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Abstract: In this paper, a fast and effective method of parameter optimization for noise 
estimation is proposed for various types of noise. The proposed method is based on gradient 
descent, which is one of the optimization methods used in machine learning. The learning rate 
of gradient descent was set to a negative value for optimizing parameters for a speech quality 
improvement problem. The speech quality was evaluated using a suite of measures. After 
parameter optimization by gradient descent, the values were re-checked using a wider range to 
prevent convergence to a local minimum. To optimize the problem’s five parameters, the 
overall number of operations using the proposed method was 99.99958% smaller than that 
using the conventional method. The extracted optimal values increased the speech quality by 
1.1307%, 3.097%, 3.742%, and 3.861% on average for signal-to-noise ratios of 0, 5, 10, and 15 
dB, respectively.  
 
Keywords: Noise Estimation, Optimization, Machine Learning, Gradient Descent 
Categories: G.1.6, I.5.4 

1 Introduction 

For speech quality improvement, noise estimation algorithms are required for 
determining the noise power in noisy speech data as well as noise reduction 
algorithms based on the estimated noise power. Spectral subtraction, proposed by Boll 
in [Boll, 79], is one of the most popular noise reduction strategies. The algorithm 
substantially reduces the noise component in noisy speech. The most important 
component of spectral subtraction is the estimation of noise power, or noise 
component, of data. To estimate the noise power spectrum, Martin [Martin, 01] 
proposed a noise power spectral density estimation algorithm based on the minimum 
statistic, which determines the minimum of the smoothed power spectrum of noisy 
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speech data in a sub-window. Then, the determined minimum is used for calculating 
the signal-to-noise ratio (SNR), which in turn is used as a criterion for deciding the 
presence of speech in data. This algorithm has a drawback; the speech component in 
the data is attenuated following a sudden increase in the noise energy level, owing to 
the very slow update rate of noise estimation. To alleviate this drawback, Cohen 
[Cohen, 02] proposed the minima controlled recursive averaging (MCRA) algorithm, 
which estimates the noise spectrum based on the ratio between the input spectrum 
smoothed by averaging previously computed spectral power and its minimum. Cohen 
presented the improved MCRA (IMCRA) algorithm in [Cohen, 03]; this improved 
algorithm detects noise-only regions based on the presence of speech probability, 
without hard distinctions between the absence or presence of speech. The MCRA and 
IMCRA algorithms have been used widely for noise estimation [Jeon, 11, Park, 12, 
Song, 12] because these algorithms perform well notwithstanding their simplicity. 

In general, conventional algorithms for noise estimation and reduction have an 
important drawback. The noise in consecutive frames is correlated, similar to the 
speech signal, and this correlation depends on the type of noise. However, 
conventional algorithms that use smoothing do not consider this difference; rather, the 
use fixed smoothing parameters. To incorporate the noise type dependence of noise 
correlation into noise estimation and noise reduction algorithms, attempts have been 
made to optimize the smoothing parameters of noise estimation and noise reduction 
algorithms [Song, 12, Choi, 12, Yuan, 15]. Such parameter optimization requires to 
calculate the quality of speech metrics for all possible combinations of all parameters; 
then, a combination that maximizes the speech quality is considered to be the optimal 
one. These methods yield better speech quality than conventional algorithms that do 
not use optimized parameters. However, such parameter optimization is time-
consuming, because speech quality has to be evaluated for all possible combinations 
of parameter values, and the number of such combinations can be very high. 
Consequently, significant research effort has been made to reduce the number of 
relevant parameters to three.  

In this paper, a method for optimizing five major parameters for noise estimation 
is proposed using gradient descent, which is among the most widely used 
optimization methods in machine learning. The learning rate of gradient descent was 
set to a negative value for parameter optimization. After parameter optimization by 
gradient descent, the optimized parameter values were re-checked in a wider range of 
values, to prevent convergence to a local minimum. 

2 Noise Estimation Algorithm 

In this section, the improved minima controlled recursive averaging (IMCRA) 
algorithm is reviewed. This algorithm is one of the most widely used noise estimation 
algorithms, and it is used in this paper for parameter optimization. A common noise 
estimation technique is to recursively average previously computed noise spectral 
power during periods of speech absence, and hold the estimate during speech 
presence. Owing to the uncertainty regarding the presence of speech, in the IMCRA 
algorithm, the noise power is estimated by recursive averaging using the speech 
presence probability, as follows: 
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,݇)ௗ̅ߣ  ݈ + 1) = ,݇)ௗߙ ,݇)ௗ̅ߣ(݈ ݈) + (1 − ,݇)ௗߙ ݈))|ܻ(݇, ݈)|ଶ      (1) 
  
where ܻ(݇, ݈) is ݇-th frequency bin in ݈-th frame, and 
 
,݇)ௗߙ   ݈) = ௗߙ + (1 − ,݇)(ௗߙ ݈)                                     (2) 
 
 is a time-varying frequency-dependent smoothing parameter adjusted by a fixed 
smoothing parameter ߙௗ ,݇) and the conditional speech presence probability (ௗ<1ߙ>0) ݈), which is estimated based on the noisy measurement.  
 The conditional speech presence probability given the a posteriori SNR is 
estimated as 

 
,݇)  ݈) = ࣪൫ܪଵ(݇, ݈)หߛ(݇, ݈)൯  = ቄ1 + (,)ଵି(,) (1 + ,݇)ߦ ,݇)߭−)ݔ݁((݈ ݈))ቅିଵ                                         (3) 

 
where γ and ξ  represent the a posteriori SNR and the a priori SNR respectively, ߭ = 1)/ߦߛ + ,݇)ݍ and ,(ߦ ݈) is the a priori probability for speech absence. 
 To calculate ݍ(݇, ݈), two-step voice activity detection (VAD) is undertaken, using 
a hard decision and a soft decision, respectively. In the first step of VAD, to detect the 
speech activity roughly, the noise spectrum is smoothed in the frequency and time 
domains, respectively, as follows: 
 ܵ(݇, ݈) = ∑ ܾ(݅)|ܻ(݇ − ݅, ݈)|ଶ௪ୀି௪           (4) 

 ܵ(݇, ݈) = ,݇)௦ܵߙ ݈ − 1) + (1 − (௦ߙ ܵ(݇, ݈)          (5) 
 

where ߙ௦(0<ߙ௦<1) is a smoothing parameter, ܾ(݅) is a Hanning window of length 
2w+1 and ܵ(݇, ݈)  is a spectrum smoothed in the frequency domain by the 
convolution of the Hanning window and the noise spectrum. 
 The first step of VAD using the smoothed spectrum can be described by 
  

,݇)ܫ  ݈) = 	 ቊ1 ݂݅	 ቀ |(,)|మௌ(,) < 	 ቁߛ 	ܽ݊݀	 ቀ ௌ(,)ௌ(,) < 	 ቁ0ߞ ݁ݏ݅ݓݎℎ݁ݐ                    (6) 

 
where ܫ(݇, ݈)  is the absence of speech identifier, 	ߛ  and ߞ  are thresholds for 
identifying the noise components, ܤ is a bias for compensating the minimum that 
is proportional to the fluctuation of noise, and 
 

 ܵ(݇, ݈) = ݉݅݊ሼܵ(݇, ݈′)|݈ − ܦ + 1 ≦ ݈′ ≦ ݈ሽ                            (7) 
 
is the minimum of the smoothed spectrum in a finite window of length D. 
 Based on the result of first VAD, ܫ(݇, ݈), smoothing is performed with noise 
components in the second step of VAD. 
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 	ሚܵ(݇, ݈) = ൝∑ ()ூ(ି,)|(ି,)|మೢసష ∑ೢ ()ூ(ି,)ೢసషೢ ݂݅	 ∑ ݇)ܫ(݅)ܾ − ݅, ݈) ≠ 0௪ୀି௪ሚܵ(݇, ݈ − 1) ݁ݏ݅ݓݎℎ݁ݐ              (8) 

  
 	ሚܵ(݇, ݈) = ௦ߙ ሚܵ(݇, ݈ − 1) + (1 − (௦ߙ ሚܵ(݇, ݈)                (9) 

 
where ߙ௦ and ܾ(݅) have the same values as in Equations (4) and (5). 

 Based on the smoothed noise components, the a priori probability for the 
absence of speech, ݍ(݇, ݈), can be calculated using a soft decision, as follows: 
 

,݇)ݍ  ݈) = ൞ 1 ,݇)ߛ)	݂݅ ݈) ≤ ,݇)ሚߞ)	݀݊ܽ	(1 ݈) < )ఊభିఊ(,)ఊభିଵߞ ݂݅	(1 < ,݇)ߛ ݈) < ,݇)ሚߞ)	݀݊ܽ	(ଵߛ ݈) < )0ߞ ݁ݏ݅ݓݎℎ݁ݐ             

(10) 
 

where ߛଵ is a threshold, and ߛ݉݅݊(݇, ݈) and ߞ(݇, ݈) are instantaneous SNRs calculated 
by 
 

,݇)݉݅݊ߛ  ݈) = ,݇)ߞ   ,(݈,݇)ܵ݉݅݊݊݅݉ܤ2|(݈,݇)ܻ| ݈) =  ܵ݉݅݊(݇,݈)      (11)݊݅݉ܤ(݈,݇)ܵ

 

where ܵ݉݅݊(݇, ݈) is the minimum of ܵ(݇, ݈) in a local window, and ݊݅݉ܤ is a bias for 
compensating the minimum. 
 The values of ߛ(݇, ݈) and ߦ(݇, ݈) are estimated as  

 
,݇)ߛ  ݈) ≈ |ܻ(݇, ݈)|ଶ ,݇)ௗ̅ߣ ݈ − 1)⁄                         (12) 
 
,݇)ߦ  ݈) = ுభଶܩߙ (݇, ݈ − ,݇)ߛ(1 ݈ − 1) + (1 − ,݇)ߛሼݔܽ݉(ߙ ݈) − 1, 0ሽ              (13) 

 
where >0)ߙ	(1>ߙ is a weighting factor that controls the tradeoff between the reduction 
of noise and speech distortion, and ܩுభ  is the spectral gain during the presence of 
speech.  

 In this paper, we optimize five parameters for noise estimation; ݀ߙ in Equation 
 , in Equations (6) and (10)ߞ ,in Equation (13) ߙ , in Equations (6) and (11)ܤ ,(2)
and ߙ௦ in Equations (5) and (9). These parameters are commonly considered to be 
affected by the noise characteristics.  

3 Parameter Optimization  

As mentioned in the introduction, noise is correlated in consecutive frames; thus, 
smoothing parameters for noise estimation and noise reduction algorithms should be 
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properly optimized [Choi, 12, Song, 12, Yuan, 15] for various noise scenarios. 
However, conventional methods that evaluate the speech quality using all 
combinations of parameters are too time-consuming for parameter optimization. Thus, 
in this section, we propose a method for parameter optimization that maximizes the 
quality of enhanced speech in various noise environments using a gradient descent 
algorithm.  
 The gradient decent algorithm is one of the optimization algorithms that 
minimize the error by updating parameter values in the opposite direction to the error 
gradient, as described below: 
 
 ܲାଵ = ܲ −  (14)          (݀)ܨ∇ߛ
 
where ܲ is the set of parameter values in n-th iteration, ߛ is the learning rate, and ∇ܨ(݀) is the gradient of the (d-dimensional error) function for which the optimization 
is sought. As shown in this equation, if the gradient of the function is known, the set 
of parameter values can be updated in the direction of decreasing error, as long as the 
gradient is not zero. Unfortunately, the gradient descent method does not always find 
the optimal solution. The optimization process terminates at a point for which all 
gradient components are zero, corresponding to a minimum of the optimized function. 
However, this point may be a local minimum, rather than the global minimum; in this 
case, the found set of parameters is sub-optimal. To alleviate this sub-optimality 
problem, the optimization process is usually repeated many times with different initial 
values.  

Unfortunately, the function that we seek to optimize in this paper is too 
complicated to calculate its gradient because parameters are not independent. Thus, 
we estimated the gradient based on the difference between a specific point and its 
neighbor point. In addition, we updated only the parameter that yielded the steepest 
gradient because the speech quality dependence on parameters is not convex and can 
be decreased by small changes of parameter values. To update only one parameter that 
yields the steepest gradient, the dimension in D-dimensional parameter vector that 
corresponds to the steepest gradient was defined by 
 
ܫ         = ൛ܳ൫ݔ݀݅ݔܽ݉	 ෨ܲ,൯ − 	ܳ( ܲ),			݅ = [0, 1, … ,                                               ൟ[ܦ
(15) 
 
where ܲ  is the initial vector of parameter values during n-th iteration, ෨ܲ,  is the 
neighbor vector of parameter values that differs from the initial vector only in ݅-th 
dimension, and ܳ is the quality of enhanced speech by the algorithm in section 2 for a 
given vector of parameter values, evaluated using a composite measure corresponding 
to a combination of the distance measure (IS), the perceptual evaluation of speech 

quality measure, the log-likelihood ratio, the Itakura–Saito distance measure (IS), and 

the weighted-slope spectral distance; the combination was built as follows [Hu, 08]: 
݈ݒܥ  = 0.279 − 0.011 ∙ ܵܫ + 1.137 ∙ ܳܵܧܲ + 0.041 ∙ ܴܮܮ − 0.008 ∙ ܹܵܵ         (16) 
 

1275Jeon Y., Ra I., Park Y., Lee S.: Machine Learning Optimization ...



If the steepest gradient is determined for the dimension	݀, the gradient component 
for ݀-th dimension is calculated; otherwise, the gradient is set to 0. 
 

(݀)ܨ∇  = ൜ܳ൫ ෨ܲ,ூ൯ − 	ܳ( ܲ) ܫ	݂݅ = ݀0  (17)                         ݁ݏ݅ݓݎℎ݁ݐ

 
Here, ෨ܲ,ூ  is the neighbor set of parameter values within the maximal gradient, and the 
gradient is limited by a maximum (=0.03) and minimum (=0.01). 

As mentioned above, the objective is to determine the set of parameters that 
maximizes the quality of speech for a given noise scenario. Thus, the learning rate ߛ 
in Equation (14) was set to a negative value, to cast gradient descent as gradient 
ascent. Before iterations for parameter optimization by gradient descent, we selected 
initial parameters based on a rough speech quality evaluation using large parameter 
value steps. Because the set of parameters to be optimized contains three smoothing 
parameters, and noise power is estimated assuming that noise changes slower than 
speech, the values of the smoothing parameters were limited to [0.50, 0.99] and the 
other two parameters were 1.7 times found in the range [0.50, 0.99]. In steps of 0.1, 
the speech quality for all combinations of values [0.6, 0.7, 0.8, 0.9] was evaluated; 
overall, 4D evaluations were required for determining the initial set of parameter 
values. After the initialization, parameter optimization was performed using Equations 
(15) and (17), in the step of 0.01. In this procedure, the quality of speech was 
evaluated for neighbor parameter sets, within a three-step distance in each dimension 
from the initial parameter set. Figure 1 shows an example of a neighbor parameter set, 
for two-dimensional parameter vectors and for the initial parameter set [a, b].  

 

 

Figure 1: Example of a neighbor parameter set when the initial parameter set is 
 [a, b].  
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Using this method, 6D+1 speech quality evaluations were performed in each 
iteration, when the dimensionality of the parameter set was D. After detecting the 
optimal parameter set, we re-checked that the detected parameter set is globally 
optimal, using larger steps (=0.04~0.06), to avoid the local minimum problem. 

4 Performance Evaluation 

In this section, the performance of the proposed method is described. Because the 
purpose of this study is to efficiently optimize noise estimation parameters, we 
measured the required overall number of speech quality evaluations. If the optimal 
parameter set was determined correctly, the quality of speech was improved by the 
optimal parameter set. Thus, we measured the speech quality obtained using the 
optimal parameter set. 

To evaluate the method’s performance, we considered four types of noise (babble, 
destroyer engine, Volvo, and white) from NoiseX-92, and 20 speech recordings (1 
male and 1 female talker) from the TIMIT database. Each noise and speech samples 
were mixed by 0-, 5-, 10-, and 15-dB SNR. Two types of speech per each talker in 0-
dB conditions, with the strongest noise components, were used for parameter 
optimization using noisy speech, and eight types of speech per each talker were used 
for validation of the calculated optimal parameter value sets. 

Figure 2 shows the proposed extraction method for optimization of two 
parameters (1st parameter is ߙௗ, and 2nd parameter is ܤ). In this figure, the mesh 
plot shows the speech quality for all combinations of the two parameters, the gray 
filled diamonds show the optimal parameters, the gray filled circles are the points for 
determining the suitable initial point, and the black crosses are the optimal points 
(values) found by gradient descent in every iteration. As shown in this figure, the 
proposed extraction method can achieve parameter optimization in a few iterations 
after the initial set of parameters is determined. 

In this paper, five parameters; ݀ߙ in Equation (2), ܤ in Equations (6) and (11), ߙ in 
Equation (13), ߞ  in Equations (6) and (10), and ߙ௦  in Equations (5) and (9) were 
optimized, and the number of speech quality evaluations for parameter optimization 
were 1274, 1350, 1298, and 1328 for different noise scenarios, with the average of 
1312.5 iterations. On the other hand, parameter optimization using conventional 
methods requires 312,500,000 ((0.99-0.50)/0.01+1)5) evaluations for one noise 
scenario. This suggests that the proposed method optimizes using 0.00042% 
evaluations compared with conventional methods, when five parameters are 
optimized. 
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Figure 2: Proposed parameter optimization method, showing the optimal parameters 
(gray filled diamonds), parameter combinations for finding the initial point (gray 
filled circles), and the optimal points found by gradient descent in every iteration 
(black crosses). 

Table 1 shows the optimal sets of parameters extracted using the proposed 

method, for different noise scenarios. The first parameter, ݀ߙ, used for estimating the 
noise, is lower for babble noise, which was the most unstable noise in this study. This 
trend is similar to that in other studies that used the IMCRA noise estimation 
algorithm [Song, 12 and Yuan, 15]. The second parameter used for compensating the 
minimum tended to be smaller for stable noise. This means that the minimum was 
similar to the estimated noise power, and the fluctuation of power was weaker.  

 

 ௦ߙ ߞ ߙ ܤ ݀ߙ 
babble 0.57 1.666 0.96 1.666 0.98 

destroyer 
engine 

0.96 1.530 0.96 1.394 0.92 

Volvo 0.98 1.122 0.97 1.292 0.95 

white 0.95 1.479 0.96 1.394 0.90 

Table 1: Optimal parameters for different noise scenarios 

The third parameter for estimating the a priori SNR was similar across all noise 
conditions. The fourth parameter for estimating the VAD was smaller for stable noise. 
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This suggests that speech components can be easily detected. The last parameter for 
smoothing the input spectrum was smaller for stable noise, similar to previous 
findings [Yuan, 15]. 

Within these optimal parameter sets, we estimated the noise using the IMCRA 
algorithm and calculated the spectral gain based on LogMMSE [Ephraim, 85], then 
enhanced the speech from noisy speech by multiplying the spectral gain by the 
spectrum of noise. Table 2 shows the average quality of enhanced speech obtained 
using conventional parameter sets and optimized parameter sets, for different noise 
scenarios. The quality of enhanced speech was measured using Equation (16), and 
eight types of speech that were not used in the parameter optimization study were 
used for evaluating the speech quality. As shown in Table 2, the quality of the 
enhanced speech using optimized parameters was higher than that obtained using 
conventional parameters, for all conditions, and increased on average by 1.1307%, 
3.097%, 3.742%, and 3.861% for 0-, 5-, 10-, and 15-dB SNR, respectively. The 
babble noise, which was the most unstable noise in this study, showed a noticeable 
increase in the speech quality for the optimized parameter set. The speech quality for 
the babble noise increased by 1.607%, 7.876%, 11.986%, and 13.095% for 0-, 5-, 10-, 
and 15-dB SNR, respectively. This suggests that the optimized parameters are more 
effective for unstable noise. 
 

SNR 0 dB 5 dB 10 dB 15 dB 

parameter conv opt conv opt conv opt conv opt 

babble 1.307 1.328 1.550 1.672 1.910 2.139 2.408 2.724 

destroyer 
engine 

1.662 1.669 2.108 2.134 2.881 2.915 3.480 3.507 

Volvo 1.707 1.735 2.200 2.254 2.966 3.004 3.517 3.555 

white 1.638 1.652 1.844 1.858 2.237 2.248 2.699 2.712 

Table 2: Composite overall speech quality with conventional parameter set and 
optimal parameter set 

5 Conclusions 

In previous studies by other researchers, the number of parameters for noise 
evaluation was set to three. This was because the computational burden for systems 
with more than three parameters was too large because the amount of computation 
increases exponentially with the number of parameters. For three parameters to be 
optimized in 0.01 steps with each parameter value in the [0.8, 0.99] range, 
conventional methods that rely on all combinations of parameters require 8000 speech 
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quality evaluations for determining the optimal combination. Thus, conventional 
methods are inefficient for parameter optimization. 

In this study, we proposed an efficient method for the optimization of major 
parameters related to noise estimation. The total number of speech quality evaluations 
for optimization using the proposed method was reduced by 99.99958% compared 
with conventional methods when five parameters were optimized. Thus, 10 s of 
computation time were required for one speech quality evaluation, and an average of 
1312.5 speech quality evaluations for one noise scenario described in Section 4 took 
3.646 h for the optimization of five parameters using the proposed method. The 
extracted optimal parameter values increased the speech quality on average by 
1.1307%, 3.097%, 3.742%, and 3.861% for 0-, 5-, 10-, and 15-dB SNR, respectively. 

6 Future Work 

Although the proposed optimization method dramatically reduces the total number of 
calculations, a disadvantage of this algorithm is that it must be run offline and must be 
modified or recalculated after a new noise scenario is added. In the future, modified 
noise estimation algorithms will be developed that can automatically adjust the values 
of parameters according to the noise characteristics.  
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