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Abstract: With the rapid development of Internet of Things (IoT), it is an inevitable trend that 
all things will get connected to the Internet to form various intelligent services such as Industry 
4.0, smart home, smart medical care, etc. To make such intelligent IoT services practicable, it is 
vital to have a low-power link-layer technology that can accommodate a diversity of upper-
layer networking protocols. Currently, there are many popular low-power wireless networking 
technologies for IoT such as ZigBee and Bluetooth Low Energy (BLE). Because of the ubiquity 
of BLE-enabled smartphones nowadays, BLE has gained much attention in the IoT industry 
recently. In this research, we aim at implementing an IPv6 over BLE experimental system 
using Raspberry Pi 3 and nRF51-DK development boards, and then run the Message Queuing 
Telemetry Transport for Sensor Networks (MQTT-SN) protocol and the Constrained 
Application Protocol (CoAP) over the protocol stack of IPv6/BLE. Specifically, in our 
experimental system every BLE node is IPv6-addressable and accessible through the 
MQTT/CoAP protocols from anywhere over the Internet. Moreover, to ease user accesses from 
ordinary web browsers, we build two gateways as the web servers for end users, which receive 
real-time sensor data via CoAP or MQTT-SN protocols and then push the data to end users’ 
browsers. The gateways are also designed to routinely request sensor data and then forward the 
data to cloud database platforms, which serve as the data sources for historical sensor data. 
Preliminary results showed that our system is capable of achieving the designed goals and is 
user-friendly. Compared with the non-IP based BLE sensor networks, our implementation can 
be integrated into a variety of existing and widely used IP-based applications easily. 
 
Keywords: Internet of Things, Bluetooth Low Energy, 6LoWPAN, MQTT, CoAP 
Categories: H.3.4, H.4.3, H.5.2 

1 Introduction  

In the field of Internet of Things (IoT), wireless sensor networks with the 
characteristic of low power consumption are becoming more and more important. 
Bluetooth Low Energy (BLE) [Bluetooth SIG, 10c] is one of the latest short-range 
wireless communication technologies, which was merged to the 2010 version of 
Bluetooth standard and integrated with the Bluetooth core specification version 4.0 
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and simplify the protocol stack. The overall objective is to achieve low-cost, low-
power consumption, long sleeping mode application technology that is suitable for 
IoT sensor networks. On the other hand, with the expansion of the IoT and the field of 
intelligent applications, vast amounts and varying types of sensor devices are used in 
the IoT field, meaning that there will be lots of different communication technologies 
and devices coexisting in the IoT environment. If we would like to integrate different 
types of sensor networks to form a larger IoT network, we face the problem of 
interoperability issue. Fortunately, IPv6 is regarded as the most promising solution, as 
long as every sensor device is capable of running IPv6. 

The Internet Engineering Task Force (IETF) formulated the transmission of IPv6 
packets over Bluetooth Low Energy using IPv6 over Low-power Wireless Personal 
Area Network (6LoWPAN) technology [Kushalnagar, 07], which is referred to as 
IPv6 over BLE [Nieminen, 15]. It allows sensor nodes to achieve end-to-end IPv6 
communication, even between different link-layer technologies, overcoming the 
limitation of communication only within sensor networks of the same type. This 
clearly promotes the interoperability with different devices and sensor networks. 
6LoWPAN was formulated by the IEFT working group to provide IPv6 routing 
solutions for low power and lossy networks (LLNs), and it is an adaptation layer 
between the link layer and the network layer of the OSI model. Due to the fact that 
the size of IPv6 packets is larger than BLE packets, therefore, 6LoWPAN provides 
header compression and fragmentation of datagrams. This allows transmission of 
IPv6 packets within low power wireless personal area networks, thereby creating 
IPv6-connected wireless sensor networks. 

The devices within IoT environments are usually resource-limited. Therefore, the 
IETF formulated the Constrained Application Protocol (CoAP) [Shelby, 14] which is 
a specialized transfer protocol and lightweight M2M communication technology, 
applied in constrained networks and with constrained devices. CoAP uses UDP 
transmission combined with the reliable CoAP messaging mechanism thus providing 
advantages such as low-overhead, lightweight and reliable transmission. Message 
Queuing Telemetry Transport (MQTT) [Oasis, 14] is another popular lightweight 
application-layer messaging protocol, which has become an OASIS standard since 
2014. MQTT runs on top of TCP/IP, and supports publish/subscribe messaging 
model. It has been used to build Facebook Messenger app for assured and faster 
message delivery. Other real-world applications of MQTT include Amazon IoT, 
Microsoft Azure IoT Hub, to name a few. However, the connection-oriented feature 
of TCP can still be a burden for some devices in the sensor networks. Therefore, IBM 
proposed MQTT for Sensor Networks (MQTT-SN) [Stanford-Clark, 13] which runs 
on top of UDP. In our experimental setup, our objective is to create a relatively 
lightweight smart home environment, building an IPv6 over BLE sensor network with 
sensor nodes running CoAP and MQTT-SN protocols. To ease the collection of 
environmental data, we also build two gateways: one serves as an HTTP server and a 
CoAP client; the other serves as an HTTP server and a MQTT subscriber. The 
collected environmental data are then stored in cloud-based databases, which can be 
used to create statistical charts for end users. 

The rest of this paper is organized as follows: In Section 2 we show the 
background technologies, which mainly clarify the IPv6 over BLE architecture, the 
CoAP protocol, and the MQTT/MQTT-SN protocol. In Section 3 we introduce the 
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organization of our experimental system, from the perspective of the network 
architecture and the application architecture, respectively. Section 4 describes the 
details of the implementation, while the preliminary results are shown Section 5. 
Finally, in Section 6 we conclude our work and give some future directions. 

2 Background and Related Work 

2.1 Bluetooth Low Energy 

Bluetooth Low Energy (BLE) is a wireless personal area network technology 
designed by Bluetooth Special Interest Group. BLE was merged into main Bluetooth 
standard in 2010 with the adoption of the Bluetooth Core Specification Version 4.0. 
Compared with the classic Bluetooth, BLE is intended to provide considerably low 
power consumption by working at extremely low duty cycle, reducing the number of 
channels, allocating the advertising channels at frequency bands that do not overlap 
with 2.4GHz Wi-Fi channels, and with flexible packet size, etc. BLE operates in the 
spectrum range from 2.400 ~2.4835GHz ISM band and has 40 2-MHz channels, 
while the classic Bluetooth uses 79 1-MHz channels. The transmission rate of BLE is 
about 1 Mbit/s and it uses frequency hopping transmission to reduce interference. 
BLE’s advertising channels are channel 37, 38, 39 and scanning devices will regularly 
listen to these channels to obtain advertising information for establishing any possible 
connections. All the remaining channels are used to transmit data. 

Bluetooth 4.0 brings two new core protocols: Attribute Protocol (ATT) 
[Bluetooth SIG, 10a] and Generic Attribute Profile (GATT) [Bluetooth SIG, 10b]. 
GATT is built on top of the ATT, which uses GATT data to define the way that two 
BLE devices send and receive messages. There are two roles in GATT: server and 
client. The GATT server stores the data transported over ATT and accepts ATT 
requests/commands/confirmations from the GATT client. On receiving requests from 
the GATT clients, the GATT server responds by sending response messages. When 
configured, the GATT server can also send asynchronous indications/notifications to 
the GATT client once specified events occur on the GATT server. 

2.2 6LoWPAN 

With an astronomical address space, IPv6 is by far the most suitable identifier for IoT 
devices. However, the sizes of IPv6 packets are too large for IoT devices that rely on 
low-power wireless area network technologies. If we would like to send IPv6 packets 
over low-power wireless area networks, IPv6 packets need to be fragmented and 
compressed [Hui, 11]. 

This idea was first realized in RFC 4944 [Montenegro, 07], proposed by an IETF 
working group called IPv6 over Low-power Wireless Personal Area Network 
(abbreviated as 6LoWPAN). RFC 4944 specifies how to transmit IPv6 packets over 
IEEE 802.15.4 (ZigBee) networks. In 2015, IETF published RFC 7668 – IPv6 over 
Bluetooth Low Energy [Nieminen, 15], which adds an IPv6 protocol stack on top of 
the Bluetooth LE L2CAP layer. 

According to RFC 7668 there are two roles in a BLE subnet: 6LoWPAN Border 
Router (6LBR) and 6LoWPAN Node (6LN). As shown in Figure 1, the 6LBR is 
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located at the edge of a BLE network. It plays the role of a gateway between the BLE 
network and the Internet. Within the BLE network, the 6LBR is responsible for 
distributing IPv6 prefix to the 6LNs, which can auto-configure their IPv6 address 
given the IPv6 prefix. 

 

 

Figure 1: A BLE subnet connected to the Internet 

2.3 CoAP 

Constrained Application Protocol (CoAP) is a web transfer protocol based on the 
widely used REST model. Compared with HTTP, CoAP runs on top of UDP and has 
smaller header size. The low-overhead features of CoAP makes it suitable for use in 
the network devices with constrained resources. On top of UDP, CoAP defines the 
Messaging layer and the Request/Response layer. At the Messaging layer, four types 
of messages are exchanged over UDP between endpoints: Confirmable (CON), Non-
confirmable (NON), Acknowledgement (ACK), and Reset (RST). When an endpoint 
receives a Confirmable message, it must acknowledge the CON message with an 
ACK message, which achieves reliable transmission in CoAP. In some cases that 
acknowledgements are not necessary, the messages can be transmitted less reliably by 
marking them Non-confirmable. At the Request/Response layer, CoAP uses 
client/server architecture and the available server resources are identified by URIs. 
CoAP clients access the server resources using methods such as GET, PUT, POST, 
and DELETE. Note that depending on specific needs of different application 
scenarios, the requests and responses can be either Confirmable or Non-confirmable.  

2.4 MQTT and MQTT-SN 

MQTT is a publish/subscribe-based lightweight messaging protocol for use on top of 
TCP/IP. With the publish/subscribe model, the publishers and subscribers do not need 
to know the existence of one another. Instead, all the data published by the publisher 
will be collected at the message broker, and then it is the responsibility of the message 
broker to push the data to the subscribers. In 2013, IBM proposed the MQTT-SN, 
where the term SN stands for Sensor Networks. As its name suggests, MQTT-SN is 
designed to be used in wireless communication environment with low bandwidth, 
high link failures, and short message length. It is also optimized for implementation 
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on low-cost and resource-constrained devices. Although MQTT-SN was originally 
developed to run on top of ZigBee, the specification emphasizes that it is agnostic of 
the underlying network services. Therefore, in resource-constrained devices, MQTT-
SN can run on top of UDP rather than TCP. 

Figure 2 shows the publish/subscribe model of MQTT and MQTT-SN. The 
MQTT broker is primarily responsible for receiving all messages, filtering them, 
deciding who has access to the data, and transmitting messages to legal subscribers. 
Subscribers play a passive role in the system. More specifically, subscribers do not 
need to query whether there are new data or not; they simply wait for new data to be 
pushed to them. In this way, both the publishers and the subscribers can have a low 
duty cycle, which means their power consumption can be greatly reduced. 

 

Figure 2: Publish/subscribe model of MQTT and MQTT-SN 

2.5 Related Work 

In 2013 Wang et al. [Wang, 13] implemented a prototype system to send IPv6 packets 
over BLE based on BlueZ [BlueZ, 17], the official Linux Bluetooth protocol stack. 
Their main contribution is the proposed context exchange mechanism between the 
sensor nodes and the router, which enhances the efficiency of the IPv6 header 
compression in RFC 6282 [Hui, 11]. Their experimental results showed that with the 
new context exchange mechanism, the number of frames to be transmitted can be 
reduced, and hence the transmission latency and the power consumption can also be 
reduced. In 2016 Kamma et al. [Kamma, 16] built a 6LoWPAN network over ZigBee, 
in which the 6LBR was built by using the Beagle Bone Black (BBB) development 
board. In the paper the authors have shown the needed software packages and the 
detailed procedures to set up the 6LBR. The functionality of the 6LBR was verified 
by using tools tcpdump and Wireshark. In 2016 Yoon et al. [Yoon, 16] designed and 
implemented an IPv6 over BLE platform to realize a patient-centric healthcare service. 
The unique feature of their system is the proposed Advertising Data Transmission 
Protocol which can send emergency data from the patients to a backend server 
through a non-paired gateway (such as a nearby person’s smartphone) during critical 
medical situations. In their implementation, both 6LBR and 6LN were implemented 
by Raspberry Pi with CC2540 BLE USB dongle. Raspberry Pi carried out the 
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functionalities of 6LoWPAN, TCP/UDP, and CoAP, while CC2540 BLE USB dongle 
provided the BLE protocol stack. The authors didn’t show how they configured 
Raspberry Pi to enable 6LoWPAN and CoAP in the paper; only the round-trip time 
and the throughput using UDP packets were measured. In 2017 Ahmed et al. [Ahmed, 
17] developed a system that gathers the temperature data in a 6LoWPAN network 
over IEEE 802.15.4 and sends the data to a MQTT broker in the Internet. The 6LBR 
and 6LNs are implemented by running Thingsquare 6LoWPAN software stack and 
Contiki OS on Texas Instruments development boards (Tiva C Micro Controller Unit 
and CC1120 single-chip radio transceiver). Their system demonstrated a possible 
solution of controlling remote sensors and actuators from the cloud. 

3 System Architecture 

In this section, we will introduce the network architecture and the application 
architecture in our experimental system. 

3.1 Network Architecture 

Figure 3 shows the network architecture in our experimental system. There are two 
BLE subnets, which consist of five Raspberry Pi 3 development boards and one 
Nordic nRF51-DK development board. Two Raspberry Pi 3 act as the 6LBRs for the 
two BLE subnets, respectively. All other boards act as the 6LNs, which are connected 
to the environmental sensor devices such as temperature sensors, humidity sensors, 
and ambient light sensors. The reason we choose Raspberry Pi 3 and Nordic nRF51-
DK as the BLE nodes is their built-in support of Bluetooth 4.0 and the 6LoWPAN 
module. Raspbian, the official Linux-based operating system for Raspberry Pi, 
contains a number of useful modules which help us build the desired functionalities. 
The modules we used will be detailed in Section 4. The BLE networks are connected 
to the Internet via a router. We also set up a web server and a database server, to 
display and save the environmental data from the sensor nodes, respectively. 
Furthermore, we deploy a cloud database as a backup storage for environmental data, 
which can also be accessed by the clients. 

Here we describe the IPv6 address assignments in our experiment. By default, an 
IPv6 address consists of a 64-bit network prefix and a 64-bit interface identifier. We 
have been allocated the network prefixes of 2001:288:d003:a000::/64 and 
2001:288:d003:a010::/64 to be used inside our two BLE subnets, respectively. 
Specifically, in each BLE subnet, the 6LBR broadcasts the prefix to the network hosts 
so that they can generate their own addresses by using stateless address auto-
configuration specified in RFC 4862 [Thomson, 07]. As for the Ethernet interfaces on 
the 6LBRs which serve as the WAN side, they are on the IPv6 subnet with the 
network prefix of 2001:288:d003:1127::/64. Each facing two different IPv6 
subnets, the 6LBRs play the role of a gateway between the BLE subnet and the 
Internet. 
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Figure 3: Network architecture in our experimental system 

Now let’s describe the procedure of how the 6LNs connect to the 6LBR and finish 
their IP configurations. This is basically a three-step process explained as follows: 

Step 1: Establish link-layer connection.  
According to RFC 7668, before any IP-layer communications can take place 
over BLE, 6LNs and 6LBRs have to discover each other and establish a 
suitable link-layer connection. Therefore, when a 6LN is powered on, the first 
step is to establish a link-layer connection to the 6LBR. The discovery and 
connection procedures are defined in BLE Generic Access Profile (GAP) 
[Bluetooth SIG, 10]. At the link layer, the 6LN plays the peripheral role which 
advertises itself to be scanned by the 6LBR, which plays the central role. 
When the 6LN is detected by the 6LBR, the 6LBR can initiate a link-layer 
connection establishment procedure with the 6LN. Once the link-layer 
connection has been established successfully, they can move to the next step of 
creating an L2CAP channel which is responsible for protocol multiplexing 
capability, segmentation, and reassembly operation for data exchanged 
between the two ends.  

Step 2: Establish L2CAP channel. 
According to the Internet Protocol Support Profile (IPSP) [Bluetooth SIG, 14] 
standardized by the Bluetooth SIG, the L2CAP channel type shall be an LE 
Credit Based Connection, and the L2CAP channel establishment shall also be 
initialized by the 6LBR. Note that the purpose of the IPSP is to allow devices 
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to discover and communicate to other devices that support IPSP. There are two 
roles defined by IPSP – Node role and Router role. The Router role is used for 
devices that can route IPv6 packets, which is exactly the 6LBR’s 
responsibility. The 6LNs, however, only originate or consume IPv6 packets, 
play the Node role. In this use case of supporting IP service over BLE, the 
6LNs implement the Generic Attribute Profile (GATT) server role and expose 
IP Support Service (IPSS) to serve the GATT clients (i.e., 6LBRs).  

Step 3: Configure IPv6 address. 
On top of the L2CAP channel sits the 6LoWPAN for BLE layer to provide 
functionalities of stateless IPv6 address auto configuration, neighbour 
discovery, and header compression. Basically, the neighbour discovery process 
follows RFC 6775 [Shelby, 12]. The 6LN sends Router Solicitation (RS) 
messages to the 6LBR, and the 6LBR responds with Router Advertisement 
(RA) messages containing the network prefix. With stateless address auto 
configuration, the 6LN is able to generate a global IPv6 address. The complete 
process of how a 6LN connects to a 6LBR and finishes its IP configuration is 
shown in Figure 4. 

 

 

Figure 4: Network configuration procedure in IPv6 over BLE network 

3.2 Application Architecture 

As soon as all the BLE devices have completed their IP configuration, they are ready to 
execute IP-based applications. Common application-layer protocols based on IP such as 
HTTP, SSH, and FTP can be applied to our system. However, considering the fact that 
IoT nodes are mostly resource-constrained, we choose MQTT-SN and CoAP as the 
light-weight application-layer protocols to be used in the BLE networks. The 
application architecture in our experimental system is shown in Figure 5. We can see 
that the two BLE subnets run different application protocols. In BLE subnet 1, the two 
6LNs play the role of the CoAP servers, while 6LBR1 plays the role of a CoAP client as 
well as a web server. Specifically, we make 6LBR1 a gateway device that accepts HTTP 
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requests from remote users with ordinary web browsers. If a remote user clicks a button 
to turn on a light in BLE subnet 1, 6LBR1 will issue a CoAP request to the 6LN that 
connects to the light. After turning on the light, the 6LN replies with a CoAP response 
that indicates the latest state of the light is ON. When the CoAP response is received at 
6LBR1, the latest state is updated on the web browser via a HTTP response. The 
MongoDB server and the xively cloud platform [xively, 17] are used to store historical 
data for the sensors in BLE subnet 1. 
 

 

Figure 5: Application architecture in our experimental system 

In BLE subnet 2, the two 6LNs play the role of the publishers, while the 6LBR 
plays the role of a broker. The message exchanges between the publishers and the 
broker are based on the MQTT-SN protocol. PC2 plays the role of a subscriber as well 
as a web server, which communicates with the broker via the MQTT protocol. 
Specifically, the web server utilizes a MQTT client library to subscribe to the sensor 
data. The real-time sensor data are displayed at the front end and then pushed to the 
Firebase cloud database [Firebase, 17].  Note that the broker needs to support both 
MQTT and MQTT-SN protocols. 

4 Implementation  

In this section, we will first show the procedures of implementing IPv6 over BLE, and 
then describe how to enable CoAP and MQTT-SN in the 6LoWPAN networks. Note 
that we only show the configurations for Raspberry Pi 3 in the following subsections. 
For the nRF51-DK development board, its functionalities of 6LoWPAN over BLE and 
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CoAP were coded in C language with the support of several built-in libraries from the 
nRF51 IoT SDK [Nordic Semiconductor, 18]. For simplicity, we chose to skip the 
tedious C codes.  

4.1 Implementing IPv6 over BLE 

In Section 2 we mentioned that the 6LoWPAN technique was originally designed for 
IEEE 802.15.4. Until late 2015 the specification of 6LoWPAN over BLE was also 
proposed. In fact, as we mentioned in the related work, Wang et al. [Wang, 13] has 
successfully implemented the first prototype system to transmit IPv6 packets over BLE 
based on BlueZ. Therefore, we also use BlueZ to set up the BLE connection. First, we 
wake up the BLE interface of the 6LN and make it do advertising. Afterwards, the 
6LBR can establish a link-layer connection to the 6LN. Figure 6 shows the 
configuration result at the 6LBR after the link-layer connection with the 6LN has been 
established, in which B8:27:EB:2C:43:A7 is the Bluetooth MAC address of the 6LN. 
From Figure 6 we can also see that at this stage, three network interfaces (eth0, lo, and 
wlan0) are up and running, but the Bluetooth network interface (bt0) does not exist. 
 

 

Figure 6: Network configuration at the 6LBR 

To create the Bluetooth network interfaces for 6LBRs and 6LNs, we need to load 
the bluetooth_6lowpan module in the Raspbian OS and enable the 6LoWPAN 
functionality. The updated network configuration results of the 6LBR and the 6LN are 
shown in Figure 7, where we can see that the Bluetooth network interface bt0 has been 
created successfully with the IPv6 link-local address starting with 0xFE80.  
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Figure 7: Bluetooth network interface bt0 created at both 6LBR and 6LN 

According to the IPv6 neighbor discovery protocol, IPv6 routers are responsible for 
sending Router Advertisement (RA) [Narten, 07] messages which carry the IPv6 prefix 
and the network configuration information to the IPv6 host. To do that, we use a Linux 
software named Linux IPv6 router advertisement daemon (a.k.a. radvd) [radvd, 17] in 
the 6LBR. Figure 8 shows the radvd configuration on the interface bt0, where the 
advertisement function is turned on and the network prefix is listed. Now the 6LBR is 
ready to advertise the IPv6 prefix. 

 

 

Figure 8: radvd configuration at the 6LBR 

The next step is to configure the IPv6 global addresses in the 6LNs. As shown in 
Fig. 8, since we would like to advertise the network prefix of 
2001:288:d003:a010::/64 to the 6LNs, the 6LBR itself must be configured with an 
IPv6 address within the same subnet. Therefore, we assigned 
2001:288:d003:a010::0000 for the 6LBR. Then, the 6LBR runs the radvd service so 
the 6LNs can receive the router advertisements. As stated in Section 3, on receiving 
router advertisements, 6LNs can configure their own global IPv6 addresses by using 
stateless address auto-configuration (RFC4862). In this way we can build the IPv6 over 
BLE architecture successfully. Then, we can test the network connectivity from the 
6LNs to the Internet. Figure 9 shows the ping test result from the 6LN to the Google 
IPv6 server. Note that we specified the bt0 interface to send the ping packets. As the 
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figure shows, the ping test is successful, which means that the 6LN is able to reach the 
Internet via the 6LBR. 

 

 

Figure 9: IPv6 ping test from the 6LN to the Internet 

4.2 Implementing CoAP over 6LoWPAN and the Gateway 

To run the CoAP protocol in the 6LoWPAN network, we use the node-coap package 
(Node.js CoAP library) [node-coap, 17] to code the CoAP server on the 6LNs, and the 
aiocoap package (Python CoAP library) [aiocoap, 17] to code the CoAP client on the 
6LBR. Figure 10 shows a CoAP request/response transaction in BLE subnet 1 between 
the 6LBR (CoAP client) and the 6LN (CoAP server) connected to a HTU21D humidity 
sensor. In the request message, the CoAP client specifies the message type as 
Confirmable and uses the GET method to request data from the remote endpoint with 
IPv6 address 2001:288:…:FE42:DD51 and port number 5683. In the response 
message, we can see the 2.05 response code which acknowledges the Confirmable 
request and echoes the message ID of 17739, carries the humidity value 50. 

 

 

Figure 10: A CoAP request/response transaction 

We also implemented the Observe function of the CoAP protocol defined in 
RFC 7641 [Hartke, 15], so the CoAP client can register its interest in a certain 
resource by initiating an extended GET to the server. In other words, the CoAP client 
acts as an observer, and the CoAP server notifies the client whenever the state of a 
resource changes. Figure 11 shows the result that the 6LBR observes the humidity 
resource state at the 6LN, where the 6LN is programed to send a notification every 3 
seconds. 
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Figure 11: The CoAP client observes the resource state at the CoAP server 

In Section 3.2 we mentioned that the 6LBR in BLE subnet 1 plays the role of a 
gateway between the HTTP-based Internet and the CoAP-based BLE subnet. To 
provide real-time sensor data to the end users, the CoAP client on the 6LBR acts as an 
observer that continuously receives the updated resource states. As shown in Figure 
12, whenever an updated state is received at the CoAP client, the HTTP server at the 
6LBR pushes the data to the web browser via the WebSocket technology [Fette, 11]. 
Therefore, the web browser does not need to poll the web server for the latest sensor 
data. 

 

Figure 12: Sensor data is forwarded to the web browser by WebSocket 

4.3 Implementing MQTT-SN over 6LoWPAN and the MQTT Broker 

To build the MQTT/MQTT-SN environment over the 6LoWPAN network, we use the 
Really Small Message Broker (RSMB) [Eclipse, 14] from the open source Eclipse 
Mosquitto project [Eclipse, 17]. RSMB is an MQTT/MQTT-SN message broker 
produced freely by IBM and made available for personal use. After RSMB is installed 
on the 6LBR, we run the executable file called broker_mqtts to start the broker service. 
With default configuration, port 1883 and 1884 are turned on to listen to MQTT and 
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MQTT-SN messages, respectively. Figure 13 shows the configuration file for RSMB, in 
which the term MQTT-S actually refers to MQTT-SN. At the 6LNs, we use the 
MQTTSClient program in RSMB to perform the publisher’s function. 
 

 

Figure 13: Configuration file for RSMB 

As described in Section 3.2, PC2 in our implementation is a subscriber who 
subscribes to the sensor data. In our design, the 6LNs send the sensor data every 30 
seconds to the broker, including humidity, temperature, and illumination. At the same 
time, PC2 is also a web server which provides the sensor data to end users. The web 
server is based on Node.js, in which we installed MQTT.js, a client library for the 
MQTT protocol. Similar to what 6LBR1 does, when PC2 receives the subscribed sensor 
data, the data is pushed to the web browser by using Socket.IO JavaScript library. With 
these data, our web server can visualize them by showing line charts. Besides, since all 
BLE devices have their own global IP addresses, system administrators are able to send 
ping packets to confirm whether the devices are alive, and perform remote management 
tasks via SSH when necessary. Moreover, we run NTP in 6LNs so they can synchronize 
their local clocks with the time server. With this capability, our 6LNs can send 
environmental data with exact timestamps. We also deployed a cloud-based database 
using Google Firebase, which serves as the data store for the sensor data. If an end user 
would like to look up the historical data, the web server will send the query to Firebase, 
and then plot the returned data by Chart.js. 

5 Preliminary Results 

In this section, we would like to show some preliminary results from our 
implementation. First of all, we have mentioned that our 6LNs are with IPv6 global 
addresses, so they can be accessed directly from the Internet. For example, if an end 
user runs a CoAP client program, he/she would be able to access the 6LNs in BLE 
subnet 1. To test this use case, we installed Copper [Copper, 17] (CoAP user agent for 
Firefox) in the Firefox browser on one of the desktop computers in our campus 

1183Lin C.-Y., Liao K.-H., Chang C.-H.: An Experimental System ...



 

 

network and use it to access the 6LN connected with a humidity sensor and a LED 
light. Figure 14 is a snapshot of the Firefox browser by which we directly specified 
the URL of the CoAP server and used the Observe option to get the timestamped 
humidity data. In this figure we can also see a list of offered services on this CoAP 
server. From the GUI end users can press the button to send the desired commands 
such as GET, POST, PUT, and DELETE to manipulate the resource. 
 

 

Figure 14: Firefox browser with Copper plug-in as a CoAP client 

Apart from using the Firefox browser with Copper plug-in, end users from the 
Internet can also access the sensor data using ordinary web browsers. Figure 15 is a 
snapshot of the web interface connected to the web server at 6LBR1. From this web 
page end users can get the latest humidity data, turn on/off the LED light and the 
electrical relay, all by clicking a single button. On receiving the clicking events, the 
web server will send the commands to the 6LN using CoAP requests. For end users 
who would like to observe the humidity data, he/she can click on the Humidity 
Observe link to open the web page as shown in Figure 16, from which the user can 
start and stop the observation.  
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Figure 15: Web interface connected to the web server at 6LBR1 

 

Figure 16: Web interface for observing humidity resource in BLE subnet 1 

For viewing the historical humidity data in BLE subnet 1, we take advantage of 
the xively IoT cloud platform. When we add a new IoT device into the platform, the 
system will automatically generate a Feed ID and an API key for our gateway (6LBR1) 
to upload the sensor data securely. The gateway is programed to use the built-in 
crontab to issue regular CoAP requests to the CoAP server. Whenever a new piece of 
humidity data is received at 6LBR1, the data is encapsulated with JSON format and 
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sent to the cloud platform. Figure 17 shows the web interface of the xively IoT cloud 
platform, where the historical humidity data is plotted as a line chart. 

 

 

Figure 17: xively cloud platform showing historical humidity data in BLE subnet 1 

For the sensor data in BLE subnet 2, since we use the publish/subscribe 
application architecture, there is no need for end users to make a direct connection 
into the 6LNs in BLE subnet 2. They simply use ordinary web browsers to connect to 
the web server at PC2. In BLE subnet 2, we have humidity, temperature, and 
illumination sensors. The web server acting as a subscriber subscribes to all the three 
topics, and shows real-time data on the web page as shown in Figure 18. Here the 
units for the brightness, humidity, and temperature readings are lx, %RH, and °C, 
respectively. Whenever a new piece of sensor data arrives at the web server, the data 
is then sent to the web browser by using Socket.IO, and finally the web page is 
updated dynamically by using jQuery. Through the web page, end users may also 
look up historical sensor data. Figure 19 shows the web interface that plots the line 
chart of the historical data. Users first select the period of time he/she would like, and 
then the query will be sent to the Firebase cloud database where the historical sensor 
data is stored. Upon receiving the sensor data at the web server, the last step is to plot 
the line chart by using Chart.js. The green, yellow, and red lines represent 
illumination, temperature, and humidity values, respectively. 
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Figure 18: Web interface showing real-time sensor data in BLE subnet 2 

 

Figure 19: Web interface showing historical data in BLE subnet 2 
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Apart from the above web interfaces which show the functionalities of our 
experimental system, we also captured some BLE packets over the air and analysed 
the content to ensure the correctness of the operations. Specifically, we ran the 
tcpdump utility on both 6LBR1 and 6LBR2, and captured CoAP responses (Figure 
20(a)) and MQTT-SN PUBLISH messages (Figure 20(b)) from the 6LNs in two BLE 
subnets, respectively. From both figures we can see that the two UDP/IPv6 packets 
are captured over the bt0 network interface. In Figure 20(a), the hexadecimal content 
on the row of 0x0030 include the CoAP header (“0x6445 8f03 0000 2b1c ff”) 
and the payload (the last 2 bytes “0x35” and “0x31”). The first hexadecimal value of 
6 is actually 0110 in binary, where the value 01 refers to the CoAP version of 1, and 
the value 10 means that this is an acknowledgement message. The hexadecimal value 
of the last 2 bytes are the ASCII code for characters “5” and “1”, respectively. In fact, 
it refers to the humidity value of 51. In Figure 20(b), the hexadecimal content starting 
on the row of 0x0030 include the MQTT-SN header (“0x1f0c 0400 0100 00”) 
and the payload (from “0x39” to the last byte “0x31”). The second byte of value 
0x0c means that this is a PUBLISH message, and the payload content is again 
encoded as ASCII code. For example, “0x39”, “0x31”, “0x2e”, and “0x37” refers to 
characters “9”, “1”, “.”, and “7”, respectively. This is exactly the illumination value of 
91.7 from the light sensor. The above descriptions are summarized in Table 1 for 
better readability. 

 

 
(a) 

 
(b) 

Figure 20: Captured CoAP request and MQTT-SN PUBLISH message at 6LBRs 
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Location 
Content 
(HEX) 

Interpretation  

0x0030 in 
Figure 20(a) 

6445 8f03 
0000 2b1c 
ff35 31 

1. The first hex value 6 is 0110 in binary, where 
01 means CoAP version 1, and 10 means an 
acknowledgement message. 

2. The last two bytes 35 and 31 are the ASCII 
codes for characters “5” and “1”, respectively, 
which means the humidity value of 51 (%RH). 

0x0030 & 
0x0040 in 
Figure 20(b) 

1f0c 0400 
0100 0039 
312e 372c  
.... 31 

1. The second byte 0c means a PUBLISH 
message. 

2. The four bytes 39, 31, 2e, and 37 are the 
ASCII codes for characters “9”, “1”, “.”, and 
“7”, respectively, which means the illumination 
value of 91.7 (lx). 

Table 1: Interpretation of the captured messages shown in Figure 20 

6 Conclusions and Future Work 

To make IoT applications feasible and pervasive, one of the most important 
considerations is the low power consumption of IoT devices so they can last a long 
time without replacing batteries. Although there are a number of existing low-power 
wireless network technologies, in this research we chose BLE because it is universally 
supported by smartphones. Specifically, we implemented an IPv6 over BLE 
experimental system based on Raspberry Pi 3 and Nordic nRF51-DK development 
boards, by using the 6LoWPAN module and the IPv6 router advertisement daemon. 
With an IPv6 global address on every BLE node, they become directly accessible 
through the Internet. Next, we deploy two popular light-weight application-layer 
protocols, namely CoAP and MQTT-SN, on top of the IPv6/BLE protocol stack. With 
CoAP and MQTT-SN, sensor nodes are able to provide the environmental data either 
through the CoAP request/response interactions or the MQTT publish/subscribe 
model. In both application scenarios, we built a gateway that receives real-time sensor 
data via CoAP or MQTT protocols and pushes the data to end users with ordinary 
web browsers in the Internet. We also deployed xively IoT cloud platform and Google 
Firebase as the data store for storing historical sensor data. Finally, we used tcpdump 
to capture and analyse the BLE packets transmitted over the Bluetooth network 
interfaces to make sure that everything is working as expected. 

In the near future, we would like integrate our two BLE subnets into one 
heterogeneous sensor network. In the heterogeneous network, sensor nodes can run 
CoAP or MQTT-SN freely, and the 6LBR must support both CoAP and MQTT-SN 
protocols simultaneously. We would also like to measure the power consumption on 
6LNs and the packet delivery ratio in the 6LoWPAN network with respect to different 
application scenarios of different sensor data rates. Furthermore, we would like to 
study the feasibility of incorporating the newly published BLE mesh specification 
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[Bluetooth SIG, 17] into our system. With the capability of mesh networking, the 
deployment of BLE-based IoT systems can be more flexible. 
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