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Abstract: Recently, in order to guarantee security against quantum adversaries, sev-
eral identification (ID) schemes based on computational problems which are supposed
to be hard even for quantum computers have been proposed. However, their security
are only proven against non-quantum adversaries. In this paper, we proposed a novel
four-pass code-based identification scheme. By using quantum random oracle model,
we provide a security proof for our scheme against quantum adversaries which aim
to impersonate the prover under concurrent active attacks, based on the hardness as-
sumption of syndrome decoding (SD) problem. Our security proof is interesting in
its own right, since it only requires a non-programmable quantum random oracle, in
contrast to existing security proofs of digital signatures generated from ID scheme via
Fiat-Shamir transform which require programmable quantum random oracles.
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1 Introduction

Identification scheme (ID) scheme is one of the most important cryptographic

protocols. Not only that it is useful to protect a system against impersonation

attacks, but it can be easily converted to construct essential building blocks for

other cryptographic schemes. For example, we can convert an ID scheme into

a trapdoor commitment scheme [Fischlin, 2001] or digital signature [Fiat and

Shamir, 1986] to further achieve cloud security [Yu et al., 2017,Li et al., 2019],

iot security [Yu et al., 2018b] and content security [Yu et al., 2018a]. Meanwhile,

due to the rapid progress of the research on building quantum computers, the

research on post-quantum cryptography, i.e., cryptographic schemes which re-

main secure even in the presence of adversaries with quantum computers, has

been very active lately. It also includes the construction of ID schemes which

remain secure even in the presence of quantum computers. Since it is well-known

that quantum computers can easily break the discrete logarithm problem and
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solve integer factorization efficiently, we need to construct ID schemes based

on computational problems which are still hard to solve even by using quan-

tum computers. During the last decade, problems based on lattices, multivariate

quadratic polynomials, and codes are considered as the most suitable computa-

tional problems for post-quantum cryptography.

Contribution and Main Idea

Stern proposed the first code-based ID schemes in his seminal paper in 1996

[Stern, 1996]. Santoso modified Stern’s ID scheme such that the cheating prob-

ability of adversary per round decreases from 2/3 to 1/2. However, both ID

schemes have not been proven secure against quantum adversaries. In this pa-

per, we propose a modification of Santoso’s ID Scheme and prove its security

against quantum adversaries which try to impersonate honest provers under

concurrently active attacks.

The most crucial part in our security proof against impersonation under con-

currently active attacks is that we need to simulate honest provers in concurrent

way without knowing the secret key. We prove the security of our scheme in quan-

tum random oracle (QRO) model. We use the idea introduced by Unruh [Unruh,

2017] for constructing quantum random oracle, i.e., we select a hidden ran-

dom univariate polynomial f with degree 2qH to substitute the hash function

in quantum random oracle model, where the total queries to hash function is

upper-bounded by qH . Using construction proposed by Unruh, [Unruh, 2017] we

can compute the preimages of f using Berlekamp’s algorithm [Berlekamp, 1971]

efficiently. In the first pass of the interactive protocol, we require the verifier

to send the hash value of its challenge which will be send later after the com-

mitment. Since the hash function is simulated by QRO, which is f , inside the

security proof, we can compute the preimage of f before sending the commitment

and know the future value of challenge which verifier will send after receiving

commitment. Since the ID scheme is such that one can response properly to the

verifier without knowing secret key corresponding to the public verification key

if one knows the challenge before hand, we can easily simulate the provers in

concurrent way.

It should be noted that in the existing work of using quantum random oracle

for proving the security of digital signatures against quantum adversaries, the

programmability of quantum random oracle is necessary [Unruh, 2017]. How-

ever, we show in this paper that non-programmable quantum random oracle is

sufficient to prove the security of ID scheme against quantum adversaries under

concurrent active attacks.
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2 Preliminaries

In this section, we provide the notations and definitions used throughout this

paper and we recall the description of Stern’s protocol.

Notations. The empty string is denoted by ⊥. If x is a string, then x ∈ {0, 1}n

denotes that x is the n-bit binary string and if A is a matrix, then A ∈ {0, 1}m×n

denotes that A is the binary matrix of m rows and n columns. Hamming weight

of a string x, denoted by hw(x) is the number of 1s it includes and S
n
p is the set

of n-bit binary strings of hamming weight p. Πn denotes the set of permutations

order n. The symbol || denotes concatenation. A finite field with q elements is

denoted by Fq. In this paper, unless noted otherwise, any field is assumed to be

the binary field F2. We use the notation {0, 1} and Fq interchangeably.

We say that any problem P is hard if there is no algorithm solves it within

polynomial time with non-negligible probability. Unless noted otherwise, any

algorithm is a probabilistic polynomial time algorithm. Also, unless noted oth-

erwise, throughout this paper, an algorithm is considered as both classical and

quantum algorithm.

Definition 1. (Syndrome Decoding (SD) Problem).A syndrome decoding

problem is defined as follows.

Given: v ∈ F
m
2 , H ∈ F

m×n
2 , w ∈ N

Output: s ∈ F
n
2 such that HsT = v and hw(s) = w hold for all i ∈ [0, n].

The SD problem is said to be εSD-hard if there is no algorithm can solve the

problem with success probability at least εSD within polynomial time. It is has

been proven by Berlekamp et al. [Berlekamp et al., 1978] that SD problem is NP

complete. Thus, the hardest case of SD problem is guaranteed to be hard even

for quantum computers.

Definition 2. (Identification (ID) Scheme). An identification scheme ID

is a tuple of algorithms, i.e., a setup parameter generator algorithm, a key-

generation algorithm Kgen, a prover P and a verifier V which are defined as

follows. A setup parameter generator takes input the security parameter and

outputs setup parameter param. The key-generation algorithm Kgen takes input

setup parameter param, and outputs a public key and a secret key (pk, sk). A

pair of algorithms (P, V ) denotes an interactive protocol consisting of a prover

P and a verifier V , where a common input is (param, pk) and an auxiliary input

of P is sk. After interactions, V outputs a bit as a verification result. Security

against impersonation under concurrent active attacks considers an adversary

whose goal is to impersonate an honest prover without the knowledge of the

secret key, after the adversary is allowed to launch identification sessions with

number of honest provers concurrently without any synchronization.
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Definition 3. (Statistically Hiding and Computationally Binding String

Commitment Scheme [Sakumoto et al., 2011]). The string commitment

scheme com is a two-stage interactive protocol between a sender and a receiver

using a string commitment function com. In the first stage, the sender computes

a commitment value c ← com(s; ρ) and sends c to the receiver, where s is a

string and ρ is a random string. In the second stage, the sender gives (s, ρ) to

the receiver and the receiver verifies c = com(s; ρ). Informally, the string com-

mitment scheme com is called statistically hiding if and only if no receiver can

distinguish two commitment values generated from two different strings even if

the receiver is computationally unbounded. And the string commitment scheme

com is called computationally binding if and only if no polynomial time sender

can change the committed string after the first phase.

Remark On Commitment. In this paper, we follow the style of Stern [Stern,

1996] and Sakumoto et al. [Sakumoto et al., 2011], where we omit the explicit

handling of ρ, although the commitment is computed using an auxiliary random

string ρ. In practice, ρ is chosen randomly with a sufficient length such that

the statistical hiding is guaranteed. We abuse the exact notation of the commit-

ment scheme with randomness by calling it commitment function. For a detailed

concrete construction of a practical commitment scheme, please refer to [Stern,

1996,Sakumoto et al., 2011].

3 Proposed ID Scheme

The detailed description of one elementary round of our proposed ID scheme is

shown in Fig. 1 (on the next page). We set the public key pk and secret key sk

as follows.

pk : H ∈ F
m×n
q , v ∈ F

m
q , w ∈ N, commitment function com(·),

hash function hash(·) : {0, 1}∗ → {0, 1}4n

sk : s ∈ F
n
q such that Hs⊤ = v, hw(s) = w holds.

Our proposed ID scheme is constructed based on the ID scheme proposed by

Santoso [Santoso, 2018].

The full round ID scheme consists of the repetitions of the elementary round

shown in Fig. 1 for ℓ times. The size of ℓ is closely related to the success prob-

ability of impersonation attack. The detailed relation between ℓ and the imper-

sonation attack will be revealed shortly when we show the soundness property

of the proposed ID scheme.

It is easy to see that an honest prover with the knowledge of s who is inter-

acting honestly according to the protocol shown in Fig. 1 is always accepted by

verifier.
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0. Verifier Commitment: Verifier V picks randomly γ, γ
$
←− F

2n−1
2 and

b
$
←− {0, 1, 2, 3}. V sends cV = hash(b[2]‖γ‖γ) and γ to the prover, where

b[2] denotes the representation of b in binary.

1. Prover Commitment: Prover P computes the followings:

r1, r2
$
←− F

n
q , σ1, σ2

$
←− Πn

c1 = com(Hr⊤1 ⊕ v‖σ1), c2 = com(r1 · σ1), c3 = com((r1 ⊕ s) · σ1),

c4 = com(Hr⊤2 ⊕ v‖σ2), c5 = com(r2 · σ2), c6 = com((r2 ⊕ s) · σ2),

h0 = hash(r1‖σ1‖r2 ⊕ s‖σ2), h1 = hash(r1 ⊕ s‖σ1‖r2‖σ2)

h2 = hash(r1 · σ1‖(r1 ⊕ s) · σ1‖r2‖σ2), h3 = hash(r1‖σ1‖r2 · σ2‖(r2 ⊕

s) · σ2)

Prover sends {ci}
6
i=1 and {hi}

3
i=0 to verifier V .

2. Challenge: V sends b and γ to P .

3. Response: Upon receiving b, Prover checks whether cV = hash(b[2]‖γ‖γ)

holds. If it does not hold, P aborts. Otherwise, P computes z0, z1, z2, z3
as follows:

if b = 0 : z0 = r1, z1 = σ1, z2 = r2 ⊕ s, z3 = σ2
if b = 1 : z0 = r1 ⊕ s, z1 = σ1, z2 = r2, z3 = σ2
if b = 2 : z0 = r1 · σ1, z1 = (r1 ⊕ s) · σ1, z2 = r2, z3 = σ2
if b = 3 : z0 = r1, z1 = σ1, z2 = r2 · σ2, z3 = (r2 ⊕ s) · σ2

P sends (z0, z1, z2, z3) to verifier V .

4. Verify: Verifier V performs the verification procedure on (z0, z1, z2, z3)

as follows hash(z0‖z1‖z2‖z3)
?
= hb.

if b = 0 : com(Hz⊤0 ⊕ v‖z1)
?
= c1, com(z0 · z1)

?
= c2,

com(Hz⊤2 ‖z3)
?
= c4, com(z2 · z3)

?
= c6

if b = 1 : com(Hz⊤0 ‖z1)
?
= c1, com(z0 · z1)

?
= c3,

com(Hz⊤2 ⊕ v‖z3)
?
= c4, com(z2 · z3)

?
= c5

if b = 2 : com(z0)
?
= c2, com(z1)

?
= c3, hw(z0 ⊕ z1)

?
= w,

com(Hz⊤2 ⊕ v‖z3)
?
= c4, com(z2 · z3)

?
= c5

if b = 3 : com(Hz⊤0 ⊕ v‖z1)
?
= c1, com(z0 · z1)

?
= c2, com(z2)

?
= c5,

com(z3)
?
= c6, hw(z2 ⊕ z3)

?
= w

V outputs a bit acc ∈ {0, 1} such that acc = 1 if responses from P

satisfies all checking equations above, and acc = 0, otherwise.

Figure 1: One elementary round of (P, V ) in proposed ID Scheme.
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Theorem4 (Completeness). Any honest (true) prover P with the knowledge

of secret key who is interacting honestly with an honest verifier V according to

the protocol shown in Fig. 1 will always be accepted by the honest verifier V .

Proof. We show that for any true prover P who performs the ”Commitment”

and ”Response” step using the knowledge of secret key s such that Hs⊤ = v and

hw(s) = w, will always pass the checks performed by the honest verifier V who

sends challenge b ∈ {0, 1, 2, 3} to P in ”Challenge” step. First, if P is an honest

prover, based on the construction of commitments shown in step 1 of Fig. 1, we

obtain the following equations.

c1 = com(Hr⊤1 ⊕ v‖σ1), c2 = com(r1 · σ1),

c3 = com((r1 ⊕ s) · σ1), c4 = com(Hr⊤2 ⊕ v‖σ2),

c5 = com(r2 · σ2), c6 = com((r2 ⊕ s) · σ2)

(1)

Now, let us check whether the response (z0, z2, z2, z3), computed by P upon

receiving b ∈ {0, 1, 2, 3} according the ”Response” step in Fig. 1, will pass the

verification procedure in ”Verification” step described in Fig, 1.

Case b = 0 : P computes the followings.

z0 = r1, z1 = σ1, z2 = r2 ⊕ s, z3 = σ2. (2)

And V performs the followings checks.

com(Hz⊤0 ⊕ v‖z1)
?
= c1, com(z1(z0))

?
= c2,

com(Hz⊤2 ‖z3)
?
= c4, com(z3(z2))

?
= c6

(3)

Using (2), we can transform the checking equations (3) into the followings.

com(Hr⊤1 ⊕ v‖σ1)
?
= c1, com(σ1(r1))

?
= c2,

com(H(r2 ⊕ s)
⊤‖σ2) = com(Hr⊤2 ⊕ v‖σ2)

?
= c4,

com((r2 ⊕ s) · σ2)
?
= c6.

Based on (1), it is easy to see that each equation in question above is equal.

Case b = 1 : P computes the followings.

z0 = r1 ⊕ s, z1 = σ1, z2 = r2, z3 = σ2 (4)

And V performs the followings checks.

com(Hz⊤0 ‖z1)
?
= c1, com(z0 · z1)

?
= c3,

com(Hz⊤2 ⊕ v‖z3)
?
= c4, com(z2 · z3)

?
= c5

(5)
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Using (4), we can transform the checking equations (5) into the followings.

com(H(r1 ⊕ s)
⊤‖σ1) = com(Hr⊤1 ⊕ v‖σ1)

?
= c1,

com((r1 ⊕ s) · σ1)
?
= c3,

com(Hz⊤2 ⊕ v‖z3)
?
= c4, com(z2 · z3)

?
= c5

Based on (1), it is easy to see that each equation in question above is equal.

Case b = 2 : P computes the followings.

z0 = r1 · σ1, z1 = (r1 ⊕ s) · σ1, z2 = r2, z3 = σ2 (6)

And V performs the followings checks.

com(z0)
?
= c2, com(z1)

?
= c3, hw(z0 ⊕ z1)

?
= w,

com(Hz⊤2 ⊕ v‖z3)
?
= c4, com(z2 · z3)

?
= c5

Using (6), we can transform the above checking equations into the followings.

com(r1 · σ1)
?
= c2, com((r1 ⊕ s) · σ1)

?
= c3,

hw(r1 · σ1 ⊕ (r1 ⊕ s) · σ1) = hw(s · σ1) = hw(s)
?
= w,

com(Hr⊤2 ⊕ v‖σ2)
?
= c4, com(r2 · σ2)

?
= c5

Based on (1), it is easy to see that each equation in question above is equal.

Case b = 3 : P computes the followings.

z0 = r1, z1 = σ1, z2 = r2 · σ2, z3 = (r2 ⊕ s) · σ2 (7)

And V performs the followings checks.

com(Hz⊤0 ⊕ v‖z1)
?
= c1, com(z0 · z1)

?
= c2,

com(z2)
?
= c5, com(z3)

?
= c6, hw(z2 ⊕ z3)

?
= w

(8)

Using (7), we can transform the checking equations (8) into the followings.

com(Hr⊤1 ⊕ v‖σ1)
?
= c1, com(σ1(r1))

?
= c2,

com(r2 · σ2)
?
= c5, com((r2 ⊕ s) · σ2)

?
= c6,

hw(r2 · σ2 ⊕ (r2 ⊕ s) · σ2 = hw(s · σ2) = hw(s)
?
= w

Based on (1), it is easy to see that each equation in question above is equal.
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Finally, one can easily see that for each b, the true prover P always constructs

hb such that hb = hash(z0‖z1‖z2‖z3) holds, where z0, z1, z2, z3 are the responses

corresponding to b as indicated above. Hence, we have shown here that the true

prover P is always accepted by the honest verifier V . This completes the proof

of Theorem 4. ⊓⊔

Definition 5 (Accepting Transcript). A tuple (c, b, z) is said to be an ac-

cepting transcript if and only if c is a valid commitment produced by an honest

prover, b is a challenge sent by an honest verifier, z is the response from prover

to the challenge, and (c, b, z) passes all checks performed by an honest verifier.

Remark. One can easily see in Fig. 1 that actually, a full communication tran-

script of one elementary round includes not only commitment c, challenge b, and

response z, but also includes the hash values cV , h0, h1, h2, h3, γ and γ. However,

since in this paper we care more about the issue whether the party in the prover

side is acting or able to act as a true prover, in this paper we often omit cV , γ,

γ when we discuss about the transcript. Also, we often omit h0, h1, h2, h3 since

only hj where j = b is checked by the verifier and hj can be easily computed from

a valid response of the prover. Other hash values can be generated arbitrarily

since they are not checked by the verifier.

4 Security Proof

In this section, we will build step by step the security proof for our proposed

scheme against quantum adversaries which launch impersonation under concur-

rent active attacks.

Theorem6 (Special Soundness). If the commitment function com is com-

putationally binding, then there is an efficient procedure to extract s such that

Hs⊤ = v and hw(s) = w given: (1) a set of valid commitments c (such as the

one created by an honest prover in the ”Prover Commitment” step), (2) a tuple

of three distinct challenges (b(1), b(2), b(3)) such that b(i) 6= b(j) for any i, j, i 6= j,

and (2) a set of three correct prover’s responses z(b
(1)), z(b

(2)), z(b
(3)) such that for

each i ∈ {1, 2, 3}, (c, b(i), z(b
(i))) is an accepting transcript.

Proof. Since the challenge sent by the verifier is selected from the set {0, 1, 2, 3},

we have four possible combinations of three (distinct) challenges (b(1), b(2), b(3)),

where b(i) ∈ {0, 1, 2, 3}, b(i) 6= b(j), for any distinct (i, j). It is sufficient to

show that from the responses of each challenge combination, we can compute s

described above efficiently. Since we assume that com is computationally binding,

we can assume that if com(x) = com(y) for some x, y, then x = y must hold.
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1. Case (b(1), b(2), b(3)) = (0, 1, 2)

From the head part of c1 we have Hz
(0)⊤
0 ⊕ v = Hz

(1)⊤
0 . Then, the following

must hold:

v = H(z
(0)
0 ⊕ z

(1)
0 )⊤. (9)

From the tail part of c1 we have z
(0)
1 = z

(1)
1 . Then, we can set σ = z

(0)
1 = z

(1)
1 .

Combine this with c2 and c3, we obtain z
(2)
0 = z

(0)
0 · σ and z

(2)
1 = z

(1)
0 · σ.

Then, we obtain as follows.

hw(z
(0)
0 ⊕ z

(1)
0 ) = hw((z

(0)
0 ⊕ z

(1)
0 ) · σ)

= hw(z
(0)
0 · σ ⊕ z

(1)
0 · σ)

= hw(z
(2)
0 ⊕ z

(2)
1 ) = w.

(10)

The last equation comes from the property which holds if all verifications

for the case b(3) = 2 are correct. Hence, from Eq. (9) and Eq. (10), we can

conclude that for this case, we can set s = z
(0)
0 ⊕ z

(1)
0 .

2. Case (b(1), b(2), b(3)) = (0, 1, 3)

From the head part of c4 we have Hz
(1)⊤
2 ⊕ v = Hz

(0)⊤
2 . Then, the following

must hold:

v = H(z
(0)
2 ⊕ z

(1)
2 )⊤. (11)

From the tail part of c4 we have z
(0)
3 = z

(1)
3 . Then, we can set σ = z

(0)
3 = z

(1)
3 .

Combine this with c5 and c6, we obtain z
(3)
3 = z

(0)
2 · σ and z

(3)
2 = z

(1)
2 · σ.

Then, we obtain as follows.

hw(z
(1)
2 ⊕ z

(0)
2 ) = hw((z

(1)
2 ⊕ z

(0)
2 ) · σ)

= hw(z
(1)
2 · σ ⊕ z

(0)
2 · σ)

= hw(z
(3)
2 ⊕ z

(3)
3 ) = w.

(12)

The last equation comes from the property which holds if all verifications

for the case b(3) = 3 are correct. Hence, from Eq. (11) and Eq. (12), we can

conclude that for this case, we can set s = z
(0)
2 ⊕ z

(1)
2 .

3. Case (b(1), b(2), b(3)) = (0, 2, 3)

From the head part of c4 we have Hz
(2)⊤
2 ⊕ v = Hz

(0)⊤
2 . Then, the following

must hold:

v = H(z
(0)
2 ⊕ z

(2)
2 )⊤. (13)

From the tail part of c4 we have z
(0)
3 = z

(2)
3 . Then, we can set σ = z

(0)
3 = z

(2)
3 .

Combine this with c5 and c6, we obtain z
(3)
3 = z

(2)
2 · σ and z

(3)
2 = z

(0)
2 · σ.
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Then, we obtain as follows.

hw(z
(2)
2 ⊕ z

(0)
2 ) = hw((z

(2)
2 ⊕ z

(0)
2 ) · σ)

= hw(z
(2)
2 · σ ⊕ z

(0)
2 · σ)

= hw(z
(3)
2 ⊕ z

(3)
3 ) = w.

(14)

The last equation comes from the property which holds if all verifications

for the case b(3) = 3 are correct. Hence, from Eq. (13) and Eq. (14), we can

conclude that for this case, we can set s = z
(0)
2 ⊕ z

(2)
2 .

4. Case (b(1), b(2), b(3)) = (1, 2, 3)

From the head part of c1 we have Hz
(3)⊤
0 ⊕ v = Hz

(1)⊤
0 . Then, the following

must hold:

v = H(z
(3)
0 ⊕ z

(1)
0 )⊤. (15)

From the tail part of c1 we have z
(3)
1 = z

(1)
1 . Then, we can set σ = z

(3)
1 = z

(1)
1 .

Combine this with c2 and c3, we obtain z
(2)
0 = z

(3)
0 · σ and z

(2)
1 = z

(1)
0 · σ.

Then, we obtain as follows.

hw(z
(3)
0 ⊕ z

(1)
0 ) = hw((z

(3)
0 ⊕ z

(1)
0 ) · σ)

= hw(z
(2)
0 ⊕ z

(2)
1 ) = w.

(16)

The last equation comes from the property which holds if all verifications

for the case b(2) = 2 are correct. Hence, from Eq. (15) and Eq. (16), we can

conclude that for this case, we can set s = z
(3)
0 ⊕ z

(1)
0 .

Hence, we have shown that from a valid commitment with any combination of

three distinct challenges and the corresponding valid responses, we can extract

s as described above. This completes the proof of Theorem 6. ⊓⊔

We need the following lemma to guarantee that we can simulate the provers

without secret key in our security proof against impersonation with concurrent

active attacks.

Lemma7 (Simulatability). If com is statistically hiding, there exists an algo-

rithmM such that given the public key and the challenge, produces an accepting

transcript of one round identification.

Proof. For each challenge b′ ∈ {0, 1, 2, 3},M proceeds as follows.

1. Case b′ = 0 : Choose r1, r
′
2

$
←− F

n
q , σ1, σ2

$
←− Πn

q , then set responses z0 =

r1, z1 = σ1, z2 = r′2, z3 = σ2, and commitments c1 = com(Hz⊤0 ⊕ v‖z1),

c2 = com(z0 · z1), c4 = com(Hz⊤2 ‖z3), c6 = com(z2 · z3).
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2. Case b′ = 1 : Choose r′1, r2
$
←− F

n
q , σ1, σ2

$
←− Πn

q , then set responses z0 =

r′1, z1 = σ1, z2 = r2, z3 = σ2, and commitments c1 = com(Hz⊤0 ⊕ v‖z1),

c3 = com(z0 · z1), c4 = com(Hz⊤2 ⊕ v‖z3), c5 = com(z2 · z3).

3. Case b′ = 2 : Choose r1, s
′, r2

$
←− F

n
q s.t. hw(s′) = w, σ1, σ2

$
←− Πn

q , then set

responses z0 = r1 · σ1, z1 = (r1 ⊕ s
′) · σ1, z2 = r2, z3 = σ2, and commitments

c2 = com(z0), c3 = com(z1), c4 = com(Hz⊤2 ⊕ v‖z3), c6 = com(z2 · z3).

4. Case b′ = 3 : Choose r1, s
′r2

$
←− F

n
q s.t. hw(s′) = w, σ1, σ2

$
←− Πn

q , then set

responses z0 = r1, z1 = σ1, z2 = r2 · σ2, z3 = (r2 ⊕ s
′)σ2, and commitments

c1 = com(Hz⊤0 ⊕ v‖z3), c2 = com(z0 · z1), c5 = com(z2), c6 = com(z3).

Using the fact that in an accepting transcript hb′ = hash(z0‖z1‖z2‖z3) holds,M

can easily produce the correct hb′ for each b
′. For other hash values hi1 , hi2 , hi3

where ij 6= b′ for j = 1, 2, 3,M can pick randomly µ1, µ2, µ3 ∈ {0, 1}
4n and set

hij = µj for j = 1, 2, 3. For each case of b′, commitments which are not explicitly

mentioned above can be constructed easily by putting random values as the

inputs since they are not checked during verification. Since com is statistically

hiding, the inputs can be considered completely hidden from any algorithm. ⊓⊔

Theorem8 (Security against Concurrent Active Attacks). Let an algo-

rithm A be an adversary which impersonates a prover in the ID scheme shown in

Fig. 1 under concurrent active attacks with probability εA by launching separate

qh ”quantum” hash queries and interacting with k honest provers concurrently.

If SD problem is εSD-hard, then the following holds.

εA − 1/2ℓ − 2kℓqH/2
2n−1 ≦ εSD (17)

Proof. We will construct an algorithm B which breaks SD problem using A

described above. Let H ∈ F
m×n
2 , v ∈ F

m
2 , w ∈ N be the inputs to B. B sets H,

v and w as the public keys of the ID scheme for A.

Quantum Random Oracle. Based on technique introduced by Unruh [Unruh,

2017], we will use quantum random oracle (QRO) to substitute hash in our

proof. First, we randomly select a univariate polynomial f(x) from F24n [x] with

degree 2qh. Then, we use f(x) as the core function inside QRO. Precisely, for

any (superpositioned) quantum hash queries |ψ〉 =
∑

x∈F24n
αx|x〉 sent to QRO,

QRO will response with
∑

x αx|x, f(x)〉. According to Unruh [Unruh, 2017],

no algorithm (including quantum algorithm) will be able to distinguish QRO

constructed such as above from a true QRO which picks randomly from uniform

distribution.

Simulation of Provers. To simulate the provers concurrently for A, for each

interaction request from A, B proceeds as follows:

(1) Upon receiving cV from A, B computes the set of preimages of cV , i.e.,

f−1(cV ), using algorithm in [Ben-Or, 1981] or [Berlekamp, 1971].

304 Santoso B., Su C.: A New Idenification Scheme ...



(2) Find µ ∈ f−1(cV ) such that the least (2n − 1) significant bits of µ equals

to γ. If f−1(cV ) contains more than one candidate of µ with such property,

select the one found first.

(3) Once we got such µ, B sets b′ equals to the most two significant bits of µ.

(4) Using the ”simulation strategies” shown in the proof of Lemma 7, B con-

struct the commitment and responses corresponding to b′ and sends the

commitment to A.

(5) After receiving b from A, B checks whether b = b′ holds. If b 6= b′, B aborts.

Otherwise, B sends the corresponding response to A.

Note that the event that b 6= b′ happens only if the set of preimages of

cV , i.e., f
−1(cV ), contains more than one member with the property that that

the least (2n − 1) significant bits equals to γ. Since Unruh [Unruh, 2017] has

shown that f is picked such that it is distinguishable from a random function, we

can assume that the least (2n − 1) significant bits of preimages are distributed

uniformly. This means that the probability that the least (2n−1) significant bits

of a member of any preimage set equals to γ is 2−(2n−1). Meanwhile, since f is

a 2qH degree polynomial, for each cV , the size of the set of preimages f−1(cV )

is at most 2qH . Hence, for each single cV , the probability that f−1(cV ) contains

members with the same (2n− 1) least significant bits is at most 2qH . Note that

there are at most k × ℓ interactions between the prover simulated by B and the

adversarial verifier A. Therefore, the total probability that b 6= b′ occurs in some

interactions is at most kℓ× 2qH/2
2n−1.

Extraction of Secret keys. After A stops all interactions with provers (which are

simulated by B), B starts a new session of identification with A. In this session,

B acts as the verifier and let A to act as a prover. First, B picks randomly

γ, γ
$
←− F

2n−1
2 and b

$
←− {0, 1, 2, 3}, then computes cV = hash(b[2]‖γ‖γ), where

b[2] is the representation of b in F
2
2. B sends cV and γ to A. After A sends the

commitment, B sends back b, retrieves the responses z0, z1, z2, z3 from A, and

checks their validity according to the description of the ID scheme in Fig. 1. Then

B selects two out of {hj}j=0,1,2,3 where j 6= b. Let those be denoted by hj1 and

hj2 . B computes the set of preimages f−1(hj1) and f
−1(hj2). After parsing each

element of the preimages into z
(j1)
0 ‖z

(j1)
1 ‖z

(j1)
2 ‖z

(j1)
3 and z

(j2)
0 ‖z

(j2)
1 ‖z

(j2)
2 ‖z

(j2)
3

respectively according to the sets, by using the same procedure shown in the

proof of Theorem 6 on special soundness, B can extract easily s′ such that

Hs′⊤ = v and hw(s′) = w hold.

Note that B can successfully extract the secret key with the above procedure

only if we get at least three out of h0, h1, h2, h3 ”properly” created. Here, a hash

value hj (j ∈ {0, 1, 2, 3}) is said to be ”properly” created if the set of preimages

f−1(hj) contains a member which can be parsed into z
(j)
0 ‖z

(j)
1 ‖z

(j)
2 ‖z

(j)
3 such
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that z(j) = (z
(j)
0 , z

(j)
1 , z

(j)
2 , z

(j)
3 ) is a valid response for the challenge j and corre-

sponding commitments. Note that here we do not need to care about the failure

of extracting secret key when A is fail to act as a true prover, i.e., unable to give

a valid response which passes the verification check. We only need to care about

the probability of fail on extracting the secret key when A is successfully giving

valid responses. Let us look into the following cases.

Case 1: If A ”properly” creates three out of h0, h1, h2, h3, if A gives a valid

response, B will always be able to extract the keys using the above procedure.

Case 2: If A only ”properly” creates two out of h0, h1, h2, h3, then the probabil-

ity that B sends the challenge b such that hb is properly created is 2/4 = 1/2.

Note that here B can not extract the keys. Thus, the probability of failure on

extracting the keys in a single elementary round of identification is upper-

bounded by 1/2. And the probability of failure on extracting the keys in a

full identification round consisting of ℓ repetition of elementary rounds is

upper-bounded by 1/2ℓ.

Case 3: If A only ”properly” creates one out of h0, h1, h2, h3, then the probabil-

ity that B sends the challenge b such that hb is properly created is 1/4. Note

that here B can not extract the keys. The probability of failure on extracting

the keys in single elementary round is 1/4. This probability is smaller than

the one in Case 2 above.

From the explanation above, it is easy to see that the probability of B failing

to extract the keys in a full identification round is upper-bounded by 1/2ℓ.

Hence, since the success probability of A impersonating the prover is εA, the

total success probability of B simulating the provers for A and extracting the

keys from A is at least εA − 1/2ℓ − 2kℓqH/2
2n−1. Meanwhile, since B itself is

an SD solver algorithm, by assumption, the success probability of B is upper-

bounded by εSD. This ends the proof of Theorem 8. ⊓⊔

5 Conclusions and Future Directions

We have shown a new construction of code-based identification (ID) scheme

with provable security against quantum adversaries which launch impersonation

under concurrent active attacks. Our security proof is based on the (quantum)

hardness of syndrome decoding (SD) problem and uses the quantum random

oracle model. We instantiated the quantum random oracle using a randomly

picked univariate polynomial with a certain degree. The paradigm we apply to

transform the canonical three-pass ID scheme into four-pass ID scheme with

security against impersonation by quantum adversaries is independent from the

inner procedure of the original ID scheme and SD problem. Therefore, as a
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final note, we conjecture that our paradigm can be applied to any canonical

ID scheme based on computational problems which are supposed to be secure

against quantum adversaries (e.g., lattices, multivariate quadratic polynomials,

isogeny) to construct a new ID scheme with provable security against quantum

adversaries. We leave the proof of our conjecture as the open problem for future

works.
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