
Sorting Permutations by λ-Operations

Guilherme Henrique Santos Miranda

(Institute of Computing

University of Campinas, Campinas, Brazil

guilherme.miranda@students.ic.unicamp.br)

Carla Negri Lintzmayer

(Center for Mathematics, Computation and Cognition

Federal University of ABC, Santo André, Brazil

carla.negri@ufabc.edu.br)

Zanoni Dias

(Institute of Computing

University of Campinas, Campinas, Brazil

zanoni@ic.unicamp.br)

Abstract: For estimating the evolutionary distance between genomes of two different
organisms, many sorting permutation problems have emerged. A well accepted way
to do this is considering the smallest sequence of rearrangement events – mutations
which affect large portions of the genomes – that transform one genome into the other.
In these problems, both genomes are represented as permutations of integer numbers,
but one of them can be represented as the identity permutation, so that the problem
is reduced to sort a permutation. Moreover, rearrangement models define which type
of operations (rearrangement events) can be applied over a permutation in order to
modify it. Reversals, which are operations that revert a genome segment, and transpo-
sitions, which are operations that swap two adjacent genome segments, are two of the
most studied types of rearrangements in the literature. In this paper, we consider rear-
rangement models that allow reversals, transpositions, and both operations together.
Since there exist evidences that large mutations rarely occur, we add a restriction with
biological relevance: any operation can affect at most λ elements of a permutation. For
this variation of sorting permutation problem, we present approximation algorithms
with approximation factors based on the size of the permutation and/or on λ, for
both signed and unsigned permutations (which represent known and unknown gene
orientations, respectively).

Key Words: Sorting permutations, Genome rearrangements, Reversals, Transposi-
tions, Computational Biology.

Category: F.2.0, G.2.3.

1 Introduction

One way for estimating the evolutionary distance between two genomes is using

the length of the shortest sequence of genome rearrangements that transform a

genome into another, called rearrangement distance. This is the most likely to

occur, based the Principle of Parsimony, since a genome rearrangement is an

Journal of Universal Computer Science, vol. 25, no. 2 (2019), 98-121
submitted: 15/10/18, accepted: 27/2/19, appeared: 28/2/19 J.UCS

event that occurs with relative rarity, because it changes large stretches of a

genome.

We can represent a genome computationally by a permutation of integers

if we assume that there are no duplicate blocks (which can be a gene or a se-

quence of genes) and that its composition is a single linear chromosome. If the

orientation of genes are known, the permutation can be signed to represent that.

Otherwise, we use unsigned permutations. With such representation, the prob-

lem of estimating the evolutionary distance with the rearrangement distance is

modeled as the problem of calculating the minimum number of rearrangements

that transform a permutation into another. As it turns out, one of the permu-

tations can be written as the identity permutation so that the previous problem

can be reduced to the problem of finding the minimum number of operations

that sort a permutation.

Two of the most studied genome rearrangements considered in the

literature are reversals, which invert a determined segment of the

genome/permutation, and transpositions, which exchange two adjacent segments

in the genome/permutation. There are several results regarding sorting per-

mutations using such rearrangements. The problem of Sorting Unsigned Per-

mutations by Reversals is NP-Hard [Caprara, 1999] and the best-known re-

sult is a 1.375-approximation algorithm [Berman et al., 2002]. On the other

hand, Sorting Signed Permutations by Reversals can be solved in polynomial

time [Hannenhalli and Pevzner, 1999] and the best-known result is an algorithm

with subquadratic running time [Tannier et al., 2007]. Also, a linear time algo-

rithm was presented [Bader et al., 2001] for the case when just the rearrange-

ment distance is desired. The problem of Sorting (Unsigned) Permutations by

Transpositions is also NP-Hard [Bulteau et al., 2012] and the best-known result

is also a 1.375-approximation algorithm [Elias and Hartman, 2006]. The com-

plexity of the problems of Sorting Unsigned and Signed Permutations by Re-

versals and Transpositions is unknown. For them, there exist 3-approximation

and 2-approximation algorithms, respectively [Walter et al., 1998]. More-

over, a 2α-approximation algorithm for unsigned permutations was pre-

sented [Rahman et al., 2008], where α is the approximation factor of a cycle

decomposition algorithm for breakpoint graphs [Lin and Jiang, 2004]. Given the

best-known value of α [Chen, 2013], the approximation factor of such algorithm

is 2.8334 + ǫ, where ǫ > 0.

The above mentioned results involve a traditional approach, but there are

some studies considering variants that restrict the application of the rearrange-

ments. For instance, one can limit in which parts of the genome the rear-

rangements will be applied [Dias and Meidanis, 2002, Lintzmayer et al., 2017] or

limit the amount of elements of the permutation that can be affected by the

rearrangements [Jerrum, 1985, Galvão et al., 2015, Heath and Vergara, 2003,

99Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

0

2

4

6

8

10

[1
,2

5
]

[2
6
,5

0
]

[5
1
,7

5
]

[7
6
,1

0
0
]

[1
0
1
,1

2
5
]

[1
2
6
,1

5
0
]

[1
5
1
,1

7
5
]

[1
7
6
,2

0
0
]

[2
0
1
,2

2
5
]

[2
2
6
,2

5
0
]

[2
5
1
,2

7
5
]

[2
7
6
,3

0
0
]

[3
0
1
,3

2
5
]

[3
2
6
,3

5
0
]

[3
5
1
,3

7
5
]

[3
7
6
,4

0
0
]

[4
0
1
,4

2
5
]

[4
2
6
,4

5
0
]

[4
5
1
,4

7
5
]

[4
7
6
,5

0
0
]

[5
0
1
,5

2
5
]

[5
2
6
,5

5
0
]

[5
5
1
,5

7
5
]

[5
7
6
,6

0
0
]

[6
0
1
,6

2
5
]

[6
2
6
,6

5
0
]

[6
5
1
,6

7
5
]

[6
7
6
,7

0
0
]

[7
0
1
,7

2
5
]

[7
2
6
,7

5
0
]

[7
5
1
,7

7
5
]

[7
7
6
,8

0
0
]

[8
0
1
,8

2
5
]

[8
2
6
,8

5
0
]

[8
5
1
,8

7
5
]

[8
7
6
,9

0
0
]

[9
0
1
,9

2
5
]

[9
2
6
,9

5
0
]

[9
5
1
,9

7
5
]

[9
7
6
,1

0
0
0
]

Size of Reversals

%

Figure 1: Frequency of size of reversals given by GRIMM for Sorting Signed

Permutations by Reversals, considering 10000 arbitrary permutations of size

1000.

Jiang et al., 2014, Vergara, 1998], which is the rearrangement’s size.

A motivation for considering a limit on the size of the rearrangements comes

from the observation that rearrangement events are mutations that modify large

stretches of the genome and, as such, they rarely occur, prevailing rearrange-

ments that involve few blocks [Lefebvre et al., 2003]. We performed an experi-

ment to analyze the frequency that each reversal size appears in the optimal solu-

tion considering sorting signed reversals. We used the software GRIMM (Genome

Rearrangements In Man and Mouse) [Tesler, 2002] and considered 10000 arbi-

trary permutations of size 1000. Figure 1 shows GRIMM’s default solution while

Figure 2 shows the solution when we ask it to prioritize smaller reversals.

If the size limit of an operation is at most 2, Sorting Unsigned Per-

mutations by Reversals (or by Transpositions) can be solved in poly-

nomial time [Jerrum, 1985]. If it is at most 3, the best results in the

literature are (i) a 2-approximation [Heath and Vergara, 2003] and a 5-

approximation [Galvão et al., 2015] algorithm for Sorting Unsigned and Signed

Permutations by Reversals, respectively, (ii) a 5
4 -approximation algorithm

for Sorting Permutations by Transpositions [Jiang et al., 2014], and (iii) a 2-

approximation [Vergara, 1998] and a 3-approximation [Galvão et al., 2015] algo-

rithm for Sorting Unsigned and Signed Permutations by Reversals and Trans-

100 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

0.0

7.5

15.0

22.5

30.0

37.5

[1
,2

5
]

[2
6
,5

0
]

[5
1
,7

5
]

[7
6
,1

0
0
]

[1
0
1
,1

2
5
]

[1
2
6
,1

5
0
]

[1
5
1
,1

7
5
]

[1
7
6
,2

0
0
]

[2
0
1
,2

2
5
]

[2
2
6
,2

5
0
]

[2
5
1
,2

7
5
]

[2
7
6
,3

0
0
]

[3
0
1
,3

2
5
]

[3
2
6
,3

5
0
]

[3
5
1
,3

7
5
]

[3
7
6
,4

0
0
]

[4
0
1
,4

2
5
]

[4
2
6
,4

5
0
]

[4
5
1
,4

7
5
]

[4
7
6
,5

0
0
]

[5
0
1
,5

2
5
]

[5
2
6
,5

5
0
]

[5
5
1
,5

7
5
]

[5
7
6
,6

0
0
]

[6
0
1
,6

2
5
]

[6
2
6
,6

5
0
]

[6
5
1
,6

7
5
]

[6
7
6
,7

0
0
]

[7
0
1
,7

2
5
]

[7
2
6
,7

5
0
]

[7
5
1
,7

7
5
]

[7
7
6
,8

0
0
]

[8
0
1
,8

2
5
]

[8
2
6
,8

5
0
]

[8
5
1
,8

7
5
]

[8
7
6
,9

0
0
]

[9
0
1
,9

2
5
]

[9
2
6
,9

5
0
]

[9
5
1
,9

7
5
]

[9
7
6
,1

0
0
0
]

Size of Reversals

%

Figure 2: Frequency of size of reversals given by GRIMM for Sorting Signed

Permutations by Reversal when it prioritizes smaller operations, considering

10000 arbitrary permutations of size 1000.

positions, respectively. If the size limit of any operation is at most a value λ,

we call it a λ-operation. Also, a λ-permutation is a permutation such that any

element is less than λ positions away from its correct position (in the iden-

tity permutation). For the problem of Sorting Unsigned λ-Permutations by λ-

Operations there are approximation algorithms with factors O(λ2), O(λ), and

O(1) [Miranda et al., 2018a].

In a previous work [Miranda et al., 2018b], we presented approximation algo-

rithms for Sorting Unsigned Permutations by λ-Reversals, by λ-Transpositions,

and by both of them. In this paper, we extend such work giving new results

for such problems and we also consider Sorting Signed Permutations by λ-

Operations.

Next sections are organized as follows. Section 2 presents the definitions and

notations regarding problems of sorting permutations. Section 3 presents the pro-

posed approximation algorithms. Section 4 presents some practical experiments

performed over the proposed algorithms. Section 5 presents the concluding re-

marks.

101Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

2 Definitions

We represent a signed permutation of size n by π = (π1 π2 . . . πn), where πi ∈

{−n,−(n−1), . . . ,−2,−1,+1,+2, . . . ,+(n−1),+n} and |πi| 6= |πj | if, and only

if, i 6= j. An unsigned permutation is represented similarly, but there are no

signs in the elements. The identity permutation of size n, which is the goal of

the problems, is defined as ι = (1 2 . . . n).

Given two permutations π and σ of size n, the composition operation “·”

generates a new permutation defined as α = π · σ = (α1 α2 . . . αn) where

αi = −π|σi| if σi < 0 or αi = πσi
otherwise. Compositions are used to indicate

the application of a rearrangement over a permutation, as we see in the following.

An unsigned reversal ρ(i, j), with 1 ≤ i < j ≤ n, is an operation that

transforms an unsigned permutation π into the permutation π · ρ(i, j) =

(π1 π2 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn−1 πn). For example, if π = (1 2 3 4 5)

is an unsigned permutation, then π · ρ(2, 4) = (1 4 3 2 5).

A signed reversal ρ̄(i, j), with 1 ≤ i ≤ j ≤ n, is an operation that trans-

forms a signed permutation π into the permutation π · ρ̄(i, j) = (+π1 + π2 · · ·+

πi−1 −πj − πj−1 · · · − πi+1 − πi + πj+1 · · ·+ πn−1 + πn). For example, if π =

(+1+2−3+4+5) is a signed permutation, then π·ρ̄(2, 4) = (+1−4 + 3 − 2+5).

A transposition τ(i, j, k), with 1 ≤ i < j < k ≤ n + 1, is an operation that

transforms a (signed or unsigned) permutation π into the permutation π·τ(i, j, k)

= (π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1πk . . . πn). For example, if π = (12345)

is an unsigned permutation, then π · τ(1, 3, 5) = (3 4 1 2 5).

A λ-reversal is a reversal ρ(i, j) such that j − i + 1 ≤ λ, where j − i + 1 is

the size of the reversal. A λ-transposition is a transposition τ(i, j, k) such that

k − i ≤ λ, where k − i is the size of the transposition.

Every sorting problem is defined by a rearrangement model, denoted by β,

which indicates what are the operations allowed to be applied in order to sort

the permutation. Given a rearrangement model β and a permutation π, the

sorting distance, denoted by dβ(π), is the minimum amount of operations in

β needed to transform π into ι. For an unsigned permutation π, if β allows

only reversals, only transpositions, or both operations, we denote the sorting

distance of π by dr(π), dt(π), and drt(π), respectively. For a signed permutation

π, if β allows only reversals or both reversals and transpositions, we denote

the sorting distance by dr̄(π) and dr̄t(π), respectively. Similarly, we denote by

dλr (π), d
λ
r̄ (π), d

λ
t (π), d

λ
rt(π), and dλr̄t(π) the sorting distances for when we allow

only λ-operations.

The next two definitions are used by some of the algorithms presented by

us in the next sections. The entropy of an element πi, denoted by ent(πi), is

given by ||πi| − i|, that is, the distance between πi and its position in ι. The

entropy of a permutation π, denoted by ent(π), is given by the sum of all values

of ent(πi), for 1 ≤ i ≤ n. For example, the entropy of the unsigned permutation

102 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

π = (2 3 5 4 1) is ent(π) = 1 + 1 + 2 + 0 + 4 = 8. Note that, by definition, the

entropy of any permutation is an even number.

For a permutation π, we say that there is an inversion (πi, πj) when we have

|πi| > |πj | and i < j. We denote the number of inversions in π by Inv(π). For

example, the inversions of the unsigned permutation π = (3 1 4 2) are the pairs

(π1, π2), (π1, π4), and (π3, π4), so Inv(π) = 3.

3 Approximation Algorithms

We now present approximation algorithms for the five problems we are studying.

Section 3.1 presents algorithms whose approximation factors are better for large

values of λ, while Section 3.2 presents algorithms whose approximation factors

are better for small values of λ. Regardless, all algorithms work for any λ ≥ 2.

3.1 Approximation algorithms for large values of λ

The approximation algorithms shown in this section were obtained by using

algorithms that already exist in the literature for the variants where the size of

the rearrangements is not limited. Thus, Lemma 1 relates the distance of our

problems with the distance of such variants.

Lemma1. For all permutations π and all λ ≥ 2, we have dλr (π) ≥ dr(π),

dλr (π) ≥ dr(π), d
λ
t (π) ≥ dt(π), d

λ
rt(π) ≥ drt(π), and dλrt(π) ≥ drt(π).

Proof. Any sorting sequence where the size of the rearrangements is limited by

λ is valid for the case with no restriction. �

Lemmas 2 and 3 show how to mimic any given (signed or unsigned) reversal

and transposition with a sequence of (signed or unsigned) λ-reversals and λ-

transpositions, respectively.

Lemma2. For a (signed or unsigned) permutation π and λ ≥ 2, the effect of a

reversal ρ(i, j) of size j− i+1 > λ can be obtained by at most q(q+1)
2 λ-reversals,

where q =
⌈

j−i+1
⌊λ/2⌋

⌉

.

Proof. Initially, we divide the segment of π between positions i and j into sub-

segments of size ⌊λ/2⌋, except maybe for the one closest to j, which results in

q =
⌈

j−i+1
⌊λ/2⌋

⌉

subsegments. Formally, for each 1 ≤ ℓ < q, the ℓth subsegment

contains elements of π from position i+ ⌊λ/2⌋(ℓ− 1) to i+ ⌊λ/2⌋ℓ− 1, and the

qth subsegment contains elements of π from position i+ ⌊λ/2⌋(q− 1) to j. Note

that the subsegments are defined by the elements contained in them. For exam-

ple, in π the qth subsegment ends at position j but in π · ρ(i, j) (or in π · ρ̄(i, j))

it starts at position i. Even so, we can still refer to it as the qth subsegment.

103Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

The idea now is to move each subsegment until their respective positions in

π · ρ(i, j) (or in π · ρ̄(i, j)) by exchanging a subsegment with the one to its right.

Note that the reversals to do this have size at most 2⌊λ/2⌋, and so they are

λ-reversals.

For each value of ℓ, starting from ℓ = 1 and going up to ℓ = q − 1, we

apply a sequence of λ-reversals that first exchanges the ℓth subsegment with the

(ℓ + 1)th subsegment, then it exchanges the ℓth with the (ℓ + 2)th, and so on,

until it exchanges the ℓth with the qth subsegment. Note that after applying

this sequence over the ℓth subsegment, it is correctly placed in its final order

(relative to π · ρ(i, j) or π · ρ̄(i, j)) and the (ℓ + 1)th subsegment is currently

starting at position i. Also, after applying the final sequence (of one λ-reversal)

over the (q − 1)th subsegment (the last one considered), subsegments q − 1 and

q are correctly placed in their final order.

Note that exactly q − ℓ λ-reversals are performed over the ℓth subsegment,

so a total of (q − 1) + (q − 2) + · · · + 1 = q(q−1)
2 λ-reversals are required to

correctly position all segments with this procedure. Now, if q is even, then at

the end of the process we will directly have π · ρ(i, j) (or π · ρ̄(i, j)). Otherwise,

all subsegments still have to be reversed and, therefore, another q reversals of

size ⌊λ/2⌋ (except, maybe, for the one over the qth subsegment) are applied, one

for each subsegment. Thus, the effect of a reversal can be obtained by at most
q(q−1)

2 + q = q(q+1)
2 λ-reversals. �

As an example of the previous lemma, let π = (1 2 3 4 5 6 7 8) be an unsigned

permutation and suppose we want to obtain π · ρ(2, 6) with 4-reversals. Let

A = (2 3), B = (4 5), and C = (6) be the subsegments to be moved, as described

in Lemma 2. Note that the total size of any two consecutive segments is less than

or equal to λ = 4. The process described in the lemma first exchanges A with B,

generating (1 5 4 3 2 6 7 8), and then with C, generating (1 5 4 6 2 3 7 8). Then

it exchanges B with C, generating (1 6 4 5 2 3 7 8), and the process ends. Note

that q = ⌈(j− i+1)/⌊λ/2⌋⌉ = ⌈(6−2+1)/⌊4/2⌋⌉ = ⌈5/2⌉ = 3 is an odd number

so, although the segments are in their correct positions, we still have to revert

A, B, and C (actually, note that it is not necessary to revert C, since |C| = 1).

Thus, we obtain π · ρ(2, 6) with a total of 5 = 3+2 ≤ q(q+1)/2 = (3× 4)/2 = 6

4-reversals.

Lemma3. For a (signed or unsigned) permutation π and λ ≥ 2, the effect of a

transposition τ(i, j, k) of size k−i > λ can be obtained by at most
⌈

j−i
⌈λ/2⌉

⌉⌈

k−j
⌊λ/2⌋

⌉

λ-transpositions.

Proof. Let F denote the first segment of the transposition, which contains ele-

ments of π comprised between positions i and j−1, and let S denote the second

segment, which contains elements of π comprised between positions j and k− 1.

104 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

We divide F into f = ⌈(j − i)/⌈λ/2⌉⌉ subsegments of size ⌈λ/2⌉, except maybe

for the one that ends at j − 1, and we divide S into s = ⌈(k − j)/⌊λ/2⌋⌉ sub-

segments of size ⌊λ/2⌋, also except maybe for the one that ends at k− 1, in the

following manner. For 1 ≤ ℓ < f , the ℓth subsegment of F contains elements of

π from position i+ ⌈λ/2⌉(ℓ− 1) to i+ ⌈λ/2⌉ℓ− 1 and the fth subsegment of F

contains elements of π from position i + ⌈λ/2⌉(f − 1) to j − 1. For 1 ≤ ℓ < s,

the ℓth subsegment of S contains elements of π from position j+ ⌊λ/2⌋(ℓ−1) to

j+ ⌊λ/2⌋ℓ−1 and the sth subsegment of S contains elements of π from position

j + ⌊λ/2⌋(s − 1) to k − 1. Again, note that the segments F and S and their

subsegments were defined by the elements they contain.

The idea now is to move each subsegment of F to their respective positions

in π · τ(i, j, k) by exchanging them with subsegments of S. The transpositions

used will have size at most ⌈λ/2⌉+ ⌊λ/2⌋ and so they are λ-transpositions.

For each value of ℓ, starting from ℓ = f and going down to ℓ = 1, we apply a

sequence of λ-transpositions that first exchanges the ℓth subsegment of F with

the 1st segment of S, then exchanges the ℓth of F with the 2nd of S, and so on,

until it exchanges the ℓth of F with the sth subsegment of S. Note that after

applying this sequence on the ℓth subsegment of F , it ends up correctly placed

in its final position (relative to π · τ(i, j, k)) and segment S is the same as in

π, but beginning to the right of the (ℓ − 1)th subsegment of F . Thus, the next

iteration (for ℓ− 1) will correctly exchange the (ℓ− 1)th subsegment of F with

all subsegments of S and place it in its final position.

Note that exactly s λ-transpositions are performed over the ℓth subsegment

of F , so a total of fs = ⌈(j − i)/⌈λ/2⌉⌉⌈(k − j)/⌊λ/2⌋⌉ λ-transpositions are

required by this procedure to correctly position all segments. �

Theorems 4 to 12 use Lemmas 2 and 3 to obtain approximation algorithms

for the five problems we are considering.

Theorem4. [Miranda et al., 2018b] Sorting Unsigned Permutations by λ-

Reversals has an approximation algorithm of factor 0.6875p(p + 1), where p =
⌈

n
⌊λ/2⌋

⌉

.

Corollary 5. [Miranda et al., 2018b] Sorting Unsigned Permutations by λ-

Reversals has an approximation algorithm of factor 8.25 for all n > 3 and

λ > ⌈n/2⌉.

Theorem6. Sorting Signed Permutations by λ-Reversals has an approximation

algorithm of factor p(p+1)
2 , where p =

⌈

n
⌊λ/2⌋

⌉

.

Proof. Similar to the proof of Theorem 4, but using the optimum algorithm for

Sorting Signed Permutations by Reversals [Hannenhalli and Pevzner, 1999]. �

105Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

Corollary 7. Sorting Signed Permutations by λ-Reversals has an approximation

algorithm of factor 6 for all n > 3 and λ > ⌈n/2⌉.

Theorem8. [Miranda et al., 2018b] Sorting Permutations by λ-Transpositions

has an approximation algorithm of factor 1.375
⌈

⌈n/2⌉
⌈λ/2⌉

⌉⌈

⌊n/2⌋
⌊λ/2⌋

⌉

.

Corollary 9. [Miranda et al., 2018b] Sorting Permutations by λ-Transpositions

has an approximation algorithm of factor 5.5 for all n > 3 and λ > ⌈n/2⌉.

Theorem10. [Miranda et al., 2018b] Sorting Unsigned Permutations by λ-

Reversals and λ-Transpositions has an approximation algorithm of factor αp(p+

1), where α is the approximation factor of the cycle decomposition algorithm for

breakpoint graphs and p =
⌈

n
⌊λ/2⌋

⌉

.

Corollary 11. [Miranda et al., 2018b] Sorting Unsigned Permutations by λ-

Reversals and λ-Transpositions has an approximation algorithm of factor 12α

for all n > 3 and λ > ⌈n/2⌉.

Theorem12. Sorting Signed Permutations by λ-Reversals and λ-

Transpositions has an approximation algorithm of factor p(p + 1), where

p =
⌈

n
⌊λ/2⌋

⌉

.

Proof. Similar to the proof of Theorem 10, but using the 2-approximation

algorithm for sorting signed permutations by reversals and transposi-

tions [Walter et al., 1998]. �

Corollary 13. Sorting Signed Permutations by λ-Reversals and λ-

Transpositions has an approximation algorithm of factor 12 for all n > 3

and λ > ⌈n/2⌉.

3.2 Approximation algorithms for small values of λ

In this section we present algorithms that have a better approximation when the

value of λ is small. To do this, we first need to give some new definitions.

3.2.1 Entropy-based Algorithms for Unsigned and Signed Permuta-

tions

Let ∆ent(π, σ) = ent(π · σ) − ent(π) be the variation of the entropy after the

application of an operation σ. Note that to calculate ∆ent(π, σ), it suffices to de-

termine the entropy of the elements affected by σ (the entropy of other elements

does not change).

106 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

Observe that ent(ι) = 0 and ent(π) > 0 for all unsigned permutations π 6= ι.

Lemma 14 gives an upper bound on the variation of entropy caused by any

λ-reversal or λ-transposition. It implies in Corollary 15, which presents lower

bounds for the distance of sorting unsigned permutation problems that we are

addressing.

Lemma14. [Miranda et al., 2018b] Let ∆max
ent (π, σ) be the maximum variation

of entropy caused by a λ-operation σ over a (signed or unsigned) permutation π.

We have ∆max
ent (π, σ) = 2⌈λ/2⌉⌊λ/2⌋.

Corollary 15. [Miranda et al., 2018b] For any unsigned permutation π, λ ≥ 2,

and β ∈ {r, t, rt}, we have dλβ(π) ≥ ent(π)/(2⌈λ/2⌉⌊λ/2⌋).

Let neg(π) denote the number of negative elements of a signed permutation

π and observe that the only permutation with neg(π) = ent(π) = 0 is the

identity. Let scoreent(π, σ) = ((ent(π)− ent(π ·σ))+ (neg(π)−neg(π ·σ)) be the

entropy score of a λ-operation σ applied over π. Note that, if π is an unsigned

permutation, then scoreent(π, σ) = ent(π)−ent(π ·σ) is the change in the entropy

after applying σ. Lemma 16 gives an upper bound for the entropy score of any

λ-reversal or λ-transposition. It implies in Corollary 17, which presents lower

bounds for the distance of sorting signed permutation problems that we are

addressing.

Lemma16. Let scoremax
ent (π, σ) be the maximum possible entropy score of a λ-

operation σ. We have scoremax
ent (π, σ) = 2⌈λ/2⌉⌊λ/2⌋+ λ.

Proof. By Lemma 14, we have that the maximum entropy variation of a λ-

operation is 2⌈λ/2⌉⌊λ/2⌋. By definition, a λ-operation σ involves at most λ

elements of a permutation and so at most λ of them can become positive ones.

Therefore, scoremax
ent (π, σ) = 2⌈λ/2⌉⌊λ/2⌋+ λ. �

Corollary 17. For any signed permutation π, λ ≥ 2, and β ∈ {r̄, r̄t}, we have

dλβ(π) ≥ (ent(π) + neg(π))/((2⌈λ/2⌉⌊λ/2⌋) + λ).

Let π be a (signed or unsigned) permutation of size n and let i and j be

two integers such that 1 ≤ i < j ≤ n. Function φ(π, i, j) returns a permutation

π′ such that π′
i = πj , π

′
j = πi, and π′

k = πk for all k /∈ {i, j}. In other words,

only elements πi and πj are exchanged and, if π is a signed permutation, the

sign of all elements from π remain the same in π′. Lemmas 18, 19, and 20 show

how to obtain φ(π, i, j) with λ-reversals and λ-transpositions, respectively. The

proof of Lemma 18 is reproduced [Miranda et al., 2018b] here because it is used

in Lemma 19.

107Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

Lemma18. [Miranda et al., 2018b] Let π be an unsigned permutation, λ ≥ 2,

and i and j be positions such that 1 ≤ i < j ≤ n. It is possible to obtain φ(π, i, j)

by applying at most 2x λ-reversals on π, where x =
⌈

j−i
λ−1

⌉

.

Proof. We show that the result follows by considering two cases, according to

the relation between i and j. If j − i ≤ λ − 1, then at most two λ-reversals are

necessary. First we apply the operation ρ(i, j) that exchanges the position of

elements πi and πj . It is easy to see that, if j − i + 1 ≤ 3, we already obtained

φ(π, i, j) with only this operation. Otherwise, observe that we will have the

segment πi+1, . . . , πj−1 in reverse order (regarding φ(π, i, j)). Thus, we have to

apply a second operation ρ(i + 1, j − 1) to revert it again and, then, we obtain

φ(π, i, j) with two λ-reversals.

Otherwise, j− i > λ− 1. In a first step, we move element πi to position j by

repeatedly increasing its position by λ−1 (except, maybe, at the last movement)

with exactly x = ⌈(j− i)/(λ−1)⌉ λ-reversals applied successively. Formally, this

is done by applying the sequence ρ(i, i + (λ − 1)), ρ(i + (λ − 1), i + 2(λ − 1)),

ρ(i + 2(λ − 1), i + 3(λ − 1)), . . . , ρ(i + (x − 1)(λ − 1), j) of λ-reversals. Now

element πj is at position i+(x−1)(λ−1) and elements πt, for i < t < j, are not

necessarily at position t. To correct this and, at the same time, move element

πj to position i, we have a second step that applies a sequence with the same λ-

reversals that were used before (except for the last λ-reversal) in reversed order,

to repeatedly decrease the position of πj by λ − 1. Thus, a total of x − 1 extra

operations are needed. Formally, the sequence is ρ(i + (x − 2)(λ − 1), i + (x −

1)(λ−1)), ρ(i+(x−3)(λ−1), i+(x−2)(λ−1)), . . . , ρ(i+2(λ−1), i+3(λ−1)),

ρ(i + (λ − 1), i + 2(λ − 1)), ρ(i, i + (λ − 1)). At this point, if the size of the

λ-reversal ρ(i + (x − 1)(λ − 1), j) (the last λ-reversal of the first step) is less

than or equal to 3, then at the end of the process we will directly have φ(π, i, j).

Otherwise, we have to apply one more λ-reversal ρ(i+ (x− 1)(λ− 1) + 1, j − 1)

to obtain φ(π, i, j), which totalizes 2x λ-reversals. �

Lemma19. Let π be a signed permutation and i and j be positions such that

1 ≤ i < j ≤ n. It is possible to obtain φ(π, i, j) through π by applying at most

2x+ 2 λ-reversals on π, where x =
⌈

j−i
λ−1

⌉

.

Proof. We show the result by considering two cases, according to the relation

between i and j. If j − i ≤ λ − 1, then at most four λ-reversals are necessary.

First we apply the three operations ¯ρ(i, j), ¯ρ(i, i), and ¯ρ(j, j) that exchange the

position of elements πi and πj and also correct their signs (regarding φ(π, i, j)).

It is easy to see that, if j − i + 1 ≤ 2, we already obtained φ(π, i, j) with three

operations. Otherwise, observe that we will have the segment πi+1, . . . , πj−1 in

reverse order and with the opposite signs (regarding φ(π, i, j)). Thus, we have

to apply an extra operation ¯ρ(i+ 1, j − 1) to correct it and, then, we obtain

φ(π, i, j) with four operations.

108 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

Otherwise, j − i > λ− 1. Let π′ = φ(π, i, j). Initially we apply the same (at

most) 2x λ-reversals Lemma 18 (but now they are signed λ-reversals) to obtain

a permutation π′′ such that |π′′
t | = |π

′
t| for all i ≤ t ≤ j. Note that this sequence

applies exactly two λ-reversals over elements πt′ where i < t′ < i+(x−1)(λ−1),

so we actually have π′′
t′ = π′

t′ for all such t′. Also, it is easy to see that if x is

an even number, then we will have π′′
i = π′

i and π′′
j = π′

j . Otherwise, two extra

unitary λ-reversal ρ̄(i, i) and ρ̄(j, j) have to be applied to fix the signs of πi and

πj .

Now we look at elements π′′
(i+(x−1)(λ−1)), . . . , π

′′
j−1. Observe that, if exactly

2x λ-reversals were used in the previous sequence, then these elements were also

affected twice each and, thus, we have π′′ = π′ with at most 2x+ 2 operations.

Otherwise, it means that 2x − 1 λ-reversals were used to obtain π′′ and the λ-

reversal ρ̄(i+(x− 1)(λ− 1), j) (the last operation in the sequence of λ-reversals

described at first step of the proof of Lemma 18) had size less than or equal

to 3. If the size was equal to 3, that λ-reversal affected the elements πi, πj−1,

and πj , so we just have to apply one more unitary λ-reversal ρ̄(j − 1, j − 1) to

obtain π′′ = π′, which results in at most 2x+ 2 λ-reversals. Otherwise, the size

of ρ̄(i + (x − 1)(λ − 1), j) was equal to 2, so only the elements πi and πj were

involved by the operation. Thus, we already have π′′ = π′ with a total of at most

2x+ 1 λ-reversals. �

Lemma20. Let π be a (signed or unsigned) permutation, λ ≥ 2, and i and j be

positions such that 1 ≤ i < j ≤ n. It is possible to obtain φ(π, i, j) by applying

x+ y λ-transpositions on π, where x =
⌈

j−i
λ−1

⌉

and y =
⌈

j−i−1
λ−1

⌉

.

Proof. We show that the result follows by considering two cases, according to

the relation between i and j. If j − i ≤ λ− 1, then at most two λ-transpositions

are necessary. First we apply τ(i, i+1, j +1), that places element πi at position

j. When j = i+1, it also places element πj at position i and, since there are no

elements between πi and πj , we obtain φ(π, i, j) with one operation. Otherwise,

observe that there will be πt, for i < t ≤ j, exactly one position to the left of their

original position in π. Thus, we have to apply a second operation τ(i, j− 1, j) in

order to correct this. Note that, after applying this second operation, we have πj

at position i at the same time that elements i < t < j were moved one position

to the right and, then, we got φ(π, i, j) with two λ-transpositions.

Otherwise, j − i > λ − 1. Initially we move element πi to position j by

repeatedly increasing its position by λ−1 (except, maybe, at the last movement)

with exactly x = ⌈(j−i)/(λ−1)⌉ λ-transpositions applied successively. Formally,

this is done by applying the sequence of λ-transpositions τ(i, i+ 1, i+ λ), τ(i+

(λ−1), i+(λ−1)+1, i+2(λ−1)), τ(i+2(λ−1), i+2(λ−1)+1, i+2(λ−1)+λ),

. . . , τ(i+ (x− 1)(λ− 1), i+ (x− 1)(λ− 1) + 1, j + 1). After this, each element

πt, for i < t ≤ j, is exactly one position to the left of its original position in π.

109Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

To correct this, we can apply a similar sequence of λ-transpositions, but now we

will repeatedly decrease the position of πj (which is at position j − 1) by λ− 1

(except, maybe, at the last operation) with exactly y = ⌈(j − 1 − i)/(λ − 1)⌉

λ-transpositions applied successively. Formally, the sequence is τ(j−λ, j− 1, j),

τ(j − (λ − 1) − λ, j − (λ − 1) − 1, j − (λ − 1)), τ(j − 2(λ − 1) − λ, j − 2(λ −

1)− 1, j − 2(λ− 1)), . . . , τ(i, j − y(λ− 1)− 1, j − y(λ− 1)). Note that each λ-

transposition moves λ− 1 (again, except maybe for the last operation) elements

πt, for i < t < j, one position to the right by exchanging all of them with element

πj . At the end of this process we directly have φ(π, i, j). �

Lemma 21 is auxiliar to Lemma 22, which shows that it is always possible to

reduce the entropy of any permutation π such that ent(π) > 0.

Lemma21. For all (signed or unsigned) permutations π with ent(π) > 0, there

exists a pair of elements πi and πj, with 1 ≤ i < j ≤ n, such that |πi| ≥ j and

|πj | ≤ i.

Proof. Let Gπ be the directed graph such that V (Gπ) = {1, 2, . . . , n} and

E(Gπ) = {(|πi|, i) : 1 ≤ i ≤ n}. Note that each vertex has in-degree 1 and

out-degree 1, and, therefore, the components of Gπ are cycles. Also note that

only Gι has n unitary cycles.

Let C be any cycle of Gπ with at least two vertices and let u be the smallest-

value vertex of C. Let B = (v1, v2, . . . , vℓ) be a maximal sequence of vertices of

C such that v1 = u, vi < vi+1 for all 1 ≤ i < ℓ, and (vi, vi+1) ∈ E(Gπ).

Since the vertices of B are in a cycle and B is maximal, the edge incident to vℓ
is of the form (vℓ, x), with x < vℓ. If vℓ−1 ≤ x, then take i = x and j = vℓ. In this

case, we have |πi| = |πx| = vℓ = j and |πj | = |πvℓ
| = vℓ−1 ≤ x = i and the lemma

follows. If vℓ−1 > x, then let k, with 1 ≤ k < ℓ− 1, be such that vk ≤ x < vk+1

and take i = x and j = vk+1. In this case, we have |πi| = |πx| = vℓ > vk+1 = j

and |πj | = |πvk+1
| = vk ≤ x = i and the lemma follows. See Figure 3 for an

example. �

Lemma22. For all (signed or unsigned) permutations π with ent(π) > 0, it

is possible to obtain another permutation φ(π, i, j) such that ent(φ(π, i, j)) =

ent(π)− 2(j − i), for some pair 1 ≤ i < j ≤ n.

Proof. Let i and j be as in Lemma 21. By definition, ent(π) − ent(φ(π, i, j)) =

||πi|−i|+||πj |−j|−||πi|−j|−||πj |−i|. Since |πi| ≥ j > i, we have ||πi|−j| = |πi|−j

and ||πi|−i| = |πi|−i. Since |πj | ≤ i < j, we have ||πj |−i| = i−|πj | and ||πj |−j| =

j−|πj |. Therefore, ent(π)− ent(φ(π, i, j)) = |πi|− i+ j−|πj |− |πi|+ j− i+ |πj |

= 2(j − i). �

110 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

1 2 3 4 5 6 7 8 9 10

Figure 3: Graph Gπ for π = (6 7 3 9 5 4 2 1 8 10). Considering the notation of

Lemma 21’s proof, if C = (1, 8, 9, 4, 6, 1), then we can take B = (1, 8, 9).

A permutation π 6= ι is called normal if there exists at least one λ-operation

σ such that ent(π) > ent(π · σ) and scoreent(π, σ) > 0. Moreover, since the

entropy of any permutation is an even number, we have scoreent(π, σ) ≥ 2 and

scoreent(π, σ) ≥ 1 for unsigned and signed normal permutations π, respectively.

We call π a special permutation in case it is not normal.

Consider the signed normal permutation π = (−4 + 5 − 2 − 3 + 1), for

which ent(π) = 12 and neg(π) = 3. Note that scoreent(π, ρ̄(2, 3)) = 2 but

scoreent(π, ρ̄(1, 5)) = 9. The following algorithm is greedy in the sense of al-

ways choosing a λ-operation with highest entropy score, if possible. When the

permutation is special, it applies Lemma 22. Note that, in both cases, the algo-

rithm reduces the amount of entropy, thus it eventually reaches a permutation

γ such that ent(γ) = 0. For the sorting unsigned permutations problems, at this

point we already have γ = ι. For the sorting signed permutations problems, the

algorithm still applies neg(γ) unitary reversals to reach ι.

The algorithm receives the rearrangement model β, since it works for any of

the problems we are considering, and it runs in polynomial time, as we discuss

later. We show its approximation factor in Theorem 23 and Theorem 24, for the

problems of sorting unsigned and signed permutations, respectively.

Theorem23. [Miranda et al., 2018b] Sorting Unsigned Permutations by λ-

Reversals, by λ-Transpositions, or by λ-Reversals and λ-Transpositions has an

approximation algorithm of factor 4⌈λ/2⌉⌊λ/2⌋.

Theorem24. Sorting Signed Permutations by λ-Reversals, or by λ-Reversals

and λ-Transpositions has an approximation algorithm of factor 8⌈λ/2⌉⌊λ/2⌋+λ.

Proof. If π is a normal permutation, then the algorithm chooses a λ-operation

σ with scoreent(π, σ) ≥ 1.

111Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

1: function GreedyAlgorithm(π, λ, β)

2: while ent(π) > 0 do

3: if π is a normal permutation then

4: Let σ be a λ-operation such that scoreent(π, σ) is maximum

and ent(π)− ent(π · σ) > 0
5: π ← π · σ

6: else

7: Let i and j be such that |πi| ≥ j, |πj | ≤ i, and 1 ≤ i < j ≤ n

8: π ← φ(π, i, j), according to Lemma 18, 19, or 20

9: if π is a signed permutation then

10: Apply a unitary reversal ρ̄(i, i) in each πi < 0

Otherwise, let i and j be as in GreedyAlgorithm and note that π′ =

φ(π, i, j) is a permutation with ent(π′) = ent(π) − 2(j − i) (see Lemma 22).

Also, we obtain π′ through the operations described in Lemmas 19 and 20 and

so neg(π′) = neg(π) in this case.

If j − i ≤ λ − 1, then we obtain π′ by applying at most 4 λ-operations.

Therefore, the entropy score obtained per operation is at least (2(j − i))/4 ≥

2/4 = 1/2.

If j− i > λ− 1, then we obtain π′ by applying at most 2⌈(j− i)/(λ− 1)⌉+2

λ-reversals or ⌈(j − i)/(λ − 1)⌉ + ⌈(j − i − 1)/(λ − 1)⌉ λ-transpositions. Since

2⌈(j− i)/(λ−1)⌉+2 ≥ ⌈(j− i)/(λ−1)⌉+⌈(j− i−1)/(λ−1)⌉, the entropy score

obtained per operation is at least (2(j−i))/(2⌈ j−i
λ−1⌉+2) ≥ (2(j−i))/(4⌈ j−i

λ−1⌉) ≥

(j − i)/(4 j−i
λ−1) =

λ−1
4 ≥ 1

4 .

Thus, in the worst case we have 1/4 entropy score per operation for both

sorting signed permutation problems. When we obtain a permutation γ with

ent(γ) = 0, the algorithm applies neg(γ) extra unitary λ-reversals in order to

obtain the identity. This means that the total amount of operations used by

GreedyAlgorithm is at most

(ent(π) + neg(π))− (ent(γ) + neg(γ))

1/4
+ neg(γ)

= 4 (ent(π) + neg(π)− neg(γ)) + neg(γ)

= 4 (ent(π) + neg(π))− 4 neg(γ) + neg(γ)

≤ 4 (ent(π) + neg(π)) ≤ (8 ⌈λ/2⌉⌊λ/2⌋+ λ) dλβ(π) ,

where the last inequality follows from Lemma 14 and β = {r̄, r̄t}. �

The following definition is used by Lemma 25 and by Theorem 26, which

show that the algorithm guarantees constant approximation factor for all signed

permutations π 6= ι such that ent(π) = 0. A breakpoint of a signed permutation π,

112 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

with two extra elements π0 = 0 and πn+1 = n+1, is defined as a pair of elements

(πi, πi+1), for 0 ≤ i ≤ n, such that πi+1 − πi 6= 1. The amount of breakpoints in

π is denoted by b(π). Note that the while loop of GreedyAlgorithm does not

change the sign of elements of π. Also observe that, when π 6= ι and ent(π) = 0,

we have neg(π) = b(π) − 1. Since any reversal or transposition can remove at

most two or three breakpoints, respectively, we conclude Lemma 25.

Lemma25. For all signed permutations π such that ent(π) = 0 and λ ≥ 2, we

have dλr̄ (π) ≥
b(π)
2 = neg(π)+1

2 and dλr̄t(π) ≥
b(π)
3 = neg(π)+1

3 .

Theorem26. Sorting Signed Permutations by λ-Reversals and by λ-Reversals

and λ-Transpositions have approximation algorithms of factors 2 and 3, respec-

tively, for all signed permutations π such that ent(π) = 0.

Proof. When ent(π) = 0, the algorithm only applies neg(π) unitary λ-reversals to

reach ι. By the lower bound of Lemma 25, we have neg(π) ≤ 2dr̄(π)−1 ≤ 2dr̄(π)

and neg(π) ≤ 3dr̄t(π)− 1 ≤ 3dr̄t(π). �

Regarding the time complexity of the algorithm, first observe that the while

loop at the first line runs O(n2) times because ent(π) + neg(π) is O(n2) and, as

seen in theorems 23 and 24, one operation in the worst case has entropy score at

least 1/2 or 1/4. In the “if” command we must decide whether a permutation

is normal, which can be done by finding the desired λ-operation. We can simply

test all possible λ-operations, which takes time O(nλ) for λ-reversals and O(nλ2)

for λ-transpositions. Furthermore, it takes O(λ) time to calculate the entropy

score of a λ-operation. Therefore, testing if a permutation is normal takes time

O(nλ3). In the “else” command, we must first obtain positions i and j as desired,

which takes time O(n). Now consider obtaining φ(π, i, j) with λ-transpositions.

By Lemma 20, we can use at most ⌈(j − i)/(λ− 1)⌉ + ⌈(j − i− 1)/(λ− 1)⌉

such operations, each one of size at most λ, which means the time to perform

each transposition is O(λ) and so the total time to obtain φ(π, i, j) is at most

O(λ)
(

j−i+1
λ−1 + j−i

λ−1

)

≤ O(λ)2 n
λ−1 = O(nλ), since λ ≥ 2. Similarly, the time to

obtain φ(π, i, j) with reversals is also O(nλ). For signed permutations, at most

neg(π) ≤ n extra unitary λ-reversals are performed, taking time O(n). There-

fore, the total time of GreedyAlgorithm is O(n3λ3) for any of the problems

we are considering. Note that this is polynomial because λ = O(n).

3.2.2 Inversions-based Algorithms for Unsigned Permutations

Next lemma shows that we always have an inversion in a permutation π 6= ι,

and then Lemma 28 shows an upper bound on the number of inversions that a

λ-operation can remove.

113Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

Lemma27. For all (signed or unsigned) permutations π such that Inv(π) > 0

there exists an inversion (πi, πi+1).

Proof. Let π1, π2, . . . , πi be a maximal subsequence such that |π1| < |π2| <

· · · < |πi|. Since Inv(π) > 0, we have that i < n and, thus, |πi| > |πi+1| and

(πi, πi+1) is an inversion. �

Lemma28. Let π be a unsigned permutation. Let π′ be the resulting permutation

after that one λ-operation is applied over π. We have Inv(π)− Inv(π′) ≤ λ(λ−

1)/2.

Proof. Directly from the observation that any λ-reversal or λ-transposition can

remove or add at most λ(λ− 1)/2 inversions. �

Since the only unsigned permutation with Inv(π) = 0 is the identity, we

conclude lower bounds for the problems of Sorting Unsigned Permutations by λ-

Operations in Corollary 29. Then, a greedy approximation algorithm is presented

in Theorem 30, which is based on the idea of always reducing as many inversions

as possible from a given unsigned permutation π.

Corollary 29. For all unsigned permutations π and λ ≥ 2 we have dλβ(π) ≥

2 Inv(π)/(λ(λ− 1)), for β ∈ {r, rt, t}.

Theorem30. The problems of Sorting Unsigned Permutations by λ-Reversals,

by λ-Transpositions and by λ-Reversals and λ-Transpositions have (λ(λ−1)/2)-

approximation algorithms.

Proof. Let λ ≥ 2 be an integer and let π 6= ι be an unsigned permutation.

Since the only permutation with Inv(π) = 0 is the identity, we can design a

greedy algorithm that repeatedly chooses a λ-operation which decreases Inv(π)

by the largest possible amount and it will occasionally sort the permutation. By

Lemma 27, we always have an inversion (πi, πi+1) in π and, so, our algorithm

decreases at least one inversion at a time. Therefore, the number of operations

needed by such greedy algorithm is at most Inv(π) and its approximation factor

follows directly from Corollary 29. �

Note that Inv(π) is O(n2) and that O(λ2) λ-reversals and/or O(λ3) λ-

transpositions have to be considered in order to find the best operation in the

greedy step of the algorithms. Since we can calculate the number of inversions’

variation in time O(λ
√

log(λ)) [Chan and Pătraşcu, 2010], the time complexity

of the algorithms for Sorting Unsigned Permutations by λ-Reversals and for the

other two problems of sorting unsigned permutations that we are addressing is

O(n2λ3
√

log(λ)) and O(n2λ4
√

log(λ)), respectively.

114 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

3.2.3 Algorithms based on Entropy and Inversions for Signed Per-

mutations

We denote by Eeven−

π (resp. Eodd+

π) the set of negative (resp. positive) elements

in π such that ent(πi) is even (resp. odd). As an example, given the signed

permutation π = (−5 + 2 − 1 − 3 + 4), we have Eeven−

π = {−5,−1}, because

ent(−5) = 4 and ent(−1) = 2, and we have Eodd+

π = {+4}, because ent(+4) = 1.

Lemmas 31, 32, and 33 are used to obtain lower bounds for the problems of

Sorting Signed Permutations by λ-Reversals and Sorting Signed Permutations

by λ-Reversals and λ-Transpositions.

Lemma31. [Galvão et al., 2015] Let π be a signed permutation and let π′ =

π · ρ̄(i, i+ 1). We have |Eeven−

π |+ |Eodd+

π | = |Eeven−

π′ |+ |Eodd+

π′ |.

Lemma32. Let π be a signed permutation. Let π′ be the resulting permuta-

tion after one λ-operation is applied over π. We have (|Eeven−

π | + |Eodd+

π |) −

(|Eeven−

π′ |+ |Eodd+

π′ |) ≤ λ.

Proof. One λ-operation involves at most λ elements. �

Let scoreinv(π, σ) = (Inv(π)+ |Eeven−

π |+ |Eodd+

π |)− (|Inv(π ·σ)|+ |Eeven−

π·σ |+

|Eodd+

π·σ |) be the inversions score of one λ-operation σ when applied over π.

Lemma33. scoreinv(π, σ) ≤ λ(λ− 1)/2 + λ.

Proof. Directly from lemmas 28 and 32. �

Since the only signed permutation with Inv(π) = |Eeven−

π | = |Eodd+

π | = 0

is the identity, we conclude lower bounds for the problems of Sorting Signed

Permutations by λ-Operations in Corollary 34.

Corollary 34. For all signed permutations π 6= ι and all λ ≥ 2, we have dλβ(π) ≥

2(Inv(π) + |Eeven−

π |+ |Eodd+

π |)/(λ(λ− 1) + 2λ), for β ∈ {r̄, r̄t}.

Next lemma shows that we always have a λ-operation with inversions score

1. Then, Theorem 36 presents greedy approximation algorithms based on the

idea of always choosing λ-operations which have the greatest inversions score.

Lemma35. For any signed permutation π 6= ι and λ ≥ 2, there always exist a

λ-operation σ such that scoreinv(π, σ) = 1.

Proof. We divide the proof into two cases, according to the value of Inv(π).

If Inv(π) > 0, then, by Lemma 27, there exists an inversion (πi, πi+1) and, by

Lemma 31, we can apply a λ-reversal σ = ρ̄(i, i+1) to get Inv(π ·σ) = Inv(π)−1

115Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

at the same time we hold (|Eeven−

π |+ |Eodd+

π |) = (|Eeven−

π·σ |+ |Eodd+

π·σ |). Therefore,

scoreinv(π, σ) = 1.

If Inv(π) = 0, then all elements have entropy equal to zero. Thus, we also

have |Eodd+

π | = 0. With this, we can apply a unitary λ-reversal σ over each

negative element in order to get |Eeven−

π·σ | = |Eeven−

π | − 1 at the same time we

hold Inv(π · σ) = |Eodd+

π·σ | = 0. Therefore, scoreinv(π, σ) = 1. �

Theorem36. The problems of Sorting Signed Permutations by λ-Reversals and

by λ-Reversals and λ-Transpositions have (λ(λ−1)
2 +λ)-approximation algorithms.

Proof. Let λ ≥ 2 be an integer and let π 6= ι be a signed permutation. Since the

only permutation with Inv(π) = |Eeven−

π | = |Eodd+

π | = 0 is the identity, a greedy

algorithm that repeatedly chooses a λ-operation σ with the greatest value of

scoreinv(π, σ) will occasionally sort the permutation. By Lemma 35, we always

have a λ-operation σ such that scoreinv(π, σ) = 1. Therefore, the number of

operations needed by our algorithm is at most Inv(π) + |Eeven−

π |+ |Eodd+

π | and

its approximation factor follows directly from Corollary 34. �

Since Inv(π) + |Eeven−

π | + |Eodd+

π | is O(n2), the time complexity analysis of

these greedy algorithms is analogous to the analysis done for the inversions-based

algorithms presented for unsigned permutations.

4 Experimental Results

We have implemented all the approximation algorithms presented in order to an-

alyze how they work from a practical perspective. The goal of the experiments

was to compare the algorithms according to the approximation factor they get

in practice. We calculated the approximation factor for each permutation used

as input dividing the size of the sorting sequences generated by the algorithms

by the maximum value among 4 different lower bounds. One of the lower bounds

comes from the literature algorithms for the problems without limited-size re-

striction, which are the ones we used to create the approximation algorithms

for large values of λ described in Section 3.1. Those lower bounds are valid for

λ-operations, as Lemma 1 shows. In the following, we describe the literature

algorithms used in the experiments and the considered lower bounds:

• Sorting Signed Permutations by Reversals: the optimal algorithm for Sorting

Signed Permutations by Reversals was implemented and, for each permuta-

tion, the distance was used as a lower bound for the problem of Sorting

Signed Permutations by λ-Reversals;

• Sorting Unsigned Permutations by Reversals: each unsigned permutation

was transformed into a signed one using the (1.4193 + ǫ)-approximation

116 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

algorithm, for ǫ > 0, for cycle decomposition of the breakpoint

graph [Lin and Jiang, 2004] and its optimal sorting sequence was retrieved.

This sequence’s size divided by 1.42, assuming ǫ = 0.007, was used as a lower

bound for Sorting Unsigned Permutations by λ-Reversals;

• Sorting Permutations by Transpositions: a 1.5-approximation algo-

rithm [Bafna and Pevzner, 1998] was implemented. The authors who pre-

sented this algorithm defined codd(π) as the number of odd components in

the cycle graph, a structure presented by them, and gave the lower bound

dt(π) ≥ (n + 1 − codd(π))/2 for the problem. We are considering the same

lower bound for Sorting Permutations by λ-Transpositions;

• Sorting Signed Permutations by Reversals and Transpositions: a 2-

approximation algorithm [Walter et al., 1998] was implemented. The au-

thors who presented this algorithm gave the lower bound dr̄t(π) ≥ n + 1 −

codd(π). We are considering the same as a lower bound for Sorting Signed

Permutations by λ-Reversals and λ-Transpositions.

• Sorting Unsigned Permutations by Reversals and Transpositions: a 3-

approximation algorithm [Walter et al., 1998] was implemented. The au-

thors who presented this algorithm considered the lower bound drt(π) ≥
b(π)
3

showed in Lemma 25. We are considering the same as a lower bound for Sort-

ing Unsigned Permutations by λ-Reversals and λ-Transpositions.

The other three lower bounds considered in our experiments are the ones (i)

based on entropy, presented in Lemma 15 and Lemma 17, (ii) based on inver-

sions, presented in Lemma 29 and Lemma 34, and (iii) based on breakpoints,

presented in Lemma 25.

As input for our algorithms we considered a total of 1000 random permuta-

tions of size 100, and values of λ = 5, 10, 15, . . . , 100. We show the results of our

experiments in Figure 4 and Figure 5.

We point out that for the problems of Sorting (Signed or Unsigned) Permu-

tations by λ-Reversals, the algorithm for large values of λ had the best average

approximation factor for most values of λ. For the problem of Sorting Permuta-

tions by λ-Transpositions, the algorithm for large values of λ had the best average

approximation factor for values of λ at least 60. Different from the expected, the

algorithm for large values of λ was not the best (in terms of approximation fac-

tor) for the problems when both operations were allowed. For these problems,

the same algorithm is worse than the entropy-based one and the inversions-based

one for almost all values of λ considered in our experiments.

For values of λ at most 20, the algorithms for small values of λ indeed were

better than the algorithms for large values of λ. In the problem of Sorting Un-

signed Permutations by λ-Reversals, the entropy-based algorithm tended to have

117Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

5.0

10.0

15.0

20.0

25.0

A
ve
ra
g
e
A
p
p
ro
x
im

a
ti
o
n
F
a
ct
o
r

Algorithm for Large Values of λ

Entropy-based Algorithm

Inversions-based Algorithm

(a) Sorting Signed Permutations by λ-Reversals.

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

20.0

40.0

60.0

80.0

100.0

120.0

A
ve
ra
g
e
A
p
p
ro
x
im

a
ti
o
n
F
a
ct
o
r

Algorithm for Large Values of λ

Entropy-based Algorithm

Inversions-based Algorithm

(b) Sorting Signed λ-Permutations by λ-Reversals and λ-
Transpositions.

Figure 4: Average approximation factors of the algorithms for Sorting Signed

Permutations by λ-Operations, with permutations of size 100.

a smaller approximation factor than the inversions-based one. Other than that,

in general, the average approximation factor of the entropy-based and inversions-

based algorithms behaved similarly in all problems addressed.

5 Conclusion

We have presented 15 approximation algorithms for the problems of sorting

permutations by λ-reversals and/or λ-transpositions, being 3 algorithms for each

problem we considered, where one of them works better when we have large

values of λ and the other ones work better when we have small values of λ.

We also emphasize that the approximation factors of all algorithms we pre-

sented depend on λ and/or on the size of the permutation.

118 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

0 10 20 30 40 50 60 70 80 90 100

λ

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

A
ve
ra
g
e
A
p
p
ro
x
im

a
ti
o
n
F
a
ct
o
r

Algorithm for Large Values of λ

Entropy-based Algorithm

Inversions-based Algorithm

(a) Sorting Unsigned Permutations by λ-Reversals.

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

5.0

10.0

15.0

20.0

A
ve
ra
g
e
A
p
p
ro
x
im

a
ti
o
n
F
a
ct
o
r

Algorithm for Large Values of λ

Entropy-based Algorithm

Inversions-based Algorithm

(b) Sorting Permutations by λ-Transpositions.

0 10 20 30 40 50 60 70 80 90 100

λ

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

A
ve
ra
g
e
A
p
p
ro
x
im

a
ti
o
n
F
a
ct
o
r

Algorithm for Large Values of λ

Entropy-based Algorithm

Inversions-based Algorithm

(c) Sorting Unsigned λ-Permutations by λ-Reversals and λ-
Transpositions.

Figure 5: Average approximation factors of the algorithms for Sorting Unsigned

Permutations by λ-Operations, with permutations of size 100.

119Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

Acknowledgments

This work was supported by the Brazilian Federal Agency for the Support and

Evaluation of Graduate Education, Capes, the National Counsel of Technological

and Scientific Development, CNPq (grants 400487/2016-0, 425340/2016-3, and

131182/2017-0), São Paulo Research Foundation, FAPESP (grants 2013/08293-

7, 2015/11937-9, 2016/14132-4, and 2017/12646-3), and the program between

the Brazilian Federal Agency for the Support and Evaluation of Graduate Edu-

cation, CAPES, and the French Committee for the Evaluation of Academic and

Scientific Cooperation with Brazil, COFECUB (grant 831/15).

References

[Bader et al., 2001] Bader, D. A., Moret, B. M. E., and Yan, M. (2001). A linear-time
algorithm for computing inversion distance between signed permutations with an
experimental study. Journal of Computational Biology, 8:483–491.

[Bafna and Pevzner, 1998] Bafna, V. and Pevzner, P. A. (1998). Sorting by Transpo-
sitions. SIAM Journal on Discrete Mathematics, 11(2):224–240.

[Berman et al., 2002] Berman, P., Hannenhalli, S., and Karpinski, M. (2002). 1.375-
Approximation Algorithm for Sorting by Reversals. In Proceedings of the 10th An-
nual European Symposium on Algorithms (ESA’2002), volume 2461 of Lecture Notes
in Computer Science, pages 200–210. Springer-Verlag Berlin Heidelberg New York,
Berlin/Heidelberg, Germany.

[Bulteau et al., 2012] Bulteau, L., Fertin, G., and Rusu, I. (2012). Sorting by Trans-
positions is Difficult. SIAM Journal on Computing, 26(3):1148–1180.

[Caprara, 1999] Caprara, A. (1999). Sorting Permutations by Reversals and Eulerian
Cycle Decompositions. SIAM Journal on Discrete Mathematics, 12(1):91–110.

[Chan and Pătraşcu, 2010] Chan, T. M. and Pătraşcu, M. (2010). Counting inver-
sions, offline orthogonal range counting, and related problems. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 161–173.
Society for Industrial and Applied Mathematics.

[Chen, 2013] Chen, X. (2013). On Sorting Unsigned Permutations by Double-Cut-
and-Joins. Journal of Combinatorial Optimization, 25(3):339–351.

[Dias and Meidanis, 2002] Dias, Z. and Meidanis, J. (2002). Sorting by Prefix Transpo-
sitions. In Proceedings of the 9th International Symposium on String Processing and
Information Retrieval (SPIRE’2002), volume 2476 of Lecture Notes in Computer Sci-
ence, pages 65–76. Springer-Verlag Berlin Heidelberg New York, Berlin/Heidelberg,
Germany.

[Elias and Hartman, 2006] Elias, I. and Hartman, T. (2006). A 1.375-Approximation
Algorithm for Sorting by Transpositions. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 3(4):369–379.

[Galvão et al., 2015] Galvão, G. R., Lee, O., and Dias, Z. (2015). Sorting Signed Per-
mutations by Short Operations. Algorithms for Molecular Biology, 10(1):1–17.

[Hannenhalli and Pevzner, 1999] Hannenhalli, S. and Pevzner, P. A. (1999). Trans-
forming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations
by Reversals. Journal of the ACM, 46(1):1–27.

[Heath and Vergara, 2003] Heath, L. S. and Vergara, J. P. C. (2003). Sorting by Short
Swaps. Journal of Computational Biology, 10(5):775–789.

[Jerrum, 1985] Jerrum, M. R. (1985). The Complexity of Finding Minimum-length
Generator Sequences. Theoretical Computer Science, 36(2-3):265–289.

120 Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

[Jiang et al., 2014] Jiang, H., Feng, H., and Zhu, D. (2014). An 5/4-Approximation
Algorithm for Sorting Permutations by Short Block Moves. In Proceedings of the 25th
International Symposium on Algorithms and Computation (ISAAC’2014), volume
8889 of Lecture Notes in Computer Science, pages 491–503. Springer International
Publishing.

[Lefebvre et al., 2003] Lefebvre, J.-F., El-Mabrouk, N., Tillier, E. R. M., and Sankoff,
D. (2003). Detection and validation of single gene inversions. Bioinformatics,
19(1):i190–i196.

[Lin and Jiang, 2004] Lin, G. and Jiang, T. (2004). A Further Improved Approxi-
mation Algorithm for Breakpoint Graph Decomposition. Journal of Combinatorial
Optimization, 8(2):183–194.

[Lintzmayer et al., 2017] Lintzmayer, C. N., Fertin, G., and Dias, Z. (2017). Sorting
Permutations by Prefix and Suffix Rearrangements. Journal of Bioinformatics and
Computational Biology, 15(1):1750002.

[Miranda et al., 2018a] Miranda, G. H. S., Alexandrino, A. O., Lintzmayer, C. N., and
Dias, Z. (2018a). Sorting λ-Permutations by λ-Operations. In Proceedings of the 11th
Brazilian Symposium on Bioinformatics (BSB’2018), pages 1–13. Springer Interna-
tional Publishing, Heidelberg, Germany.

[Miranda et al., 2018b] Miranda, G. H. S., Lintzmayer, C. N., and Dias, Z. (2018b).
Sorting Permutations by Limited-Size Operations. In Algorithms for Computational
Biology, volume 10849, pages 76–87. Springer International Publishing, Heidelberg,
Germany.

[Rahman et al., 2008] Rahman, A., Shatabda, S., and Hasan, M. (2008). An Approx-
imation Algorithm for Sorting by Reversals and Transpositions. Journal of Discrete
Algorithms, 6(3):449–457.

[Tannier et al., 2007] Tannier, E., Bergeron, A., and Sagot, M.-F. (2007). Advances
on Sorting by Reversals. Discrete Applied Mathematics, 155(6-7):881–888.

[Tesler, 2002] Tesler, G. (2002). GRIMM: Genome Rearrangements Web Server.
Bioinformatics, 18(3):492–493.

[Vergara, 1998] Vergara, J. P. C. (1998). Sorting by Bounded Permutations. PhD
thesis, Virginia Polytechnic Institute and State University.

[Walter et al., 1998] Walter, M. E. M. T., Dias, Z., and Meidanis, J. (1998). Reversal
and transposition distance of linear chromosomes. In Proceedings of the 5th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE’1998),
pages 96–102, Los Alamitos, CA, USA. IEEE Computer Society.

121Santos Miranda G.H., Negri Lintzmayer C., Dias Z.: Sorting Permutations ...

