first component id of branch (id, tag) is

user’s identity, and the second component tag is the label. If and only if id is

lossy identity and tag is lossy label, the branch (id, tag) is lossy branch. In our

construction, similarly, we follow the method of Bellare et al. [Bellare et al. 2012]

for constructing IB-LTDF. In setup phrase, algorithm takes an additional auxil-

iary input from an auxiliary input space AuxSp. Lossy identities are determined

by an auxiliary input which is hidden in the master public key. The definition

of identity-based all-but-one trapdoor functions is described as follows.

Definition 2 (IB-ABO-TDF). A collection of (n, k)-identity-based all-but-

one trapdoor functions with the identity space IDSp, auxiliary input space

AuxSp and label space TagSp, is a tuple of polynomial time algorithms (Setupabo,

KGabo, Evalabo, Invabo) with the following specifications:
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Setupabo(1
λ, aux, tag∗). For aux

$←− AuxSp, tag∗
$←− TagSp, the algorithm out-

puts (mpk,msk, B̃), where mpk is master public key and msk is master

secret key, and B̃ ⊂ IDSp× TagSp is a set of lossy branches.

KGabo(mpk,msk, id). Given mpk,msk, identity id ∈ IDSp, the probabilistic

algorithm outputs a private key skid with respect to the identity id.

Evalabo(mpk, id, tag, x). For any tag ∈ TagSp, id ∈ IDSp, the algorithm takes

as input mpk, id, tag, and x ∈ {0, 1}n, outputs a value C.

Invabo(mpk, skid, C). The deterministic algorithm takes as input mpk, private

key skid, and a value C, outputs either x ∈ {0, 1}n or ⊥.
We require that the following properties hold:

– Injective correctness and invertibility. For any (id, tag) ∈ IDSp × TagSp, if

(id, tag) 6∈ B̃, where (mpk,msk, B̃)← Setupabo(1
λ, aux, tag∗), the algorithm

Evalabo(mpk, id, tag, ·) computes a deterministic injective function over the

domain {0, 1}n, which can be inverted using the private key skid correspond-

ing to the given id. Formally, (mpk,msk, B̃) ← Setupabo(1
λ, aux, tag∗),

skid ← KGabo(mpk,msk, id), (id, tag) 6∈ B̃, and x ∈ {0, 1}n

Pr[Invabo(mpk, skid,Evalabo(mpk, id, tag, x)) 6= x] ≤ negl(λ)

– Lossiness. For any (id, tag) ∈ IDSp× TagSp, if (id, tag) ∈ B̃, the algorithm

Evalabo(mpk, id, tag, ·) computes a deterministic function over the domain

{0, 1}n whose image has size at most 2n−k.

– Indistinguishability of lossy branch. For every probabilistic polynomial time

algorithm A, the first output mpk1 of Setupabo(1
λ, aux1, tag1) and the first

output mpk2 of Setupabo(1
λ, aux2, tag2) are computationally indistinguish-

able. Formally, the advantage

AdvIND
IB-ABO-TDF,A(λ) =

|Pr[A(mpk1, 1
λ)KGabo(·) = 1]− Pr[A(mpk2, 1

λ)KGabo(·) = 1]|
of A is negligible, where (mpkd,msk, B̃)← Setupabo(1

λ, auxd, tagd) for d ∈
{1, 2}. KGabo(·) denotes that A can make private key query on identity id

by calling KGabo algorithm.

– Hard to find one-more lossy branch. Any probabilistic polynomial time algo-

rithm A that receives (mpk, id, tag) as input, where (id, tag) ∈ B̃, has only

a negligible probability of outputing a pair (id′, tag′) ∈ B̃\{id, tag}.

3.2 The construction of identity-based ABO-TDF

Fix a bilinear map e : G × G → GT , where G,GT are groups of prime order

p. By 1,1T we denote the identity elements of G,GT , respectively. By G
∗ =
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G − {1} we denote the set of generators of G. For vectors y = (y0, y1) ∈ Z
2
p,

tag = (tag0, tag1) and id ∈ Zp. We let fid(y) = (y0+y1id)modp. For any integer

n and any identity space IDSp ⊆ Zp, message space {0, 1}n and auxiliary input

space AuxSp ⊆ Z
2
p, the algorithms of IB-ABO-TDF are as follows.

Setupabo(1
λ,y, tag∗). Given auxiliary input y = (1, 0) ∈ Z

2
p, tag

∗ = (tag∗0 ,

tag∗1) ∈ Z
2
p, let g

$←− G
∗, t

$←− Z
∗
p, ĝ = gt. Then let U

$←− G, s
$←− (Z∗p)

n, ŝ
$←− Z

n
p ,

H, Ĥ,V0,V1, V̂0, V̂1
$←− G

n. It returns master public key mpk = (g, ĝ,G, Ĝ,

J,W0,W1,H, Ĥ, V0,V1, V̂0, V̂1, U), where for 1 ≤ i, j ≤ n,

G[i] = gs[i], Ĝ[i] = ĝŝ[i], J[i, j] = H[j]s[i]Ĥ[j]ŝ[i],

W0[i, j] = V0[j]
s[i]V̂0[j]

ŝ[i](Uy0gtag
∗

0 )s[i]∆(i,j)

W1[i, j] = V1[j]
s[i]V̂1[j]

ŝ[i](Uy1gtag
∗

1 )s[i]∆(i,j)

Where ∆(i, j) = 1 if i = j and 0 otherwise. The master secret key msk = t and

the set of lossy branches B̃ = {(id, tag)|fid(y) = 0modp ∧ tag = tag∗}.
KGabo(mpk,msk, id). Given mpk,msk, identity id ∈ Zp, the algorithm com-

putes decryption key skid = (D1,D2,D3,D4), where r
$←− (Z∗p)

n, r̂
$←− Z

n
p , and

for all 1 ≤ i ≤ n

D1[i] = (V0[i] ·V1[i]
id)tr[i] ·H[i]tr̂[i], D2[i] = (V̂0[i] · V̂1[i]

id)r[i] · Ĥ[i]r̂[i]

D3[i] = g−tr[i], D4[i] = g−tr̂[i]

Evalabo(mpk, id, tag, x). Given mpk, identity id ∈ Zp, tag = (tag0, tag1) ∈
Z
2
p, input x ∈ {0, 1}n, the algorithm computes the value C = (C1, C2,C3,C4)

where for 1 ≤ j ≤ n, let S[j] = G[j]−x[j]fid(tag)

C1 =

n∏

i=1

G[i]x[i], C2 =

n∏

i=1

Ĝ[i]x[i]

C3[j] = S[j]
n∏

i=1

(W0[i, j]W1[i, j]
id)x[i], C4[j] =

n∏

i=1

J[i, j]x[i]

Invabo(mpk, skid,C). Given mpk, ciphertext C = (C1, C2,C3,C4) for iden-

tity id, the algorithm returns x ∈ {0, 1}n where for 1 ≤ j ≤ n, it sets x[j] = 0

if

e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) = 1T

and 1 otherwise.
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Correctness and invertibility. For 1 ≤ j ≤ n, let I = (Ufid(y)gfid(tag
∗))

C1 =

n∏

i=1

G[i]x[i] = g〈s,x〉 C2 =
n∏

i=1

Ĝ[i]x[i] = ĝ〈ŝ,x〉

C3[j] = S[j]

n∏

i=1

(W0[i, j]W1[i, j]
id)x[i]

= S[j]

n∏

i=1

(V0[j]V1[j]
id)s[i]x[i](V̂0[j]V̂1[j]

id)ŝ[i]x[i]Is[i]x[i]∆(i,j)

= (V0[j] ·V1[j]
id)〈s,x〉(V̂0[j] · V̂1[j]

id)〈ŝ,x〉(Ufid(y)gfid(tag
∗−tag))s[j]x[j]

C4[j] =

n∏

i=1

J[i, j]x[i] =

n∏

i=1

H[j]s[i]x[i]Ĥ[j]ŝ[i]x[i] = H[j]〈s,x〉Ĥ[j]〈ŝ,x〉

Thus

e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j])

= e((Ufid(y)gfid(tag
∗−tag))s[j]x[j],D3[j])

Because we chose s[i] to be non-zero modulo p, fid(y) = 1modp 6= 0, therefore,

(id, tag) 6∈ B̃, if

e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) = 1T ,

then x[j] = 0, if the result of the pairing is never 1T , then the inversion algorithm

will correctly recover x[j] = 1.

Lossiness. On input a selective identity id∗ ∈ IDSp, the algorithm Aux(id∗)

returns y = (−id∗, 1). Obviously, fid∗(y) = 0modp, when tag = tag∗, we have

(id∗, tag) ∈ B̃. We show that if (id, tag) ∈ B̃, then algorithm Evalabo(mpk, id,

tag, ·) evaluates a lossy function. Due to fid(y) = 0modp and tag = tag∗,

then the dependency of C3[j] on x[j] vanishes. Examing (C1, C2,C3,C4), we see

that with mpk fixed, the values 〈s, x〉, 〈ŝ, x〉 determine the ciphertext C. Thus

there are at most p2 possible ciphertexts when (id, tag) ∈ B̃. This means that

R = |Evalabo(mpk, id, tag, ·)| ≤ p2. Moreover, the lossy branch of IB-ABO-TDF

is universal. That is, if x1 6= x2, for s, ŝ
$←− Z

n
p , Pr[Evalabo(mpk, id, tag, x1) =

Evalabo(mpk, id, tag, x2)] = Pr[(〈s, x1〉, 〈ŝ, x1〉) = (〈s, x2〉, 〈ŝ, x2〉)] = 1
p2 ≤ 1

|R| .

Indistinguishability of lossy branches. From Theorem 1, we can see that,

under the decision linear (DLIN) assumption, it is hard to distinguish the mas-

ter public key and random group elements. Therefore, the first output mpk1 of

Setup(1λ,y1, tag1) and the first output mpk2 of Setup(1λ,y2, tag2) are com-

putationally indistinguishable.

Hard to find one-more lossy branch. We show that any probabilistic polyno-

mial time adversary A that receives (mpk, id, tag) as input, where (id, tag) ∈ B̃,

outputs a pair (id′, tag′) satisfying (id′, tag′) 6= (id, tag) and (id′, tag′) ∈ B̃
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with negligible probability. To see this, observe that the value y and tag∗ are

initially hidden by the public parameter W0[i, j],W1[i, j], from Theorem 1, we

know that W0[i, j],W1[i, j] are indistinguishable from a random element in the

group G to any probabilistic polynomial time adversary A. However, A could

obtain the information that ufid(y)+fid(tag
∗−tag) = 0 (let U = gu). There are

exactly p2 pairs which satisfy this equation and each of them are equally likely.

Therefore, we can conclude that the adversary has only negligible probability of

outputing a pair (id′, tag′) ∈ B̃\{id, tag} without master secret key.

In order to prove the indistinguishability of lossy branches (i.e Theorem 1),

we first prove the following lemma. That is, the basic ciphertext which contain

certain ‘atoms” from which, given an identity, one can reconstruct ciphertext of

the resemble Bellar et al.’s basic IBE scheme, is indistinguishable from random

group elements. The concrete games are described in table 2.

Lemma 3.1. Game Greal and game Grandom are computationally indistin-

guishable under DLIN assumption.

Proof. This proof via a series of games G0, G1, G2, G3, where game G0 is

the game Greal and game G3 is the game Grandom. Game G1 is the same as

game G0 except S
$←− G in challenge phase, Game G2 is the same as game G1

except W0
$←− G in challenge phase. Game G3 is the same as game G2 except

W1
$←− G in challenge phase. We then show that for i = 0, 1, 2, Gi and Gi+1 are

computationally indistinguishable under DLIN assumption. It follows that the

Lemma holds. The advantage of a distinguisher B attacking DLIN assumption

is denoted by AdvDLIN
B (λ).

Claim 1. Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1] ≤ AdvDLIN
B1

(λ).

Proof.We prove this claim by describing a distinguisher B1 is given (g, ĝ, gs, ĝŝ,

H,T ) where T is either Hs+ŝ or random. B1 runs adversary A responding to

its queries as follows. When A makes query to Initialize(iλ,y, tag), B1 chooses

y ∈ Z
2
p, tag ∈ Z

2
p, u, v

$←− Zp, v = (v0, v1), v̂ = (v̂0, v̂1)
$←− Z

2
p and computes

Ĥ = Hĝv, U = ĝu, for k = 0, 1, Vk = U−ykgtagkgvk , V̂k = ĝv̂k . B1 returns

(g, ĝ,H, Ĥ, V0, V1, V̂0, V̂1, U) to A.
When A makes private-key query to Getsk(id), B1 does the following: If

fid(y) = 0 then return ⊥. Else B1 chooses r′, r̂′
$←− Zp, and computes

D1 = U−fid(y)r
′

g(fid(tag)+fid(v))r
′

H
r̂′(fid(v)+fid(tag))

fid(y)

D2 = gr
′fid(v̂)H

−
r̂′fid(v̂)

fid(y) Hur̂′ , D3 = g−r
′

H
r̂′

fid(y) , D4 = ĝ−ur̂
′

Then B1 returns skid = (D1, D2, D3, D4) to A.
We claim that skid is a correctly distributed and valid random private key

for the identity id. To see this, let h be such that H = gh and let r = r′

t
− hr̂′

tfid(y)
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Greal: Grandom:

Initialize(1λ,y, tag) Initialize(1λ,y, tag)

g
$←− G

∗; t
$←− Z

∗
p; H, Ĥ

$←− G g
$←− G

∗; t
$←− Z

∗
p; H, Ĥ

$←− G

U
$←− G

∗; V = (V0, V1)
$←− G

2 U
$←− G

∗ V = (V0, V1)
$←− G

2

V̂ = (V̂0, V̂1)
$←− G

2; msk ← t V̂ = (V̂0, V̂1)
$←− G

2; msk ← t

mpk ← (g, ĝ,H, Ĥ,V, V̂, U) mpk ← (g, ĝ,H, Ĥ,V, V̂, U)

Return mpk Return mpk

Getsk(id) Getsk(id)

If fid(y) = 0 then skid ← ⊥ If fid(y) = 0 then skid ← ⊥
Else skid ← (D1, D2, D3, D4) Else skid ← (D1, D2, D3, D4)

r, r̂
$←− Z

∗
p; D1 ← (V0V

id
1 )trHtr̂ r, r̂

$←− Z
∗
p; D1 ← (V0V

id
1 )trHtr̂

D2 ← (V̂0V̂
id
1 )rĤ r̂ D2 ← (V̂0V̂

id
1 )rĤ r̂

D3 ← g−tr, D4 ← g−tr̂ D3 ← g−tr, D4 ← g−tr̂

Challenge (it has no identity input) Challenge (it has no identity input)

s
$←− Z

∗
p; ŝ

$←− Zp; G← gs; Ĝ← ĝŝ G
$←− G; Ĝ

$←− G

S ← HsĤ ŝ S
$←− G

W0 ← (Uy0gtag0V0)
sV̂ ŝ

0 W0
$←− G

W1 ← (Uy1gtag1V1)
sV̂ ŝ

1 W1
$←− G

Return (G, Ĝ, S,W0,W1) Return (G, Ĝ, S,W0,W1)

Finalize((d′)) Finalize((d′))

Return d′ = 1 Return d′ = 1

Table 2: Games for the proof of Lemma 3.1. Border areas indicate the difference

between the games

and r̂ = ur̂′. Then we have

D1 = (V0V
id
1 )trHtr̂ = (U−y0gtag0gv0(U−y1gtag1gv1)id)trHtr̂

= (U−fid(y)gfid(tag)gfid(v))
t( r′

t
− hr̂′

tfid(y)
)
Htur̂′

= U−fid(y)r
′

Uhr̂′g(fid(tag)+fid(v))r
′

g
−(fid(tag)+fid(v))hr̂′

fid(y) ghtur̂
′

= U−fid(y)r
′

ĝuhr̂
′

g(fid(tag)+fid(v))r
′

H
−(fid(tag)+fid(v))r̂′

fid(y) ĝhur̂
′

= U−fid(y)r
′

g(fid(tag)+fid(v))r
′

H
r̂′(fid(v)+fid(tag))

fid(y)
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D2 = (V̂0V̂
id
1 )rĤ r̂ = (ĝv0 ĝv1id)rĤ r̂ = g

tfid(v̂)(
r′

t
− hr̂′

tfid(y)
)
Ĥur̂′

= gfid(v̂)r
′

g
−

hr̂′fid(v̂)

fid(y) Ĥur̂′ = gfid(v̂)r
′

H
−

r̂′fid(v̂)

fid(y) Ĥur̂′

D3 = g−tr = g
−t( r′

t
− hr̂′

tfid(y)
)
= g−r

′

H
r̂′

fid(y)

D4 = g−tr̂ = g−tur̂
′

= ĝ−ur̂
′

Since t, fid(y) are non-zero module p and r′, r̂′ are uniform and independent

in Zp, r, r̂ are uniform as well. This matches the distribution of private key of

identity id generated by Getsk. Thus, skid is a valid private key of the identity

id.

When A makes its Challenge query, B1 computes S = T ĝvŝ, for k = 0, 1, do

Wk = gsvk ĝŝv̂k and returns (g, ĝŝ, S,W0,W1) to A. We can see that for k = 0, 1,

Wk = gsvk ĝŝv̂k = (UykgtagkU−ykg−tagkgvk)s(ĝv̂k)ŝ = (UykgtagkVk)
sV̂ ŝ

k

If B1 was given a DLIN instance, that is T = Hs+ŝ, then we have

S = T ĝvŝ = Hs+ŝĝvŝ = Hs(Hĝv)ŝ = HsĤ ŝ

We see that B1 simulates game G0. Otherwise, B1 was given a non-DLIN in-

stance, i.e T
$←− G, then S

$←− G, B1 simulates game G1. Finally, A outputs d′,

B1 also outputs d′. So this completes the claim.

Claim 2. Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ AdvDLIN
B2

(λ).

Proof. Similar to claim 1, we design a simulator B2 such that it is given

(g, ĝ, gs, ĝŝ, Û , T ) where T is either Ûs+ŝ or random. B2 runs adversary A re-

sponding to its queries as follows. When A makes query Initialize(iλ,y, tag), B2
chooses y ∈ AuxSp, tag ∈ TagSp, u, h, ĥ

$←− Zp, v = (v0, v1), v̂ = (v̂0, v̂1)
$←− Z

2
p,

and computes H ← ĝh, Ĥ = ĝĥ, U = gu, V0 = Ûgv0 , V1 = gv1 , V̂0 = Û ĝv̂0 ,

V̂1 = ĝv̂1 . B2 returns (g, ĝ,H, Ĥ, V0, V1, V̂0, V̂1, U) to adversary A.
WhenAmakes query private-key Getsk(id), B2 does the following: If fid(y) =

0 then return ⊥. Else B2 chooses r, r̂′
$←− Zp, and computes

D1 = ĝfid(v)rH r̂′ , D2 = Ûr ĝrfid(v̂)H r̂′Û
−ĥr
h

D3 = ĝ−r, D4 = g−r̂
′

Û
r
h

Then B2 returns skid = (D1, D2, D3, D4) to A.
We claim that skid is a correctly distributed and valid random private key

for the identity id. To see this, let û be such that Û = gû and let r̂ = r̂′

t
− ûr

ht
.
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Then we have

D1 = (V0V
id
1 )trHtr̂ = (Ûgv0gv1)trHtr̂

= (Û trgfid(v))tr ĝhtr̂

= (Û trgfid(v))tr ĝht(
r̂′

t
− ûr

ht
)

= (gûtrgfid(v))tr ĝhr̂
′

ĝ−ûr

= (gfid(v))trH r̂′

D2 = (V̂0V̂
id
1 )rĤ r̂ = (Û ĝv̂0 ĝv̂1id)rĤ r̂

= Ûr ĝrfid(v̂)Ĥ( r̂′

t
− ûr

ht
)

= Ûr ĝrfid(v̂)ĝĥ(
r̂′

t
− ûr

ht
)

= Ûr ĝrfid(v̂)gĥr̂
′

g
−ĥûr

h

= Ûr ĝrfid(v̂)H r̂′Û
−ĥr
h

D3 = g−tr = ĝ−r

D4 = g−tr̂ = g−t(
r̂′

t
− ûr

ht
) = g−r̂

′

g
ûr
h = g−r̂

′

Û
r
h

Since t, fid(y) are non-zero module p and r̂′ are uniform and independent in Zp,

r̂ are uniform as well. This matches the distribution of private key of identity id

generated by Getsk. Thus, skid is a valid private key of the identity id.

When A makes its Challenge query, B2 computes W0 = (gs)uy0+tag0+v0(ĝŝ)v̂0

·T , W1 = (gs)uy1+tag1+v1(ĝŝ)v̂1 and returns (g, ĝŝ, S,W0,W1) to A. We can see

that

W1 = (gs)uy1+tag1+v1(ĝŝ)v̂1 = (Uy1gtag1V1)
sV̂ ŝ

1

If B2 was given a DLIN instance, that is T = Ûs+ŝ, then we have

W0 = (gs)uy0+tag0+v0(ĝŝ)v̂0 · T
= (Uy0gtag0Û−1V0)

s(Û−1V̂0)
ŝÛs+ŝ

= (Uy0gtag0V0)
sÛ−sÛ−ŝV̂ ŝ

0 Û
s+ŝ

= (Uy0gtag0V0)
sV̂ ŝ

0

We see that B2 simulates game G1 in this case. Otherwise, B2 was given a non-

DLIN instance, i.e T
$←− G, then W0

$←− G, B2 simulates game G2. Finally, A
outputs d′, B2 also outputs d′. So this completes the claim.

Claim 3. Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1] ≤ AdvDLIN
B2

(λ).

Proof. The proof is identical to that of Claim 2. The only differences are, in

the Initialize(iλ,y, tag) query phase, the simulator B2 lets V0 = gv0 , V1 = Ûgv1 ,

V̂0 = ĝv̂0 , V̂1 = Û ĝv̂1 , in the private key query phase, lets r̂ = r̂′

t
− idûr

ht
, and

261Huang M., Yang B., Zhao Y., Liang K., Xue L., Yang X.: CCA-Secure ...



in the challenge phrase, the simulator B2 computes W0 = (gs)uy0+tag0+v0(ĝŝ)v̂0

and W1 = (gs)uy1+tag1+v1(ĝŝ)v̂1 · T .
Theorem 1. The first output mpk1 of Setupabo(1

λ,y1, tag1) and the first

output mpk2 of Setupabo(1
λ,y2, tag2) are computationally indistinguishable.

Proof. We first prove that mpkb for b ∈ {0, 1} and random group elemen-

t matrices are computationally indistinguishable. It is obvious that the the-

orem follows. To prove mpkb generated by Setupabo(1
λ,yb, tagb) is indistin-

guishable from random group element matrices, we define a set of hybrid games

R1, · · · , Rn. In Rl (1 ≤ l ≤ n), where game R1 produces a real public parameter

matrices and Rn produces a random public parameter matrices. Below we argue

that for every l ∈ {1, . . . , n}, any distinguisher A of the two games Rl−1 and Rl

can be used to distinguish Greal from Grandom. From Lemma 3.1, Rl−1 and Rl

are indistinguishable, therefore, this theorem holds.

Let adversary A be a distinguisher of Rl−1 and Rl, the simulator B is an

adversary distinguishing Greal from Grandom.

Simulating public parameter. The simulator B is given (g, ĝ,H, Ĥ, V0, V1,

V̂0, V̂1, U) ← Inaitialize(1λ,y, tag) and (G, Ĝ, S,W0,W1) ← Challenge where

(G, Ĝ, S,W0,W1) is either real or random. B chooses h, ĥ
$←− (Z∗p)

n, v0, v1, v̂0,

v̂1
$←− Z

n
p , s

$←− (Z∗p)
n, ŝ

$←− Z
n
p . For i = 1, . . . , n

– If i 6= l then H[i] ← gh[i], Ĥ[i] ← gĥ[i], Vk[i] ← gvk[i], V̂k[i] ← gv̂k[i] (k =

0, 1), G[i]← gs[i], Ĝ[i]← gŝ[i]. For j = 1, . . . , n, J[i, j]← H[j]s[i]Ĥ[j]ŝ[i].

– If i = l then H[i] ← H, Ĥ[i] ← Ĥ, Vk[i] ← Vk, V̂k[i] ← V̂k (k = 0, 1),

G[i] ← G, Ĝ[i] ← Ĝ. For j = 1, . . . , n, if j 6= i then J[i, j] ← Gh[j]Ĝĥ[j], if

j = i then J[i, j]← S.

– For j = 1, . . . , n, k = 0, 1, if i = j and i ≤ l − 1 then Wk[i, j]
$←− G; if i = j

and i = l then Wk[i, j]←Wk; otherwise

Wk[i, j]← Vk[j]
s[i]V̂k[j]

ŝ[i](Uykgtagk)s[i]∆(i,j)

B then sends paras = (g, ĝ,H, Ĥ,V0,V1, V̂0, V̂1, G, Ĝ,J,W0,W1, U) to A.
Simulating private key. When the simulator B simulates the private key skid

for identity id which is chosen by the adversary A, B first queries its own Getsk

oracle and is given (D1, D2, D3, D4) ← Getsk(id). If fid(y) = 0 then B returns

⊥. Otherwise, B chooses r′
$←− (Z∗p)

n, r̂′
$←− (Zp)

n. For i = 1, . . . , n

– If i 6= l then D1[i] ← (V0[i]V1[i]
id)r

′[i]H[i]r̂
′[i], D2[i] ← gfid(v̂)r

′[i]gĥ[i]r̂
′[i],

D3[i]← g−r
′[i], D4[i]← g−r̂

′[i].

– If i = l then (D1[i],D2[i],D3[i],D4[i])← (D1, D2, D3, D4).
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Where r[i] = r′[i]
t
, r̂[i] = r̂′[i]

t
for i 6= l. Here t is the master secret key, so

that ĝ = gt. Because r′[i], r̂′[i] are random, so the above simulation matches the

distribution of the private key.

Note that if (G, Ĝ, S,W0,W1) is real, B perfectly simulates the game Rl−1,

but if (G, Ĝ, S,W0,W1) is random, B perfectly simulates the game Rl. Finally,

B outputs what A outputs. Since B perfectly simulates game Rl−1 or game Rl

depending on the (G, Ĝ, S,W0,W1). This completes the proof of the theorem.

4 CCA-secure DIBE scheme

Given the identity space IDSp and auxiliary input space AuxSp, let ΠLF =

(LF.Setup, LF.KG, LF.Eval, LF.Inv) be an identity-based lossy trapdoor func-

tion with 2rLF -bounded lossy function range RLF (i.e., in the lossy mode, the

image ofΠLF has size at most 2rLF), letΠabo = (Setupabo,KGabo,Evalabo, Invabo)

be an identity-based all-but-one trapdoor function with branches set B = IDSp×
TagSp (TagSp is tag space) and with 2rabo -bounded lossy function range Rabo,

and let Htcr = (Ktcr, Htcr) be a target collision-resistant hash function with

2rtcr -bounded hash range Rtcr ⊆ TagSp\{tag∗}. We assume that the DIBE

scheme has message space {0, 1}l. Our deterministic identity-based encryption

scheme DEIB = (DIB.Setup,DIB.Der,DIB.Enc,DIB.Dec) is defined as follows.

DIB.Setup(1λ). aux0, aux1
$←− AuxSp, (mpkLF,mskLF)← LF.Setup(1λ, aux0),

(mpkabo,mskabo) ← Setupabo(1
λ, aux1, tag

∗), ktcr
$←− Ktcr. Return mpk =

(mpkLF,mpkabo, ktcr), msk = mskLF.

DIB.Der(mpk,msk, id). skid ← LF.KG(mpkLF,mskLF, id). Return skid.

DIB.Enc(mpk, id,m). h← Htcr(m), c1 ← LF.Eval(mpkLF, id,m), c2 ← Evalabo
(mpkabo, id, h,m). Return C = h‖c1‖c2.

DIB.Dec(mpk, id, skid, C). Parse C as C = h‖c1‖c2, compute m′ ← LF.Inv

(mpkLF, skid, c1), C
′ ← DIB.Enc(mpk, id,m′). If C ′ = C then return m′,

otherwise return ⊥.
Note that consistency of the above scheme follows from the fact that the

particular auxiliary input aux0 is a constant and independent to the identity,

and the range of the tcr hash function does not include the lossy branch of the

identity-based ABO-TDF. So both LF.Eval(mpkLF, id, ·) and Evalabo(mpkabo,

id, h, ·) are injective trapdoor functions. For all output (mpk,msk) by DIB.Setup

and all m ∈ {0, 1}l, there is exactly one string C such that DIB.Dec outputs m.

We now turn to security.

Theorem 2. If ΠLF is a selective-id secure identity-based lossy trapdoor

functions with universal lossy mode, Πabo is a universal identity-based all-but-

one trapdoor functions, and Htcr is universal TCR hash function, if for (t, l)-

sources M0,M1, and any ǫ > 0 such that t ≥ rLF + rabo + rtcr + 2 log( 1
ǫ
),
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then the deterministic identity-based encryption scheme DIBE described above

is selective-id PRIV1-secure against chosen ciphertext attacks.

Proof. The proof proceeds via a sequence of games G0, G1, . . . , G6, where

game G0 is the original PRIV1-IND-ID-CCA game, G6 will be independent

of the any underly distribution imposed by the adversary. Then we show that

for all i = 0, . . . , 5, game Gi and Gi+1 are (computationally or statistically)

indistinguishable. It follows that the deterministic IBE scheme is PRIV1-IND-

ID-CCA secure.

G1: This game is the same as the game G0 except that the auxiliary input

and label (aux1, tag
∗) of IB-ABO-TDF is replaced by (aux1(id

∗), h∗), where

h∗ = Htcr(m
∗), id∗ is the target identity chosen in advance by the adversary,

m∗ is chosen from (t, l)-source Mb (b ∈ {0, 1}) by the simulator, and aux1(id
∗)

is generated by an auxiliary input generator Aux1(id
∗) which takes input an

identity in IDSp and returns an auxiliary input associated with the identity.

G2: This game is identical to game G1 except that the decryption oracle

rejects all the ciphertext C = h‖c1‖c2 such that h = h∗.

G3: This game is the same as the game G2, the only change is to decryption

oracle, in which if the adversary submits a ciphertext C = h‖c1‖c2 for decryp-

tion, such that (id, h) is a lossy branch, then the decryption oracle immediately

outputs reject and halts.

G4: This game is the same as game G3 except that the decryption ora-

cle decrypted using the master secret key mskabo of IB-ABO-TDF. That is to

say, when the adversary submits a ciphertext C = h‖c1‖c2 for decryption, the

challenger computes m′ ← Invabo(mpkabo, skid, c2) (Note that the challenger op-

erates the algorithm KGabo(mskabo, id) and generates skid for identity id.), and

C ′ ← DIB.Enc(mpk, id,m′). Then it checks whether C ′ = C. If not, it outputs

⊥, otherwise outputs m′.

G5: This game is the same as the game G4, the only change is to the algorithm

DIB.Setup, in which we replace the injective function with a lossy one. Formally,

in the algorithm DIB.Setup, we replace (mpkLF,mskLF)← LF.Setup(1λ, aux0)

with (mpkLF,mskLF)← LF.Setup(1λ, aux0(id
∗)), where aux0(id

∗) is generated

by an auxiliary input generator Aux0(id
∗) and id∗ is the target identity chosen

in advance by the adversary.

G6: This game is the same as the game G5 except that the challenge cipher-

text is sampled uniformly from the ciphertext space instead of encrypting the

message m sampled from the (t, l)-source Mb. Formally, in the challenge phase,

the challenger chooses randomly h∗
$←− Rtcr, c

∗
1

$←− RLF, c
∗
2

$←− Rabo,h∗ as the

challenge ciphertext C∗ = h∗‖c∗1‖c∗2.
Claim 4. Game G0 and game G1 are computationally indistinguishable,

given the indistinguishability of the lossy branch of IB-ABO-TDF.

Proof. We prove this claim by describing an IB-ABO-TDF distinguisher
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algorithm B that receives mpkabo as input where mpkabo is either (mpkabo,

mskabo) ← Setupabo (1λ, aux1, tag∗) or (mpkabo, mskabo) ← Setupabo(1
λ,

aux1(id
∗), h∗), where h∗ = Htcr(m

∗), id∗ is the target identity chosen in ad-

vance by the adversary and m∗ is chosen from (t, l)-source Mb (b ∈ {0, 1}) by B.
The distinguisher B operates by implementing DIB.Setup, DIB.Der, DIB.Dec

and challenge. In the DIB.Setup phase, B runs (mpkLF,mskLF) ← LF.Setup

(1λ, aux0) and chooses ktcr
$←− Ktcr. The public key is output as mpk = (mpkLF,

mpkabo, ktcr). We point out that B knows the injective trapdoormskLF, but does

not know the trapdoor mskabo. DIB.Der, DIB.Dec are implemented just as game

G0 and game G1. Note that the only secret information DIB.Der and DIB.Dec

need to operate is mskLF, which the distinguisher knows. Likewise, Challenge

is implemented just as in all the games. Therefore, any difference in behavior

between game G0 and game G1 immediately breaks the hardness of distinguish-

ing a lossy branch from an injective branch of the identity-based ABO trapdoor

functions collection.

Claim 5. Game G1 and game G2 are computationally indistinguishable,

given the target collision-resistant property of the hash function Htcr.

Proof. We begin by observing that game G1 or game G2 behave equivalently

unless an event E happens, which is that the adversary makes a query C =

h‖c1‖c2 to its decryption oracle, where h = h∗. We then show that event E

happens with negligible probability. There are two possibilities to consider for

its decryption. The first is that C is the ciphertext corresponding to m∗. But

by the unique encryption property of deterministic encryption that m∗ has only

one valid ciphertext, namely C∗, which the adversary is not allowed to query

to its decryption oracle. So in fact this possibility cannot occur. The second

possibility is that C decrypts to some m 6= m∗. In this case, we can find a valid

target-collision (m,m∗) of hash function Htcr. By the collision-resistant property

of Htcr, we conclude that event E happens with negligible probability.

Claim 6. Game G2 and game G3 are computationally indistinguishable,

given the hardness of finding one-more lossy branch of IB-ABO-TDF.

Proof. Let F be the event that the adversary makes a legal decryption query

of the form C = h‖c1‖c2, such that (id, h) is lossy branch. It is clear that game

G2 and game G3 proceed identically until the event F happens. We then show

that the event F happens with negligible probability.

Note that, if h = h∗, the decryption oracle rejects the ciphertext in both

games. Therefore, the (id, h) is a new lossy branch of IB-ABO-TDF. By the

hardness of finding one-more lossy branch property of IB-ABO-TDF, the event

F happens with negligible probability, and hence the claim follows.

Claim 7. Game G3 and game G4 are equivalent.

Proof. The only difference between game G3 and game G4 is in the im-

plementation of decryption oracle. We show that decryption oracle is equiv-
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alent in the two games. In both games, when the challenger receives a legal

decryption query of the form C = h‖c1‖c2 from the adversary. It checks that

c1 ← LF.Eval(mpkLF, id, x), c2 ← Evalabo(mpkabo, id, h, x) for some x that they

compute (in different ways), and outputs ⊥ if not. It suffices to show that such

x is unique. Note that, if h = h∗ or (id, h) is lossy branch, the decryption or-

acle outputs reject. Therefore, ΠLF and Πabo are both injective, and there is a

unique x such that (c1, c2) = (LF.Eval(mpkLF, id, x),Evalabo(mpkabo, id, h, x)).

The both implementations of decryption oracle find the x.

Claim 8. Game G4 and game G5 are computationally indistinguishable,

given the indistinguishability of the injective and lossy functions of IB-LTDF.

Proof. We prove this claim by describing an IB-LTDF distinguisher B that re-

ceives mpkLF as input where mpkLF was either generated by LF.Setup(1λ, aux0)

or generated by LF.Setup(1λ, aux0(id
∗)). Note that the distinguisher B knows

the trapdoor mskabo of IB-ABO-TDF, but does not know the trapdoor mskLF

corresponding to mpkLF. B interacts with the adversary as follows.

In the setup phase, B runs (mpkabo,mskabo)← Setupabo(1
λ, aux1(id

∗), h∗ =

Htcr(m
∗)), ktcr

$←− Ktcr and outputs public key mpk = (mpkLF,mpkabo, ktcr).

When the adversary makes a legal private key query for identity id (i.e., id 6=
id∗), B obtains skid by querying its own private key extracting oracle on the

identity id, then forwards to the adversary. When the adversary makes a legal

decryption query C = h‖c1‖c2 for any identity id, B can compute the private key

for identity id using the trapdoor mskabo, then runs the algorithm Invabo and

responds the adversary. Challenge phase is implemented just as in both games.

It is easy to see that the distinguisher B perfectly simulates game G4 or game

G5 depending on whether mpkLF results in an injective or lossy function (respec-

tively). By the indistinguishability of injective and lossy functions of IB-LTDF,

the claim holds.

Claim 9. Game G5 and game G6 are 3ε-close.

Proof. We proceed via two sub-games G5,1,G5,2. In sub-game G5,1, we modify

the challenge ciphertext of game G5 so that h∗ ← Htcr(m
∗), c∗1 ← LF.Eval

(mpkLF, id,m
∗), c∗2

$←− Rabo. The sub-game G5,2 is identical to sub-game G5,1

except that c∗1
$←− RLF. Blow we will show that game G5 and sub-game G5,1,

sub-game G5,1 and sub-game G5,2, sub-game G5,2 and game G6 are statistically

indistinguishable respectively.

In game G5, let X = m and Z = h∗‖c∗1, then we have |Z| ≤ 2rtcr+rLF due to

the universal TCR hash function Htcr and the IB-LTDF with the lossy mode.

By the hypothesis that t ≥ rLF + rabo + rtcr +2 log( 1
ǫ
) and Chain Rule, we have

H̃∞(X|Z) = H̃∞(m∗|h∗‖c∗1) ≥ rabo +2 log( 1
ǫ
), generalized LHL shows that c∗2 is

ε-close to uniform on the range of Πabo given h∗‖c∗1. That is to say, G5 and sub-

game G5,1 are ε-close. Similarly, in sub-game G5,1, we take X = m and Z = h∗.

According to the Chain Rule and the Generalized LHL, we can show that c∗1 is
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ε-close to uniform on the range RLF. In sub-game G5,2, we take X = m, and

according to the standard LHL (i.e., the Generalized LHL with empty Z), we

can conclude that h∗ is ε-close to uniform on its range as well. The claim holds.

Claim 10. In game G6, adversary has no advantage to win the game.

Proof. Obviously, when executed in game G6, h
∗, c∗1 and c∗2 are chosen uni-

formly and independent of all other variables, including b. It is easy to see that

the adversary has no advantage in the game. This claim follows.

5 Conclusions

In this paper, we introduced a notion of identity-based all-but-one trapdoor

functions, which is an extension of all-but-one trapdoor functions in the identity-

based setting. Based on the Bellare et al.’s identity-based lossy trapdoor func-

tions [Bellare et al. 2012], we gave a concrete construction of IB-ABO-TDF and

proved its security under DLIN assumption. Based on an IB-LTDF and our IB-

ABO-TDF, we proposed a CCA-secure deterministic IBE scheme in the selective-

id attack model. A future direction is to construct CCA-secure DIBE scheme in

the adaptive case.

Acknowledgements

This work is supported by the National Natural Science Foundation of China

(61802241, 61572303, 61772326, 61402015, 61802242), National Key R and D

Program of China (No.2017YFB0802000), the National Cryptography Develop-

ment Fund during the 13th Five-year Plan Period (MMJJ20180217), the Founda-

tion of State Key Laboratory of Information Security (2017-MS-03), the Funda-

mental Research Funds for the Central Universities (GK201702004), the Natural

Science Basic Research plan in Shannxi Province of China (2017JM6048), the

project of science and technology in Baoji City (15RKX-1-5-8), Key project of

Baoji University of Arts and Sciences (ZK15027).

References

[Bellare et al. 2007] Bellare, M., Boldyreva, A., ONeill, A.: “ Deterministic and Effi-
ciently Searchable Encryption”; In: Advances in Cryptology-CRYPTO 2007. Lect.
Notes in Comp. Sci., vol 4622. Springer, Berlin, 2007, 535-552.

[Bellare et al. 2009] Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G.,
Shacham, H., Yilek, S.: “ Hedged Public-Key Encryption: How to Protect against
Bad Randomness”; In: Advances in Cryptology-ASIACRYPT 2009. Lect. Notes in
Comp. Sci., vol 5912. Springer, Berlin, 2009, 232-249.

[Bellare et al. 2015a] Bellare, M., Dowsley, R., Keelveedhi, S.: “ How Secure is Deter-
ministic Encryption?”; In: Katz J. (eds) Public-Key Cryptography-PKC 2015. Lect.
Notes in Comp. Sci., vol 9020. Springer, Berlin, 2015, 52-73.

267Huang M., Yang B., Zhao Y., Liang K., Xue L., Yang X.: CCA-Secure ...



[Bellare et al. 2008] Bellare, M., Fischlin, M., ONeill, A., Ristenpart, T.: “ Determin-
istic Encryption: Definitional Equivalences and Constructions without Random O-
racles”; In: Advances in Cryptology-CRYPTO 2008. Lect. Notes in Comp. Sci., vol
5157. Springer, Berlin, 2008, 360-378.

[Bellare et al. 2015b] Bellare, M., Hoang, V. T.: “ Resisting Randomness Subversion:
Fast Deterministic and Hedged Public-Key Encryption in the Standard Model”; In:
Advances in Cryptology-EUROCRYPT 2015. Lect. Notes in Comp. Sci., vol 9057.
Springer, Berlin, 2015, 627-656.

[Bellare et al. 2012] Bellare, M., Kiltz, E., Peikert, C., Waters, B.: “ Identity-Based
(Lossy) Trapdoor Functions and Applications”; In: Advances in Cryptology-
EUROCRYPT 2012. Lect. Notes in Comp. Sci., vol 7237. Springer, Berlin, 2012,
228-245.

[Bogdanov et al. 2016] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.:
“ On the hardness of learning with rounding over small modulus”; In Theory of
Cryptography, Springer, Berlin, 2016, 209-224.

[Boldyreva et al. 2008] Boldyreva, A., Fehr, S., ONeill, A.: “ On Notions of Security for
Deterministic Encryption, and Efficient Constructions without Random Oracles”;
In: Advances in Cryptology-CRYPTO 2008. Lect. Notes in Comp. Sci., vol 5157.
Springer, Berlin, 2008, 335-359.

[Boldyreva et al. 2017] Boldyreva, A., Patton, C., Shrimpton, T.: “ Hedging Public-
Key Encryption in the Real World”; In: Advances in Cryptology-CRYPTO 2017.
Lect. Notes in Comp. Sci., vol 10403. Springer, Cham, 2017, 462-494.

[Brakerski et al. 2011] Brakerski, Z., Segev, G.: “ Better Security for Deterministic
Public-Key Encryption: The Auxiliary-Input Setting”; In: Advances in Cryptology-
CRYPTO 2011. Lect. Notes in Comp. Sci., vol 6841. Springer, Berlin, 2011, 543-560.

[Canetti et al. 2004] Canetti, R., Halevi, S., Katz, J.: “ Chosen-Ciphertext Security
from Identity-Based Encryption”; In: Advances in Cryptology-EUROCRYPT 2004.
Lect. Notes in Comp. Sci., vol 3027. Springer, Berlin, 2004, 207-222.

[Cui et al. 2014] Cui, Y., Morozov, K., Kobara, K., et al.: “ Efficient Constructions of
Deterministic Encryption from Hybrid Encryption and Code-Based PKE”; Interna-
tional Journal of Network Security, 16(1), 2014, 19-28.

[Dodis et al. 2004] Dodis, Y., Reyzin, L., Smith, A.: “ Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data”; In: Advances in
Cryptology-EUROCRYPT 2004. Lect. Notes in Comp. Sci., vol 3027. Springer,
Berlin, 2004, 523-540.

[Escala et al. 2014] Escala, A., Herranz, J., Liber,t B., Rfols, C.: “ Identity-Based
Lossy Trapdoor Functions: New Definitions, Hierarchical Extensions, and Impli-
cations”; In: Public-Key Cryptography-PKC 2014. Lect. Notes in Comp. Sci., vol
8383. Springer, Berlin, 2014, 239-256.

[Fang et al. 2016] Fang, F., Li, B., Lu., Liu, Y., Jia, D., Xue, H.: “ (Deterministic) Hier-
archical identity-based encryption from learning with rounding over small modulus”;
In: Proceedings of the 11th ACM on Asia Conference on Computer and Communi-
cations Security, 2016, 907-912.

[Freeman et al. 2010] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: “
More constructions of lossy and correlation-secure trapdoor functions”; In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, 2010, 279-295.

[Fuller et al. 2012] Fuller, B., O’Neill, A., Reyzin, L.: “ A Unified Approach to Deter-
ministic Encryption: New Constructions and a Connection to Computational En-
tropy”; In: Theory of Cryptography. Lect. Notes in Comp. Sci., vol 7194. Springer,
Berlin, 2012, 582-599.

[Huang et al. 2018] Huang, Z., Lai, J., Chen, W., Au, M. H., Peng, Z., Li, J.: “ Hedged
Nonce-Based Public-Key Encryption: Adaptive Security Under Randomness Fail-
ures”; In: Public-Key Cryptography-PKC 2018. Lect. Notes in Comp. Sci., vol 10769.
Springer, Cham. 2018, 253-279.

268 Huang M., Yang B., Zhao Y., Liang K., Xue L., Yang X.: CCA-Secure ...



[Koppula et al. 2016] Koppula, V., Pandey, O., Rouselakis, Y., et al.: “ Deterministic
Public-Key Encryption Under Continual Leakage”; In: Applied Cryptography and
Network Security 2016. Springer International Publishing, LNCS 9696, 2016, 304-
323.

[Li et al. 2019] Li, Y., Yu, Y., Susilo, W., Min, G., Ni, J., Choo, R.: “ Fuzzy Identity-
Based Data Integrity Auditing for Reliable Cloud Storage Systems”; IEEE Trans.
on Dependable and Secure Computing, 16(1), 2019, 72-83.

[Mironov et al. 2012] Mironov, I., Pandey, O., Reingold, O., Segev, G.: “ Incremen-
tal Deterministic Public-Key Encryption”; In: Pointcheval D., Johansson T. (eds)
Advances in Cryptology-EUROCRYPT 2012. Lect. Notes in Comp. Sci., vol 7237.
Springer, Berlin, 2012, 628-644.

[O’Neill 2010] O’Neill, A.: “ Deterministic Public-Key Encryption Revisited”; Online
available from http:// eprint.iacr.org/2010/533.

[Peikert et al. 2008] Peikert, C., Waters, B.: “ Lossy trapdoor functions and their ap-
plications”; In: Proceedings of the fortieth annual ACM symposium on Theory of
computing, STOC ’08, 2008, 187-196.

[Raghunathan et al.2013] Raghunathan, A., Segev, G., Vadhan, S.: “ Deterministic
Public-Key Encryption for Adaptively Chosen Plaintext Distributions”; In: Ad-
vances in Cryptology-EUROCRYPT 2013. Lect. Notes in Comp. Sci., vol 7881.
Springer, Berlin, 2013, 93-110.

[Wee 2012] Wee, H.: “ Dual Projective Hashing and Its Applications Lossy Trapdoor
Functions and More”; In: Advances in Cryptology-EUROCRYPT 2012. Lect. Notes
in Comp. Sci., vol 7237. Springer, Berlin, 2012, 246-262.

[Xie et al. 2012] Xie, X., Xue, R., Zhang, R.: “ Deterministic Public Key Encryption
and Identity-Based Encryption from Lattices in the Auxiliary-Input Setting”; In:
Security and Cryptography for Networks. SCN 2012. Lect. Notes in Comp. Sci., vol
7485. Springer, Berlin, 2012, 1-18.

[Yamada et al. 2017] Yamada, S.: “ Asymptotically compact adaptively secure lattice
ibes and verifiable random functions via generalized partitioning techniques”; Cryp-
tology ePrint Archive, 2017 Report 2017/096.

[Yu et al. 2017] Yu, Y., Au, M. H., Ateniese, G., Huang, X., Susilo, W., Dai, Y., Min,
G.: “ Identity-Based Remote Data Integrity Checking with Perfect Data Privacy
Preserving for Cloud Storage”; IEEE Trans. Information Forensics and Security,
12(4), 2017, 767-778.

[Zhang et al. 2014] Zhang, Z., Chen, Y., Chow, S. S. M., Hanaoka, G., Cao, Z., Zhao,
Y.: “ All-but-One Dual Projective Hashing and Its Applications”; In: Applied Cryp-
tography and Network Security. ACNS 2014. Lect. Notes in Comp. Sci., vol 8479.
Springer, Cham, 2014, 181-198.

[Zhang et al. 2017] Zhang, D., Fang, F., Li, B., Wang, X.: “ Deterministic Identity-
Based Encryption from Lattices with More Compact Public Parameters”; In: Ad-
vances in Information and Computer Security. IWSEC 2017. Lect. Notes in Comp.
Sci., vol 10418. Springer, Cham, 2017, 215-230.

269Huang M., Yang B., Zhao Y., Liang K., Xue L., Yang X.: CCA-Secure ...


