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Abstract: Network covert channels enable stealthy communications for malware and
data exfiltration. For this reason, developing effective countermeasures for these threats
is important for the protection of individuals and organizations. However, due to the
large number of available covert channel techniques, it is considered impractical to
develop countermeasures for all existing covert channels.

In recent years, researchers started to develop countermeasures that (instead of only
countering one particular hiding technique) can be applied to a whole family of similar
hiding techniques. These families are referred to as hiding patterns.

Considering above, the main contribution of this paper is to introduce the concept
of countermeasure variation. Countermeasure variation is a slight modification of a
given countermeasure that was designed to detect covert channels of one specific hiding
pattern so that the countermeasure can also detect covert channels that are representing
other hiding patterns.

We exemplify countermeasure variation using the compressibility score, the ǫ-similarity
and the regularity metric originally presented by Cabuk et al. All three methods are
used to detect covert channels that utilize the Inter-packet Times pattern and we show
that countermeasure variation allows the application of these countermeasures to detect
covert channels of the Size Modulation pattern, too.
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This article is an extension of the paper [Wendzel et al., 2018]. In comparison to the previous

paper, we introduce an improved definition of our core concept (countermeasure variation),

perform countermeasure variations for two additional metrics (ǫ-similarity and regularity), and

compare the results of all three metrics.

Journal of Universal Computer Science, vol. 25, no. 11 (2019), 1396-1416
submitted: 4/3/19, accepted: 26/7/19, appeared: 28/11/19  J.UCS



1 Introduction

In today’s network environments, covert channels represent (usually stealthy)

policy-breaking communication channels [Proctor and Neumann, 1992; Millen,

1999; Wendzel et al., 2014; Handel and Sandford, 1996]. They enable several ma-

licious use-cases, e.g., the secret transfer of malware commands or the stealthy

exfiltration of confidential data [Mazurczyk et al., 2016; Mazurczyk and Cav-

iglione, 2015].

A few hundred hiding techniques for covert channels are known which can

be assigned to different families, called hiding patterns. Hiding patterns were

introduced in 2015 and are abstract descriptions of hiding methods [Wendzel

et al., 2015].2 For instance, the least significant bit (LSB) pattern specifies that

secret data can be hidden in the LSB(s) of a header field, but it does not specify

where such a field has to be located in a header, which size or byte order the

field can have, or to which protocol the hiding technique can be applied to.

So far, countermeasures for covert channels focus only on a single hiding

technique or on a family of similar methods which are assigned to the same

hiding pattern. To keep the application of countermeasures feasible in practice,

their number should be kept at a minimum. Therefore, it must be studied which

countermeasures can be applied to which hiding patterns. However, no work is

available that has shown that countermeasures can be applied in a way that

works with several patterns.

In this paper, we introduce the idea of countermeasure variation, i.e., to

counter specific covert channels these countermeasures can be potentially applied

to multiple patterns instead of only one. As a positive side-effect, countermeasure

variation reduces the amount of necessary code per countermeasure as parts of a

countermeasure’s code can be recycled to counter other patterns. We exemplify

the feasibility of countermeasure variation by showing that the compressibility

score, the ǫ-similarity, and the regularity metric used to detect covert timing

channels of the Inter-packet Times pattern can also be applied to detect covert

channels that modulate packet sizes (Size Modulation pattern).

The remainder of this paper is structured as follows. Sect. 2 highlights fun-

damentals and the linked related work while Sect. 3 introduces countermeasure

variation. Sect. 4 first presents the original three countermeasures by Cabuk et

al. for detecting Inter-packet Times-based covert channels, followed by our varia-

tions of their countermeasures to detect Size Modulation-based covert channels.

We evaluate our three countermeasure variations in Sect. 5. A conclusion and

an outlook are given in Sect. 6.

2 For a general introduction into patterns within the security context see [Schumacher
et al., 2013]. For the latest taxonomy of covert channel hiding patterns see [Mazur-
czyk et al., 2018].
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2 Fundamentals & Related Work

Several existing works studied how covert channels based on packet length can

be realized, e.g., [Ji et al., 2009; Elsadig and Fadlalla, 2017; Mazurczyk and

Szczypiorski, 2012; Ling et al., 2013; Girling, 1987; Wolf, 1989; Murdoch and

Lewis, 2005]. Such a covert channel is a form of the Size Modulation pattern.

The basic idea of Size Modulation is that a covert sender selects at least two

different packet sizes to encode different secret symbols. For instance, if a packet

has a size of 100 bytes it could indicate a binary zero while a packet with a size

of 101 bytes could indicate a binary one.3 Countermeasures for covert channels

based on packet length are already available. For instance, Elsadig and Fadlalla

developed a traffic normalizer that adds padding bytes to every n−th packet of

a flow [Elsadig and Fadlalla, 2017]. This is done in a blind manner, i.e., without

knowing whether a covert channel is present, or not. Their approach can be

categorized as a limiting one (instead of a detecting one). Moreover, Ling et al.

propose to simply pad all packets so that packet sizes cannot be modified by a

covert channel [Ling et al., 2013]. However, these approaches would negatively

influence the network performance and a targeted application would require the

capability to detect such covert channels before eliminating them.

Wendzel et al. introduced the concept of pattern variation in [Wendzel et al.,

2015]. The idea of pattern variation is that one pattern can change its context,

i.e., the network protocol to which it is applied. For instance, the LSB pattern,

which hides data in the least significant bit(s) of a protocol header field, can

be applied to the TTL field of IPv4 as well as to the Hop Limit field of IPv6.

Therefore, the same algorithm can be applied, but the context (network protocol)

is changed. Pattern variation is based on the idea of pattern transformation.

Pattern transformation is used for the dynamic generation of user interfaces so

that they fit a given context, e.g., a desktop browser or a mobile browser.

Instead of the patterns, countermeasures can also be ‘transformed’; we call

this process countermeasure variation (see next sect.). Countermeasure variation

modifies a countermeasure to work with another pattern as originally intended.

The conference paper that serves as the basis for this article introduced coun-

termeasure variation briefly. In other recent work, we have already shown that

countermeasure variation is feasible for covert channels of the so-called Artifi-

cial Re-transmission pattern [Zillien and Wendzel, 2018]. One additional work

evaluated a countermeasure variation for the (Manipulated) Message Ordering

pattern with good results [Wendzel, under review]. As shown in Fig. 1, counter-

measure variation was only studied for three patterns ((Manipulated) Message

Ordering, (Artificial) Re-transmission and Size Modulation) and three counter-

measures (compressibility, ǫ-similarity and regularity) so far.

3 See [Wendzel et al., 2015] for a detailed description of the Size Modulation pattern.
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Figure 1: Summary of existing work on countermeasure variation. (*) indicates

the original approaches, i.e., without countermeasure variation.

Please note that although Fig. 1 mentions only three countermeasures, addi-

tional countermeasures could be considered, e.g., all countermeasures of [Mazur-

czyk et al., 2016, Ch. 8]. Also, countermeasures were always transferred from one

covert channel technique to another but i) not with the focus on hiding patterns

and ii) in a less systematic manner.

3 Countermeasure Variation

The idea for countermeasure variation was already briefly introduced in [Wendzel

et al., 2015] but was never experimentally evaluated or detailed.

When a new type of network hiding pattern is found, no countermeasure is

instantly available for the new covert channels of the particular pattern. Coun-

termeasure variation allows to transform existing countermeasures so that they

can be applied to such a new pattern. Similarly, countermeasure variation can

be applied to already known covert channel patterns for which no or only few

countermeasures are known. However, there is currently no clear definition of

countermeasure variation. For this reason, we provide the following definition:

Definition. Given the two hiding patterns A and B, with A 6= B, a counter-

measure variation is a pattern-based process in which an existing countermeasure

that detects, limits, prevents or audits covert channels of pattern A is modified

so that it detects, limits, prevents or audits covert channels of pattern B.

The process of countermeasure variation replaces the input attributes (fea-

tures) used for A with features for B and performs a modification of the inner

functioning (e.g., the algorithm) used for A in order to work with the new fea-

tures for B. The alternation of the inner functioning is kept as small as possible,

which provides the contrast to developing entirely new countermeasures. In com-

parison to simply applying the same countermeasure (e.g. a statistical method)
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to another covert channel technique, countermeasure variation i) requires the

modification of the inner functioning and ii) focuses on hiding patterns, i.e., it

needs to consider features that can be used for multiple covert channels belonging

to the same pattern. �

In other words, to perform a variation for a given countermeasure, both, the

input and the inner functioning of an existing countermeasure must be adapted

to a new hiding pattern’s requirements. For instance, instead of packets’ inter-

arrival time (IAT) values used to detect the Inter-packet Times pattern, packet

sizes could be used as a feature to detect covert channels of the Size Mod-

ulation pattern. Or, as shown in [Zillien and Wendzel, 2018], observations of

TCP re-transmissions can be extracted from flows to detect the Artificial Re-

transmissions pattern. Indeed, multiple features could be combined.

The inner functioning of a countermeasure must be (slightly) modified since

the existing functioning (in almost all cases) will not provide satisfying results

with the new inputs. Another reason to modify the inner functioning is given

when the new input type is incompatible with the existing function (e.g., because

a countermeasure is designed to deal with small floating point values < 1 but

now has to deal with 32 bit integers as it was the case in [Zillien and Wendzel,

2018] or because sufficient detection results require a modified string genera-

tor [Wendzel, under review]). There is no generalization feasible of how such a

countermeasure variation can be performed as countermeasures are highly het-

erogeneous. However, as we will show in the remainder of this section, performing

countermeasure variation is not necessarily a complicated task, which renders

the idea a useful and quick method for creating new countermeasures.

As a positive side-effect, recycling the code of one countermeasure to work

with a different pattern allows to reduce the overall lines of code: only on a

detailed level, the algorithm is slightly altered to fit into the context of the new

pattern (i.e., it is transformed to the new pattern). However, we do not state that

countermeasure variation is necessarily less time-consuming than developing new

countermeasures from scratch. Instead, its major benefit is to take advantage of

existing countermeasures, i.e., it transfers existing countermeasure concepts into

new countermeasures.

In this paper, we show the feasibility of countermeasure variation with three

countermeasures originally designed for the detection of the Inter-packet Times

pattern. After the process of countermeasure variation, the three countermea-

sures can be applied to the Size Modulation pattern.

While one could argue that the Size Modulation and Inter-packet Times pat-

terns are rather similar in their functioning (both basically modulate integer

values) this was not the case for the Artificial Re-transmissions pattern. Thus,

we conclude that countermeasure variation can be expected feasible for other

patterns than the already evaluated ones. While the detection results for new
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patterns after countermeasure variation were acceptable in most cases, there

were also cases where no acceptable detection results could be achieved.4 How-

ever, no generic conclusion on the quality of detection results after performing

a countermeasure variation is feasible due to the diversity of existing hiding

patterns.

4 Detecting Size Modulation with Countermeasure Variation

In this section, we first explain the original detection methods as introduced by

Cabuk et al., followed by our approaches for countermeasure variations.

4.1 Inter-packet Times Pattern and Its Detection

Cabuk et al. developed a detection approach for covert channels that transfer se-

cret data via delay between network packets (IAT values) in [Cabuk et al., 2009,

2004]. These covert channels fall under the Inter-packet Times pattern. The ba-

sic functionality of such covert channels is that before sending new packets they

encode secret data using different IATs5. For instance, if the time between two

packets is 100 ms, this could indicate a binary zero while a time-gap of 200 ms

could indicate a binary one. However, detecting such channels is challenging

since their coding can vary and because they can easily blend with the legit-

imate traffic. The three proposed detection metrics for IAT-based channels of

Cabuk et al. are the compressibility, the ǫ-similarity, and the regularity.

The compressibility-based approach by Cabuk et al. works as follows. For each

traffic flow, all n IATs are recorded in a list ∆t1 , ..., ∆tn (we use t to indicate

that we focus on timing events). All values > 1 s are filtered out. All remaining

values are coded in ASCII characters in the form that the number of leading

zeros behind the comma is encoded in upper-case characters starting from A (no

zeros) over B (one zero behind the comma) and so forth. All resulting strings are

then concatenated to a large string S (e.g. “A25B2A25B19A24B22”). Then, S is

compressed with a compressor ℑ, resulting in the compressed string C = ℑ(S).

As a compressor, Cabuk et al. used Gzip. The compressor is a key component and

it is integrated to reveal the decrease of the entropy due to the covert channel

utilization as its few IATs occur many times. Finally, the authors divide the

length of both strings by calculating the value κ = |S|/|C|. In result, certain

ranges of κ values are an indicator for the presence of a covert channel.

In case of the ǫ-similarity, all IATs of a flow are first sorted in a list with

ascending order. For every packet Pi in the sorted list, the pair-wise timing

4 The compressibility score did not provide sufficient results for the Artificial Re-
transmissions pattern while the ǫ-similarity metric did provide acceptable results for
the same pattern.

5 A detailed description of the pattern can be found in [Wendzel et al., 2015; Mazur-
czyk et al., 2016].
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difference λi with packet Pi+1 is calculated, i.e., λi = |Pi − Pi+1|/Pi (if the

timestamps are equal, the value 0 is used). Next, a value ǫ is selected as a

threshold and all relative increases λi < ǫ are counted. The number of λ values

below the threshold in comparison to all values is then used as an indicator for

the presence of a covert channel.

Finally, the regularity can be calculated from a given list of IAT values.

This list of values is first divided into sections, called windows, containing 2,000

packets each. Then the standard deviation σi is calculated for each window i.

Next, the difference values between these standard deviations are determined.

The final regularity value is calculated from the standard deviation of these

difference values [Cabuk et al., 2004], i.e., regularity = STDEV(|σi − σj |/σi, i <

j, ∀i, j).

4.2 Countermeasure Variation

To perform a countermeasure variation for the compressibility metric proposed

by Cabuk et al., i.e., transferring the original approach to covert channels which

utilize the Size Modulation pattern, we modified the following aspects of the orig-

inal algorithm. First, we considered the relative differences of packet sizes of a

flow instead of its IATs. Thus, for each flow with n packets, we calculated n− 1

relative size differences ∆pi
(p stands for packet size) between the succeeding

packets. Second, we concatenated a string S consisting of the relative differ-

ences for each flow, separated by commas: S = ∆p1
, ∆p2

, ..., ∆pn
. In this string,

numbers were represented in ASCII (i.e., the string coding is different to the

letter-coded rounded IATs of Cabuk et al.). For instance, if a flow contains five

packets with the packet sizes 120, 520, 514, 518, and 520 bytes, then the relative

differences ∆p1
, ..., ∆p4

would be 400, -6, 4, and 2 bytes. We concatenated the

string S using the ASCII representation of the ∆p values, i.e., “400,-6,4,2”.

We decided to introduce the comma-based separation of values as otherwise,

due to the ASCII representation, numbers would not be distinguishable, e.g.,

the relative differences used above would result in the string “400-642”, which

would influence the compression in an way that does not consider the actual

size differences. The remainder of this detection method functions exactly the

same as in the case of the original approach. For each flow, we calculated the

compressibility of S using a compressor ℑ to calculate C = ℑ(S), followed by

dividing string lengths κ = |S|/|C|. As already mentioned, the compressor is a

key component and it is integrated to reveal the decrease of the entropy due to

the covert channel utilization as few utilized covert channel’s packet sizes occur

many times. Finally, we determined κ values of legitimate traffic and of covert

channel traffic to define interval borders in which flows could be considered as

covert channel traffic. A similar step is required to categorize κ values in case of

the original approach [Cabuk et al., 2009, 2004].
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Next, we performed a countermeasure variation for the ǫ-similarity as fol-

lows. First, we sorted all packet sizes of a flow instead of the IAT values. Then,

we calculated the relative differences λi based on these values and determined

suitable ǫ-thresholds. All other steps of this countermeasure were kept as in the

original approach.

Finally, the countermeasure variation for the regularity was performed by

considering packet sizes instead of IAT values. However, as we will show later, we

determined optimal window sizes and also determined how the regularity value

differs depending on the number of packets within the flow and the window size.

All other steps of the countermeasure were kept as in the original approach.

5 Evaluation

To evaluate how the transformed detection approaches perform with the Size

Modulation pattern, we used different data samples as shown in Tab. 2.

The two metrics used to evaluate our detection methods are precision and

accuracy. Precision is defined as the number of true positives (TP ) divided by

the number of all positives (true and false positives) and it is expressed as:

precision =
TP

TP + FP
.

In other words, precision illustrates the percentage of the flows detected as

covert channels that were actually covert channels (while other flows may have

been detected as “covert channels” but were actually legitimate traffic).

Accuracy, on the other hand, expresses how large the number of correctly

classified elements is in comparison to all elements. In other words, it represents

the percentage of flows that were correctly classified as covert or legitimate in

comparison to all classified flows (the total population of true and false positives

and negatives). The accuracy is calculated as follows:

accuracy =
TP + TN

TP + TN+ FP + FN
.

In the remainder of this section, it must be noted that for each detection

technique, we first analyze the detectability of covert channels that encode data

using two different symbols, i.e., two different packet sizes. Afterwards, we ana-

lyze the detectability of traffic that combines all these covert channels. Finally,

we analyze the detectability of covert channels with more than two symbols.

5.1 Compressibility

To evaluate compressibility, first we performed a training phase to determine κ

values of legitimate and covert traffic (100,000 legitimate packets and 100,000
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covert channel packets). As a data source for legitimate traffic, we used the NZIX

data set [WAND group, 2000] from the University of Waikato’s WAND group.

In particular, we considered traffic containing at least 200 packets. The κ values

of legitimate and covert channel traffic overlap clearly. When the covert channel

utilizes more symbols, the median κ value seems to decrease, rendering these

channels potentially easier to detect.

The obtained κ values were then used to define interval values that separate

covert from legitimate traffic. Covert channel traffic has a κ value of approxi-

mately 4 to 6, with an approximate mean of 5.0; the differences are depending

on the covert channel’s number of symbols and our generation of the string S.

Therefore, we decided to use the intervals shown in Tab. 1.

No. Range No. Range No. Range No. Range No. Range

0 〈0.0; 0.1〉 1 〈3.7; 4.2〉 2 〈4.1; 4.6〉 3 〈4.2; 4.7〉 4 〈4.3; 4.8〉
5 〈4.6; 5.1〉 6 〈4.7; 5.8〉 7 〈4.9; 6.0〉 8 〈5.3; 7.0〉 9 〈0.0; 99〉

Table 1: Detection intervals

In the following testing phase, we applied another 100,000 legitimate packets

and 100,000 covert channel packets to test each interval for every particular

type of covert channel (see following sub-sections).6 Since there are no traffic

recordings for the Size Modulation-based covert channels available [Elsadig and

Fadlalla, 2017], we decided to generate our own covert channel traffic data with a

traffic generator. Our covert channels used different packet sizes for their coding

to transfer randomized content, i.e., every hidden symbol (packet size) occurred

with the same probability. This is a realistic assumption as secret data can be

encrypted before being transmitted. Some of the covert channels used a coding

with significantly different packet sizes, e.g., sending either a packet of size 100

bytes or of size 1,000 bytes. Other covert channel’s coding was only marginally

distinguishable, e.g., sending either a packet of size 1,000 or 1,001 bytes. Table 2

provides an overview of the generated covert channels, all following a uniform

distribution of covert symbols.

It must be noted that we apply the same detection intervals for the detection

of all covert channels, i.e., we do not further optimize the intervals to match a

specific channel’s characteristics to ease detection. This was decided to reflect

realistic conditions.

6 In case of the combined test of all covert channels using two symbols, we transferred
20,000 packets per covert channel, so that 100,000 packets were processed overall.
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Table 2: Size modulation traffic used to evaluate our approach

Data- Payload sizes |∆p| # of
type (transp. layer) [bytes] flows

[bytes]

legitimate various various 100,000

covert 1,000 / 1,001 1 100,000
channel 100 / 101 1 100,000
(2 symbols) 50 / 60 10 100,000

100 / 200 100 100,000
100 / 1,000 900 100,000
all the above all the above 100,000

covert 100 / 200 / 300 100, 200 100,000
channel 100 / 200 / 300 / 400 100, 200, 300 100,000
(>2 symb.) 100 / 200 / ... / 800 100, 200, ..., 700 100,000

5.1.1 Two-symbol Covert Channels

We first analyzed covert channels with a payload size difference of only 1 byte,

i.e., the covert channel that encodes data with 1,000 and 1,001 payload bytes and

the one that encodes secrets with 100 and 101 payload bytes. As the differences

in packet size were always -1, 0 or +1 bytes for both covert channels, they

resulted in highly similar κ values that only depended on the randomly selected

covert channel symbols. The mean κ value for the channel with 1,000 and 1,001

bytes was 4.43448 while it was 4.43677 for the channel with 100 and 101 bytes.

Thus, the precision and accuracy values for both channels were almost equal for

our interval sizes. As shown in Figure 2, the best performing interval was #3,

resulting in an accuracy of 97.17% and an F-Score of 95.82%.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Interval Number

Accuracy

Precision

Figure 2: Precision and accuracy for covert channels using the payload sizes

1,000 and 1,001 bytes.
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Next, we analyzed the covert channel with a payload size difference of 10

bytes, i.e., payload sizes of 50 and 60 bytes (Figure 3). Here, we could achieve

the best accuracy and F-Score values for the interval #7, namely 94.86% and

92.82%. The mean κ value (5.34675).

The covert channel with the payload sizes 100 and 200 bytes provided an

accuracy of 93.59% and an F-Score of 91.21% for the best-performing interval

(#8), see Figure 4. The mean value for κ was 6.16748. The the mean value for

the channel with 100 and 1,000 bytes was almost the same (6.03886), resulting

in basically the same detection values for interval #8.

Table 3 summarizes the average κ values that were calculated for the different

two-symbol covert channels. As can be seen, the κ value generally increases when

the difference of the utilized packet sizes increases.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Interval Size

Accuracy

Precision

Figure 3: Precision and accuracy for covert channels using the payload sizes 50

and 60 bytes.

0 2 4 6 8
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0.2

0.4

0.6

0.8

1

Interval Size

Accuracy

Precision

Figure 4: Precision and accuracy for covert channels using the payload sizes 100

and 200 bytes.
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Payload ∆ of Avg. κ
sizes [bytes] pkt. size value

1,000 / 1,001 1 4.43448
100 / 101 1 4.43677
50 / 60 10 5.34675
100 / 200 100 6.16748
100 / 1,000 900 6.03886

Table 3: Resulting κ values for two-symbol covert channels.

5.1.2 Combining Two-symbol Covert Channels

Figure 5 illustrates the detectability for a mixture of all above-mentioned covert

channels and legitimate data mentioned in Table 2. The fraction of flows and

packets per type of covert channel was equal, resulting in 20,000 packets per

covert channel (100,000 covert channel packets overall). Again, the same number

of legitimate flows and packets were used in this test to provide balanced classes.

The best interval in terms of precision, accuracy and recall was #8 (accuracy:

71.54%, F-Score: 64.90%), i.e., without further interval optimization, we cannot

detect the mixture of two-symbol covert channels.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Interval Size

Accuracy

Precision

Figure 5: Precision and accuracy for a mixture of all two-symbol covert channels.

5.1.3 Covert Channels with > 2 Symbols

Sophisticated covert channels can utilize more than two secret symbols, so that

more information can be transferred per packet, i.e., for n symbols, log2(n)

bits can be transferred per packet. Thus, the required number of packets can be

reduced. To analyze such channels, we generated traffic for covert channels using

3, 4 and 8 different symbols which were reflected in the payload sizes between

100 and 800 bytes (Table 2).

First, we analyzed a covert channel with 3 different payload sizes (100, 200

and 300 bytes). As shown in Figure 6, interval #6 performed best (F-Score:
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92.90%, accuracy: 94.93%). Results of interval #7 were similarly good. However,

all other intervals provided no useful results.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Interval Size

Accuracy

Precision

Figure 6: Precision and accuracy for covert channels using the payload sizes 100,

200 and 300 bytes.

In case of a covert channel with four different payload sizes (100 to 400 bytes),

the best performing interval was #4 (see Figure 7). The F-Score was 90.66% and

the accuracy 94.06%. Other intervals resulted in F-Scores below 80% and where

thus considered unsuitable.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Interval Size

Accuracy

Precision

Figure 7: Precision and accuracy for covert channels using the payload sizes 100,

200, 300 and 400 bytes.

Finally, we analyzed a covert channel with 8 different payload sizes (Figure 8).

This channel was detectable with an accuracy of 97.66% and an F-Score of

96.59% using interval #1. All other intervals provided no useful results.
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Figure 8: Precision and accuracy for covert channels using the payload sizes 100

to 800 bytes (in steps of 100 bytes).

5.2 ǫ-similarity

Similarly, like a κ value for the compressibility score was initially determined,

we first needed to establish suitable thresholds for the ǫ-similarity. It turned out

that ǫ = 0.1 (i.e., 10%) provided good results when we expect 0.34% or 0.35% of

the λ values below ǫ (see Fig. 9 for a two-symbol channel using 1000 and 1001

bytes).

All results for two-symbol covert channel were highly similar, which is rooted

in the fact that the ǫ-similarity counts the number of relative packet size in-

creases while the actual increase is reflected by the configured threshold. For

this reason, we could achieve high accuracy and precision for above mentioned

limits. However, we could not obtain any useful results for covert channels with

three or more symbols when applying the ǫ-similarity, rendering the result of our

countermeasure variation unsuitable for such channels.
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Figure 9: ǫ-similarity: precision and accuracy for covert channels using the pay-

load sizes 1,000 and 1,001 bytes; depending on interval size.
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5.3 Regularity

For this detection approach, we first studied the impact of the number of packets

in a flow and of the window size on the regularity (see Fig. 10 for results obtained

for ten different flow sizes, and see Fig. 11 for results obtained from a single

flow with ten different window sizes). The results reveal that a regularity-based

covert channel detection is only feasible under two conditions. First, the number

of packets of the flow to be tested for covert channels must be approximately

the same as in the flow used for the comparison. Secondly, the same window size

must be applied.
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Figure 10: Regularity values depending on flow sizes (constant window size)
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Figure 11: Regularity values depending on window size (constant flow size)

To determine typical regularity values for covert channels, we determined

these values by creating covert channels with several different packet sizes. There-

fore, we generated 91 flows, ranging from 1,000 to 10,000 packets (incremented

in steps of 100 packets) for each symbol combination. From each of these flows

the regularity value was calculated with every window size from 10 to 100 (in-

cremented in steps of 10). This results in a list of 910 values for each symbol

combination that we used to determine the presence of a covert channel. Note,

that these values are similar to the κ values of the compressibility, i.e, they will

later be used together with an interval to detect a covert channel.
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Next, we generated one set of traffic data for each symbol combination. Each

of these datasets contained 800 flows. 400 of them were legitimate flows extracted

from the NZIX data set. The other 400 are flows containing a covert channel

and appropriately parameterized symbols. In order to have homogeneous test

data, the flows with covert channels were mapped to the same flow sizes as the

legitimate flows, i.e., resulting in the same number of packets per flow to be

compared.

Analogous to the previous countermeasure variations, we calculated precision

and accuracy for different interval sizes. All experiments were repeated five times

to have the proper statistical relevance.

First, we analyzed a two-symbol covert channel with a one-byte difference in

packet sizes (1,000 and 1,001 bytes). Fig. 12 shows the accuracy and precision

based on the interval size (average values over all window sizes) and based on

the window size (average values over all interval sizes). As visible in the figure,

acceptable combinations of accuracy and precision were not determined. We

obtained similar results for the packet sizes 100 and 101.
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Figure 12: Regularity: precision and accuracy for covert channels using the pay-

load sizes 1,000 and 1,001 bytes; depending on interval size (calculated over all

window sizes) and on the window size (calculated over all interval sizes).

Next, we analyzed a covert channel with a 10 byte difference (50 and 60 bytes,

two-symbol channel). As shown in Fig. 13, we could achieve a high accuracy

(99.3% and 99.2%) combined with a precision of 92.4% and 93.4% for the interval

sizes 0.8 and 0.9. All other interval sizes were lacking a high precision. A window
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size of 90 provided the best results. For this reason, a window size of 90 combined

with an interval size of 0.8 to 0.9 is preferable.
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Figure 13: Regularity: precision and accuracy for covert channels using the pay-

load sizes 50 and 60 bytes.
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Figure 14: Regularity: precision and accuracy for covert channels using the pay-

load sizes 100 and 200 bytes.
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Figure 15: Regularity: precision and accuracy for covert channels using the pay-

load sizes 100, 200 and 300 bytes.
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Figure 16: Regularity: precision and accuracy for covert channels using the pay-

load sizes 100, 200, 300 and 400 bytes.
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We further increased the difference between the symbols to 100 bytes (two-

symbol channel with 100 and 200 bytes). Interestingly, no practically useful

results could be obtained (Fig. 14) for this setup. It is possible that our tested

ranges were either not suitable for this channel or that regularity is not the

appropriate tool to detect larger packet size differences, which will be subject to

further analysis.

We also considered a three-symbol (100, 200, and 300 bytes) and a four-

symbol covert channel (100 to 400 bytes). As visualized in Figs. 15 and 16 we

could not obtain acceptable results for these channels. After further investigat-

ing this issue we could determine that the degradation of result quality is not

primarily linked to the number of symbols but to the increase in packet size

difference. We could obtain high accuracy and precision results for the three-

symbol and four-symbol channels (100, 101, 102 bytes) and (100, 101, 102, 103

bytes).

6 Conclusion

We have shown that countermeasure variation for covert channels is feasible.

Therefore, it is necessary to transform a detection method, i.e., to adapt it so

that it works with another hiding pattern. We exemplified the feasibility of coun-

termeasure variation by transforming the compressibility score κ, the ǫ-similarity

and the regularity that were originally introduced to detect Inter-packet Times-

based covert channels so that they can be applied to Size Modulation-based

covert channels.

After applying countermeasure variation to the compressibility metric, we

were able to detect several two-symbol covert channels with accuracy values

over 97% and F-Score values over 95% when suitable intervals were selected.

The detectability of mixed two-symbol covert channels was not satisfying (71.5%

accuracy and 64.9% F-Score). However, all channels with 3, 4 or 8 symbols were

detectable with accuracy and F-Score values between 90% and 97%.

The countermeasure variation of the ǫ-similarity provided high-quality re-

sults for two-symbol covert channels under narrow limits (0.34%/0.35% of all

values below ǫ = 0.1). Out of these limits, no detection was possible. The ap-

proach did not provide useful results when the channels had more than two

symbols.

Finally, the performance of the regularity metric depended on suitably se-

lected interval and window sizes. Promising results were achieved for two-symbol

channels with 50 and 60 bytes as well as for channels with a difference of only 1

byte in their size, even if they contained more than two symbols.

In future work, we will extend our parameters to determine whether mod-

ifications of the proposed approaches can improve the quality of the detection

results for all three countermeasure variations.
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