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(University of Debrecen, Hungary

kovacs.zita@inf.unideb.hu)

Abstract: A reductionist proof for sender anonymity of an asymmetric bilinear pair-
ing based mixnet (BILMIX) is presented. We give an experiment-based definition for
anonymity and show that BILMIX possesses anonymity in the semi-honest model
against static adversaries assuming that the co-Bilinear Diffie-Hellman Problem, the
Matching Find-Guess Problem and the Matching Diffie-Hellman Problem are hard.
A new problem called Divisible Decisional Factorized Diffie-Hellman Problem (DDF-
DHP) is introduced and showed that finding connection between data stored by the
Registration Authority and the receiver is at least as hard as breaking DDF-DHP, with
the assumption that secret keys of the Registration Authority and the special bulletin
board are kept secret.
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1 Introduction

1.1 Motivation

Mix networks (or in short mixnets) ([Danezis et al. 2009], [Ren and Wu 2010],

[Sampigethaya and Poovendran 2006]) are among the most widely used con-

structions for providing anonymous communication between participants. In

1981, shortly after the public key cryptography was presented, Chaum created a

mail system which included a single computer, called mix. The purpose of a mix

was to hide the correspondences between its input and output ([Chaum 1981]).

In the same paper, a series of mixes (or cascade mix) was also proposed by

increasing the number of mixes. The main idea is that each mix accepts an in-

put batch of encrypted messages and produces an output batch containing the

cryptographically transformed, permuted input batch. The cryptographic trans-

formation is usually a re-encryption or a decryption. In this way the mixnet

achieves untraceability between the input and output batches.

In real world there are many applications where providing unlinkability of the

message and its sender is necessary. For example, we can think of electronic vot-

ing, electronic exam, electronic tender, electronic auction and electronic opinion
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poll systems, or collectively e-assessment systems. Although the users’ identities

could be known in a mass (namely the anonymity set), during the process the

users should not be able to be linked with their messages. Focusing on these

e-assessment systems one can observe that only the users are anonymous, the

authority receiving the messages is publicly known.

After a certain deadline, the authorities evaluate the submissions and an-

nounce the results. Considering an e-exam, an e-tender or an e-auction system,

at some point the users should be informed about their success, hence knowing

their real identity is essential. The other reason to reveal user identity is to avoid

anonymous criminal activities. The situation when a user is not cooperating in

this phase, i.e. does not want to reveal his/her identity (e.g. undesirable grades)

should also be considered. Therefore the possibility of anonymity revocation is

crucial.

Depending on the application a mixnet should be able to efficiently handle

short and long messages. In case of e-voting or e-auction schemes the votes or the

bids are usually very short messages, but in case of e-exam or e-tender schemes

the submission could be significantly longer. Our aim is to construct a mixnet

which is able to handle messages with arbitrary length efficiently.

Furthermore, it could be also a natural demand that the anonymous senders

receive a reply to their messages, at least a receipt about the successful sub-

mission. For example, in case of e-tender schemes the authority can warn the

anonymous senders about a missing document. Similarly, in case of e-exams or

e-poll systems having a possibility of a reply enables to proceed more than one

round (e.g. the second questionnaire is chosen depending on the answers of the

first one).

Another requirement for the senders is to be eligible which means that the

user has to fulfill all the prerequisites for the participation in an e-assessment

system. Only eligible users’ messages are considered and evaluated and the sys-

tem has to detect the users that are not eligible and reject their submissions.

Since the users are anonymous, to determine their eligibility is cumbersome.

The identification and the submission process should be separated, therefore the

authorities of these processes as well.

The proposed mixnet is a general solution, which accomplishes all the re-

quirements mentioned above: provides the anonymity for the users, the eligibil-

ity verification, the possibility of anonymous reply and anonymity revocation,

and efficiently handles arbitrarily long messages. Moreover, considering an e-

assessment system the submissions should be secret and undeniable.

1.2 Related work

Mix networks are the basis for many applications, especially in the field of elec-

tronic voting ([Jakobsson et al. 2002]), anonymous email ([Danezis et al. 2003])
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and location privacy ([Golle et al. 2004, Huang et al. 2006]).

The onion routers (or in short ORs) were developed based on mixnets to

provide low-latency in private communication applications such as web search

or instant messaging. However, the onion routing systems have limitations

in case of anonymity and they are vulnerable to some attacks: traffic anal-

ysis attacks ([Raymond 2001], [Erdin et al. 2015]) as well as intersection at-

tacks ([Danezis and Serjantov 2004], [Wright et al. 2003]). A significant num-

ber of ORs were proposed and applied ([Backes et al. 2012], [Kate et al 2007],

[Chen et al. 2015]). The largest and widely used OR system is Tor, which has

more than 2 million users and thousands of onion routers ([Tor project 2003]).

In 2017, a new variant of fixed-cascade mixing networks, the cMix protocol was

proposed by Chaum and others ([Chaum et al. 2017]). It has a precomputation

phase to avoid computationally intensive public-key cryptographic operations

in its core real-time protocol. Therefore, it is low-latency and its fixed cascade

structure of mixnodes yields strong anonymity. The phases of cMix are similar

to the ones of onion routing, however cMix resists the typical attacks of ORs.

cMix is the first mixing suitable for low latency chat for lightweight devices.

Hybrid mix networks, introduced by Pfitzmann

([Pfitzmann and Waidner 1985]), efficiently handle messages with arbitrary

length by combining symmetric and asymmetric cryptographic primitives. A

recent system called Riffle ([Kwon et al. 2016]) is a bandwidth and compu-

tation efficient communication system with strong anonymity and provides

both sender and receiver anonymity by using verifiable shuffles and private

information retrieval. The hybrid shuffle applying asymmetric encryptions

is performed only once to share symmetric authenticated encryption keys.

The hybrid mix designed by Ohkubo and Abe ([Ohkubo and Abe 2000]) uses

symmetric encryption keys derived by applying a hash function to the results of

a Diffie-Hellman key exchange. Our construction also applies a Diffie-Hellman

key exchange and an asymmetric bilinear pairing for a secure symmetric key

exchange.

Determining the real identity of an anonymous user by a Trusted Entity is the

most commoly used technique with the directive that it uses this ability only if it

is necessary and/or it has the right to do so ([Camenisch and Lysyanskaya 2001],

[Chen et al. 2011], [Preneel et al. 2003], [Federrath et al. 2006]). It is often com-

bined with blind or fair blind signatures. In [Preneel et al. 2003] Preneel and his

co-workers gave Crowd-like and OR-like solutions of anonymity revocation in

case of anonymous internet access. They introduced a management entity and

a trustee to their proposals as well, where the trustee participates only if the

revocation is needed, it does not take part in the anonymization process.

There are mixnet solutions that provide anonymous reply. In [Chaum 1981]

Chaum proposed untraceable return addresses which allow the receiver to send a
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reply message without knowing senders identity. Another example is the Mixmin-

ion ([Danezis et al. 2003]), which is an anonymous remailer protocol and it sup-

ports Single-Use Reply Blocks (or SURBs) to allow anonymous recipients. In

these schemes the sender recursively encrypts the return address block and sends

it in the body of the message. These encryptions are necessary, even if the re-

ceiver does not intend to reply. In our construction cryptographic operations are

needed only if the receiver sends messages back.

Our proposed protocol is based on bilinear pairings ([Menezes 1993]). As a

consequence of the Boneh and Franklin’s ID-based cryptosystem based on bilin-

ear pairings ([Boneh and Franklin 2001]) many new cryptographic constructions

appeared. In 2009, Zhong proposed an identity-based, re-encryption mix network

([Zhong 2009]) based on symmetric bilinear maps. Zhong’s scheme applies only

asymmetric encryptions, hence it can be used for sending short messages, only.

At a fixed security level, group elements in the asymmetric setting are smaller

and pairings can be computed more efficiently. As far as we know, our construc-

tion is the first hybrid mixnet, which is based on asymmetric bilinear maps.

1.3 Our results

The most important requirement for the mix networks is the anonymity property,

i.e. possessing all the messages sent to determine the identity of a sender should

be a hard problem. However, the possibility of anonymity revocation, anony-

mous reply, eligibility verification is also expected in practice, see the examples

above. Most of the cases the system should also efficiently handle arbitrarily long

messages, therefore, our main objective is to construct a complex mixnet which

possesses all the previous requirements.

We presented our symmetric bilinear pairing based hybrid mixnet with

anonymity revocation in 2015 ([Huszti and Kovacs 2015]). We designed a hybrid

mix to handle short and long messages. In [Huszti and Kovacs 2015] besides

describing the protocol we examined the time and space complexity compared

to Zhong’s proposal ([Zhong 2009]) as well. Besides the complexity calculations

we also proved that our solution was correct. More details can be found in our

previous paper [Huszti and Kovacs 2015].

Here, we improve our scheme ([Huszti and Kovacs 2015]) by applying asym-

metric bilinear maps and prove sender anonymity in the semi honest model

against a static adversary. In this model the corrupted parties do not deviate

from the protocol specification, but they collaborate with the adversary to gather

information and secrets. We assume that at least one mix server and two users

are trustworthy, so they are not corrupted by the adversary, i.e. they do not

reveal their secrets (the secret keys and secret permutations). We also assume

the existence of a special bulletin board operating honestly, possessing a key
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pair. Furthermore, the secret keys of the Registration Authority and the bul-

letin board are kept secret, e.g. they are secretly shared in a threshold manner.

We give the definition of anonymity with the help of an experiment and ap-

ply a reductionist proof. We call our asymmetric bilinear pairing based mixnet

protocol BILMIX.

We show that if an adversary is able to break sender anonymity, then there

exists a polynomial time algorithm that solves the co-Bilinear Diffie-Hellman

Problem (co-BDHP), or else it solves either the Matching Find-Guess Problem

(MFGP) or the Matching Diffie-Hellman Problem (MDHP). We also define vari-

ations of a new problem called Divisible Decisional Factorized Diffie-Hellman

Problem (DDF-DHP) and show that finding connection between data stored

by the Registration Authority and the receiver is at least as hard as breaking

DDF-DHP.

1.4 Outline of the paper

The remainder of the paper is organized as follows. Section 2 outlines the nec-

essary definitions and problems. Section 3 describes our proposed protocol. The

security analysis with a focus on proving anonymity property is presented in

section 4. Finally, Section 5 concludes with a summary.

2 Preliminaries

In this section we overview the basic definitions and the hard problems we apply

for the construction of BILMIX. Our protocol is based on asymmetric bilinear

maps, we apply a blind signature scheme for hiding the link between senders

and their messages. The security of the protocol is based on the variations of the

Diffie-Hellman problem.

Beginning with the work of Joux ([Joux 2004]) in 2000, bilinear

pairings have been extensively used to design cryptographic protocols

([Boneh and Franklin 2001], [Boneh et al. 2002], [Boldyreva 2003]). We differen-

tiate symmetric and asymmetric bilinear maps. First we give the definition of

the asymmetric bilinear map.

Definition 1 Asymmetric bilinear map. Let G1, G2 and GT be three

groups of order q for some large prime q. A map e : G1 × G2 → GT is an

asymmetric bilinear map if satisfies the following properties:

1. Bilinear : We say that a map e : G1 × G2 → GT is bilinear if e(aP1, bP2) =

e(P1, P2)
ab for all (P1, P2) ∈ G1 ×G2 and all a, b ∈ Z∗q .

2. Non-degenerate: The map does not send all pairs in G1 ×G2 to the identity

in GT . ∀P1 ∈ G1, e(P1, P2) = 1 ∀P2 ∈ G2 iff P1 = 1G1
.
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3. Computable: There is an efficient algorithm to compute e(P1, P2) for any

(P1, P2) ∈ G1 ×G2.

Asymmetric pairings for which an efficiently-computable isomorphism ψ :

G2 → G1 is known are called Type 2 pairings ([Galbraith et al. 2008]),

while asymmetric pairings for which no efficiently computable isomorphism is

known either from G1 to G2 or from G2 to G1 are called Type 3 pairings

([Galbraith et al. 2008]). Many cryptographic protocols in the asymmetric set-

ting rely on the existence of ψ for their security reduction while some use it in

the protocol itself. Known examples of such pairings are the Weil and Tate pair-

ings over suitable elliptic curve groups G1 and G2. If G1 = G2 then the pairing

is symmetric and it is called a Type 1 pairing. Since Type 1 pairings are quite

restricted in terms of the choice of curves and are significantly slower than their

asymmetric counterparts at higher security levels ([Hankerson et al. 2008]), we

apply pairings Type 3. Typically, G1, G2 are elliptic curve groups and GT is a

multiplicative group of a finite field.

From now on let G1, G2 be elliptic curve groups with generator elements

P1 and P2, respectively. Usually the security of cryptographic protocols apply-

ing bilinear maps is based on the variants of the Diffie-Hellman Problem. In

[Smart and Vercauteren 2005], the following computational and decisional prob-

lems are defined.

We define a pairing problem instance to be a tuple Γ =

(q,G1, G2, GT , P1, P2, e). First we define various notions of the Compu-

tational Diffie-Hellman (CDH) and the Decisional Diffie-Hellman (DDH)

problems.

Definition 2 The CDHi,j,k Problem. Given a pairing problem instance Γ =

(q,G1, G2, GT , P1, P2, e) and values i, j, k ∈ {1, 2} we define the CDHi,j,k Prob-

lem to be the following: Given aPi and bPj , with a, b ∈ Z∗q , we are asked to

compute abPk.

Definition 3 The DDHi,j,k Problem. Given a pairing problem instance Γ =

(q,G1, G2, GT , P1, P2, e) and values i, j, k ∈ {1, 2} we define the DDHi,j,k Prob-

lem to be the following: Given aPi, bPj and cPk, with a, b, c ∈ Z∗q , we are asked

to decide whether cPk = abPk.

When G1 = G2, these problems reduce to the standard CDH and DDH

problems. In some publications ([Boneh et al. 2002],[Chatterjee et al. 2010]) the

cases of i = k = 1, j = 2 are defined as co-CDH and co-DDH problems.

Similarly to what happens in symmetric pairing groups, the DDHi,j,k with

i �= j problem is easy in asymmetric bilinear map groups. According to the

terminology, those groups are called Gap Diffie-Hellman groups, where CDHP

is hard, but DDHP is easy.
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We can also formalize a number of variations of the Bilinear Diffie-Hellman

(BDH) problem.

Definition 4 The BDHi,j,k Problem. Given a pairing problem instance Γ =

(q,G1, G2, GT , P1, P2, e) and values i, j, k ∈ {1, 2} we define the BDHi,j,k prob-

lem to be the following: Given aPi, bPj and cPk, with a, b, c ∈ Z∗q , we are asked

to compute e(P1, P2)
abc.

Variations of the co-Bilinear Diffie-Hellman (co-BDH) Problem are formal-

ized as follows.

Definition 5 The co−BDHj,k Problem. Given a pairing problem instance

Γ = (q,G1, G2, GT , P1, P2, e) and values j, k ∈ {1, 2} we define the co−BDHj,k

Problem to be the following: Given aP1, aP2, bPj and cPk, with a, b, c ∈ Z∗q , we

are asked to compute e(P1, P2)
abc.

We apply blind short signatures to provide a valid signature on the sub-

mission in a way that the signer (Registration Authority) does not learn any

information about the message. Boldyreva in [Boldyreva 2003] provided a blind

signature scheme based on any Gap Diffie-Hellman (GDH) group.

We apply a blind GDH signature scheme based on the variant of

the BLS signature ([Boneh et al. 2002]), the BLS-3b signature given in

[Chatterjee et al. 2010], which uses Type 3 pairings.

Definition 6 Blind BLS-3b signature scheme. The public parameters are:

Gap co-Diffie-Hellman groups (G1, G2) with prime order q, generator elements

P1 ∈ G1 and P2 ∈ G2 and a Map-to-point hash function H : {0, 1}∗ → G1. The

Blind BLS-3b signature description is the following:

– Keygen: The secret key is a random value x ∈ Z∗q and the public key is

(Ppub1 , Ppub2) = (xP1, xP2) ∈ G1 ×G2 for a signer.

– Blind Signature Issuing Protocol : Given secret key x and a message

m ∈ {0, 1}∗.

• (Blinding) The user chooses randomly r ∈ Z∗q , computes

M ′ = rP1 +H(m) and sends M ′ to the signer.

• (Signing) The signer computes σ′ = xM ′ and sends back σ′ to the user.

• (Unblinding) The user then computes the signature σ = σ′− rPpub1 and

outputs (m,σ).

– Verify : Given public key (Ppub1 , Ppub2), a message m and a signature σ,

verify e(H(m), Ppub2) = e(σ, P2).
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The security of the BLS-3b signature scheme is based on the vari-

ant of the Computational co-Diffie-Hellman Problem that is given in

[Chatterjee et al. 2010].

Definition 7 The co-CDH* Problem. Given a pairing problem instance

Γ = (q,G1, G2, GT , P1, P2, e) we define the co − CDH∗ Problem to be the fol-

lowing: Given aP1, aP2 and bP1, with a, b ∈ Z∗q , we are asked to compute abP1.

The intractability of discrete logarithm problem in G1 and G2 are both nec-

essary for the hardness of co-CDHP*. If co-CDHP* in (G1, G2) is hard, and H

is a random function, then the BLS-3b signature scheme is secure.

3 The BILMIX

In this section we detail the steps of BILMIX. Our proposed protocol can be built

on any G1, G2, GT groups, where (G1, G2) are Gap Diffie-Hellman groups and

GT is a multiplicative group. There are several senders (S1, . . . , Sn), mix servers

(M1, . . . ,MN = R), where the last mix server is the receiver, furthermore there

is a Registration Authority (RA) participating in our protocol. We use a publicly

readable special bulletin board (ββ) for showing the verification values.

There are seven phases in BILMIX. Phases 1-5 are required, and phases 6-7

are optional. We describe them briefly at first.

Preparation: In this phase all the parameters and keys are generated, public

ones are made public. A key pair is generated for ββ. The Registration Authority

generates the system parameters and a key pair, the mix servers also compute

their secret, public keys. The mixnet, i.e. all mix servers together generate the

mixnet public keys, too.

Registration: The sender indicates his intention of sending a message to

the receiver and gets the permission from the Registration Authority for it. If

the sender is eligible then the Registration Authority gives a signature on the

sender’s blinded message.

Submission: The senders compose and send their messages to the first mix

server. Messages equipped with the signature of the Registration Authority are

encrypted with symmetric keys calculated by the senders. Besides the ciphertext

a parameter, which is essential for the mix servers to calculate the symmetric

keys applied for the decryption, is also transmitted.

Mixing: The first mix server gets the messages from the senders, decrypts

and transmits the permutated list of the messages to the next mix server. The

messages are being transmitted through the mix network - each server decrypts

and permutes the messages - until they arrive to the last mix server, the receiver.

Receiving: The last mix server, the receiver, calculates the symmetric keys

and decrypts the messages. The receiver also verifies the eligibility of the sender

via the signature of RA.
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There are two optional phases. In some systems it is necessary to send a reply

to the anonymous sender without revealing his identity and/or to reveal the real

identity of the senders.

Anonymous Reply: In this optional phase the receiver can send a message

to the anonymous sender by using a value which is calculated and placed into

the encrypted message by the sender in the submission phase.

Anonymity Revocation: In this optional phase the sender’s ID is revealed.

There are two ways for this: with the sender’s help or with the joint support of

all mix servers.

3.1 Preparation

During preparation the system parameters, public and secret keys are generated

involving the Registration Authority and the mix servers.

RA generates the system parameters, such as: groups G1, G2, GT , generator

elements P ∈ G1, Q ∈ G2, a bilinear map e : G1 × G2 → GT , hash functions

H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}l. A key pair is generated for ββ,

r ∈ Z∗q and rQ denote the secret and public key, respectively. For signing RA

chooses a random secret value s ∈ Z∗q and outputs public key (sP, sQ). The

secret keys r, s can be shared in a threshold manner. Public key parameter rsP

is also calculated with the help of ββ.

M1 Mj MN

SKM1
= (m1, x1) SKMj

= (mj , xj) SKR = (mN , xN )

m1Q
−−−−−−→ . . .

(
∏j−1

k=1
mk)Q

−−−−−−−−−→
(
∏j

k=1
mk)Q

−−−−−−−−−→ . . .
mQ = (

∏N
k=1 mk)Q

x1m1Q
−−−−−−→ . . .

(
∏j−1

k=1
xkmk)Q

−−−−−−−−−−−→
(
∏j

k=1
xkmk)Q

−−−−−−−−−−−→ . . .
xmQ = (

∏N
k=1 xkmk)Q

xNQ

PKM1
= x1m1Q PKMj

= xj(
∏j

k=1 mk)Q PKR = xNmQ

Table 1: Calculating the server key pairs and the public keys of the mixnet.

Table 1 shows the key generation process of the mix servers. Each mix server Mj

generates a key pair (SKMj
, PKMj

), where j = 1, . . . , N , and the mixnet public

keys mQ,xmQ ∈ G2. Let SKMj
= (mj , xj), where mj , xj ∈ Z∗q are random and

secret. For calculating the public keys each mix server outputs (
∏j

k=1mk)Q and

(
∏j

k=1 xkmk)Q to the next server and Mj calculates PKMj
= xj(

∏j
k=1mk)Q.

Lastly, R computes mQ and xmQ, where m,x ∈ Z∗q . The value mQ is used

for calculating commitment values μi, and xmQ is necessary for the encrypted
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identities εi, where x is never calculated explicitly. R also outputs xNQ public

key for providing anonymous reply.

3.2 Registration

The senders and RA participate in this phase, RA verifies senders el-

igibility and blindly authorizes their messages. Blind BLS-3b signatures

([Chatterjee et al. 2010]) are applied for hiding the messages, hence the Reg-

istration Authority is not able link a message with its sender. This means, that

even RA cannot relate IDs to the messages.

Si RA ββ

Si, msg, u(i) SK = s

H1(msg) + u(i)P PK = (sP, sQ, rsP )

Si,H1(msg)+u(i)P
−−−−−−−−−−−−−−→

s(H1(msg) + u(i)P )

s(H1(msg)+u(i)P )
←−−−−−−−−−−−−−−

Si,e(s(H1(msg)+u(i)P ),mQ)
−−−−−−−−−−−−−−−−−−−−−→

e(s(H1(msg)+u(i)P ),xmQ)

u(i)sP , sH1(msg), msg μi = e(s(H1(msg) + u(i)P ),mQ)r

e(sH1(msg), Q)
?
= e(H1(msg), sQ) εi = Si ⊕H2(e(s(H1(msg) + u(i)P ), xmQ)r)

Table 2: Signature generation.

Table 2 shows all the calculations performed for generating the signature on

the message being submitted. Firstly, sender Si creates the message msg that

he would like to send to the receiver R. After calculating the blinded message

H1(msg) + u(i)P , where the blinding factor u(i) ∈ Z∗q is chosen randomly, Si

sends his ID (Si) and the blinded message on a secret, authenticated channel to

RA. Knowing the ID, RA checks the database containing eligible users’ data

whether Si is eligible. If Si is in the database, RA blindly signs the message and

sends s(H1(msg) + u(i)P ) back. Moreover, RA calculates and transfers values

e(s(H1(msg) + u(i)P ),mQ), e(s(H1(msg) + u(i)P ), xmQ) and Si to ββ on an

authenticated channel, a commitment value μi = e(s(H1(msg)+u
(i)P,mQ)r for

verification purposes and a value εi = Si ⊕H2(e(s(H1(msg) + u(i)P ), xmQ)r),

which is the sender’s encrypted ID is calculated by ββ. ββ publishes all pairs

(μi, εi) in a permuted order.

After receiving the signed blinded message, Si is able to obtain a valid signa-

ture onmsg i.e. calculating sH1(msg) with the knowledge of u(i)sP . Si is able to

verify the signature by checking the equality e(sH1(msg), Q) = e(H1(msg), sQ).
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3.3 Message submission and mixing

This phase consists of two parts: submission and mixing. During submission

senders calculate the symmetric keys and encrypt their messages. After collecting

all submissions the first mix server starts the mixing part. Each mix server

decrypts and permutes the messages and transmits them to the next server, the

last mix server is the receiver.

During submission each sender composes his plaintext p =

msg||sH1(msg)||asirQ, which consists of the signed message and a pa-

rameter asirQ, where asi is a secret, random value. The parameter asirQ

is optional, it is necessary only for the anonymous reply. Si chooses u(i)

randomly and generates N symmetric keys: K
(i)
j = H2(e(rsP, PKMj

)u
(i)

)

(j = 1, . . . , N). Si uses all keys to encrypt the plaintext. The receiver key

KR(= KN ) is applied first, and the key of the first mix server at last, and

M
(i)
1 = Enc

K
(i)
1
(Enc

K
(i)
2
(. . . Enc

K
(i)
R

(p))) is obtained. Finally, Si transfers the

pair (V
(i)
1 ,M

(i)
1 ) to the first mix, where V

(i)
1 = u(i)rQ. The mix servers are able

to compute the same symmetric keys with the help of V
(i)
1 .

Only the first mix server collects the pairs from the senders, the other mix

servers obtain their input from the previous servers. Table 3 shows the calcula-

tions made by a mix server (denoted by Mj , where j = 2, ..., N − 1). The first

mix server proceeds the same calculations, the only difference is that the input

comes from the senders. The computations of the last mix server - the receiver

- are a little bit different.

Mj−1 Mj Mj+1

SKMj
= (mj , xj)

PKMj
= xj(

∏j

k=1 mk)Q

V
(i)
j

||M
(i)
j

−−−−−−−−→

V
(i)
j+1 = mj · V

(i)
j

K
(i)
j

= H2(e(sP, V
(i)
j+1)

xj )

M
(i)
j+1 = Dec

K
(i)
j

(M
(i)
j

)

V
(i)
j+1

||M
(i)
j+1

−−−−−−−−−→

Table 3: Calculations of a mix server.

Table 3 summarizes the input, the calculations and the output of a mix

server for a message sent by the sender Si. The mix server Mj receives n

pairs (V
(i)
j ||M

(i)
j ), where i = 1, . . . , n. Each pair originates from a sender.

The mix server uses the first value for calculating the symmetric key that is

necessary to decrypt the second value. For each sender, Mj calculates a ran-

domized symmetric key K
(i)
j from values V

(i)
j+1, sP with the secret key xj .
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With this key Mj removes one ”encryption layer” from the ciphertexts, hence

M
(i)
j+1 = Enc

K
(i)
j+1

(Enc
K

(i)
j+2

(. . . Enc
K

(i)
R

(p))). Mj applies a random permutation

and sends the permuted list of new pairs to the next mix. The factor mj assures

the unlinkability between V
(i)
j and V

(i+1)
j .

3.4 Receiving the message

The last mix server, the receiver R, obtains the pairs from MN−1. After calcu-

lating the symmetric key, R decrypts the message, verifies the eligibility of the

anonymous sender, stores the signed message and the parameter that is used to

reply anonymously.

R calculates the key K
(i)
R = H2(e(sP,mNV

(i)
N )xN ) from the input values and

decrypts M
(i)
N . After receiving p = msg||sH1(msg)||asirQ, R checks, whether

the message p came from an eligible sender by verifying the signature of RA. R

sends sH1(msg) to ββ that publishes (sH1(msg), rsH1(msg)). R also computes

the commitment value μi = e(sP,mNV
(i)
N ) · e(rsH1(msg),mQ) and verifies its

existence on ββ. If μi is in the database, then RA has received H1(msg)+u
(i)P

during registration, where u(i) is the secret value known only by Si. Being μi and

εi on ββ means, that after the deadline, the sender’s identity can be revealed

by the mix servers, including R. The receiver stores: μi||msg||sH1(msg)||asirQ

for eligible senders. The value μi is necessary for anonymity revocation and the

value asirQ is for the reply to the anonymous sender.

3.5 Anonymous reply

In this phase the roles (sender and receiver) are reversed, the receiver R would

like to send a message back to the anonymous senders.

The receiver calculates the symmetric key K̂
(i)
R = H2(e(sP, asirQ)xN ) to

encrypt the message t(i). K̂
(i)
R is computed from the public key of RA, the secret

key of the receiver and the user’s value asirQ stored by the receiver. R creates

the values V̂
(i)
1 = asirQ and

̂

M
(i)
1 = Enc

K̂
(i)
R

(t(i)) and sends them to the first

mix server. There is a pair for each sender.
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Mj−1 Mj Mj+1

SKMj
= (mj , xj)

PKMj
= xj(

∏j

k=1 mk)P
̂

V
(i)
j

||
̂

M
(i)
j

−−−−−−−−→
̂

V
(i)
j+1 = mj · V̂

(i)
j

K̂
(i)
j

= H2(e(sP,
̂

V
(i)
j+1)

xj )

̂Mj+1
(i)

= Enc ̂
K

(i)
j

(
̂

M
(i)
j

)

̂

V
(i)
j+1

||
̂

M
(i)
j+1

−−−−−−−−−→

Table 4: Calculations of a mix server for the reply messages.

Mix servers perform similar calculations to the mixing phase. The first ele-

ment is multiplied by mj , the second value is encrypted. Server Mj sends the

new pairs to the next mix server in permuted order. Server MN−1 outputs all

the calculated pairs with index H1(
̂

K
(i)
N−1) on ββ.

To obtain the reply plaintext t(i), Si calculates the symmetric keys (K̂
(i)
j =

H2(e(rsP, PKMj
)asi ) (j = 1, . . . , N−1), K̂

(i)
R = H2(e(srP, xNQ)asi )) and looks

for the value H1(
̂

K
(i)
N−1) on ββ. If the sender finds the hash value, accesses all

the corresponding data and decrypts the encrypted message,

t(i) = Dec
K̂

(i)
R

(Dec
K̂

(i)
1

(. . . Dec
̂

K
(i)
N−1

(
̂

M
(i)
N ))).

3.6 Anonymity revocation

In this optional phase the identity of a sender is determined after a deadline.

In general, anonymity revocation should be provided even if the sender is not

willing to cooperate with the authority (e.g. an examinee does not want to obtain

a bad grade).

For the case when the sender is not cooperative, the mixnet determines the

identity of the sender. The real identity of a sender can be retrieved only, if

either the sender reveals it himself or all the mix servers together calculate it,

as follows. The receiver possessing μi calculates μxN

i , where xN is the secret

key parameter, and transmits it to the first mix server. Server Mj powers the

received value to the secret key parameter xj and sends it to the next server.

Finally, μx
i = [e(sP, u(i)mrQ) · e(rsH1(msg),mQ)]x is computed. By calculating

the hash value H2(μ
x
i ), which equals to H2(e(s(H1(msg) + u(i)P ), rmQ)x), the

identity number Si is revealed via Si = H2(μ
x
i )⊕ εi, where εi is available on ββ.

We should mention if the sender is cooperative, the real identity can be

revealed without the mix servers in an easier and lower-cost way. The sender
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provides the secret value u(i) and R can determine the identity of the sender by

calculating H2(e(rsH1(msg), xmQ) · e(u(i)rsP, xmQ))⊕ εi.

From the calculations above one can see the adaption of the property of

bilinearity. The mixnet obtains the necessary hash value for anonymity revo-

cation by calculating H2(e(s(H1(msg) + u(i)P ), rmQ)x), ββ needs to compute

H2(e(s(H1(msg)+u
(i)P ), xmQ)r) and the sender is able to verify the correctness

of εi on ββ by computing εi = Si ⊕H2(e(rsH1(msg), xmQ) · e(rsP, xmQ)u
(i)

).

4 Security of BILMIX

4.1 Correctness

First we prove that our scheme is correct concerning the mix process, the anony-

mous reply and also the process of anonymity revocation.

Definition 8 Correctness. We call our mixnet correct, if for every plaintext

calculated by the receiver there is a corresponding ciphertext in the input list of

the mixnet. This means that every plaintext is a multiple decryption of a cipher-

text, and no two plaintexts are the multiple decryptions of the same ciphertext.

The following theorem states that our mixnet is correct.

Theorem9. The proposed mix protocol is operating correctly.

Proof. Each sender Si sends a pair (V
(i)
1 = u(i)rQ,M

(i)
1 ) to the first

mix server M1, where M
(i)
1 is an N-times encryption of the plaintext

p containing the message msg of Si. M1 receives n pairs from the

senders. Mj (where j = 2, . . . , N − 1) receives a permutation of mod-

ified pairs from Mj−1. Senders calculate the symmetric keys for all mix

servers: K
(i)
j = H2(e(rsP, PKMj

)u
(i)

) = H2(e(rsP, xj(
∏j

k=1mk)Q)u
(i)

),

where j = 1, . . . , N − 1. Mix server MJ , J = 1, . . . , N − 1 calcu-

lates symmetric key K
(i)
J = H2(e(sP, V

(i)
J+1)

xJ ) = H2(e(sP,mJV
(i)
J )xJ ) =

H2(e(sP,mJ(
∏J−1

k=1 mk)u
(i)rQ)xJ ) = H2(e(sP, (

∏J
k=1mk)u

(i)rQ)xJ ). Because

of the bilinear property of pairing e the corresponding keys are the same iff

j = J .

R receives a set of the pairs (V
σ(i)
N ,M

σ(i)
N ) from MN−1, where σ(i) is

the permutation of i = 1, . . . , n. In order to get the plaintexts the re-

ceiver does the following calculations for all M
(j)
N : p′j = Dec

K
(j)
R

(M
(j)
N ) =

Dec
K

(j)
R

(Enc
K

(i)
R

(pi)), j = 1, . . . , n, i = σ(j) and K
(j)
R = H2(e(sP,mNV

(j)
N )xN =

H2(e(sP,mN (
∏N−1

k=1 mk)u
(j)rQ)xN ) = H2(e(sP,mu

(j)rQ)xN ). The symmet-

ric key for R calculated by the sender Si is the following: K
(i)
R =

H2(e(rsP, PKR)
u(i)

) = H2(e(rsP, xNmQ)u
(i)

). Using the bilinear property of
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pairing e the receiver is able to get a plaintext if and only if K
(j)
R = K

(i)
R ,

thus the plaintext p′j is pi. R calculates μi and checks whether it is on

ββ: μi = e(sP,mNV
(i)
N ) · e(rsH1(msg),mQ) = e(sP,mN (

∏N−1
k=1 mk)u

(i)rQ) ·

e(rsH1(msg),mQ) = e(sP,mu(i)rQ) · e(rsH1(msg),mQ) = e(su(i)P, rmQ) ·

e(sH1(msg), rmQ) = e(s(u(i) +H1(msg)P ), rmQ).

The anonymous reply works similarly to the message submission. In this

case the sender is R and the anonymous receiver is the sender Si who sent

the message msg stored. Si calculates the value index = H1(
̂

K
(i)
N−1) =

H1(H2(e(rsP, PKMN−1
)asi )) = H1(H2(e(rsP, xN−1(

∏N−1
k=1 mk)Q)asi ))

and looks for it on ββ. Since mix server MN−1 printed the pair

(V̂
(i)
N ,

̂

M
(i)
N ) with the index H1(

̂

K
(i)
N−1) = H1(H2(e(sP, V̂

(i)
N )xN−1)) =

H1(H2(e(sP,mN−1
̂

V
(i)
N−1)

xN−1))) = H1(H2(e(sP, (
∏N−1

k=1 mk)asirQ)xN−1)),

Si finds index and two other values: V̂
(i)
N = (

∏N−1
k=1 mk)asirQ and

̂

M
(i)
N = Enc

̂

K
(i)
N−1

(. . . (Enc
K̂

(i)
1

(Enc
K̂

(i)
R

(t)))), where K̂
(i)
j = H2(e(sP,

̂

V
(i)
j+1)

xj ) =

H2(e(sP, (
∏j

k=1mk)asirQ)xj ) calculated by Mj . Due to the bilin-

ear property of e these keys are the same as Si calculates for Mj :

H2(e(rsP, PKMj
)asi ) = H2(e(rsP, xj(

∏j
k=1mk)Q)asi ).

Furthermore, R calculates symmetric key: K̂R1
= H2(e(sP, asirQ)xN and

Si calculates symmetric key: K̂R2 = H2(e(rsP, xNQ)asi ). Pairing e has bilinear

property so K̂R1
= H2(e(sP, asirQ)xN ) = H2(e(rsP, xNQ)asi ) = K̂R2

holds.

4.2 Anonymity

4.2.1 Security Model

We consider a static adversary in the semi-honest model. A model is called semi-

honest, if the dishonest users follow the protocol and also keep a record of all

intermediate results. An adversary is static, if corrupted players are specified at

the beginning of the protocol, they stay corrupted during the whole process and

no new ones stand in with them. The adversary observes all public information

and possesses all attacked players’ secret information (i.e. keys, permutation).

4.2.2 The Experiment of Anonymity

We give the definition of anonymity with the help of an experiment. The

anonymity property of our system says that an adversary who has access to cor-

rupt players’ secret data and observes all the public information of the protocol

including views of the Registration Authority and mix servers, input ciphertexts

and the shuffled list of output messages, cannot link a message with the sender.
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We also assume, that there is at least one mix server and two senders that are not

corrupted by the adversary, i.e. the secret permutation and secret keys are not

revealed to the adversary, furthermore secret keys of the Registration Authority

and ββ are not revealed to the adversary. At the end, the adversary tries to

give an input/output message pair that originates from a non-corrupted sender

according to the knowledge he gained during the registration and the mixing

part. The experiment is run by adversary Aanon and the challenger Sys.

Definition 10 Anonymity. The experiment is parameterized by security

parameter λ.

1. The challenger Sys generates secret and public keys for input 1λ. Public keys

and public parameters are sent to ββ.

2. Secret keys and secret random permutations πi of the corrupted mix servers

are given to Aanon.

3. Sys runs the mix process with the list of ciphertexts (c1, . . . , cn) that is

published with the output list of plaintexts (pπ(1), . . . , pπ(n)) on ββ, where

corrupted users’ message pairs (pi, ci) and all intermediate results are revealed

to Aanon.

4. The adversary outputs b′ ∈ {0, 1} for (c0, c1, pb, pb) pairs, where b ∈ {0, 1},

where plaintexts, ciphertexts are generated by senders that were never corrupted

and b = 1−b, and assuming that user-specific commitment values and encrypted

identity values for all users are listed on ββ in a permuted order.

We define the advantage of the adversary in this experiment by

AdvSys,Aanon
(λ) = |Pr[b′ = b]−

1

2
|.

The mix network process possesses property of anonymity if for any PPT

adversaryAanon the advantage AdvSys,Aanon
(λ) is negligible, where probability is

taken over the coin-flips of Aanon, as well as random coins used in the experiment

for key, permutation, plaintexts and identity number generation.

4.2.3 Proving Anonymity

Let us review the Matching Diffie-Hellman Problem ([Frankel et al. 1996],

[Ohkubo and Abe 2000]) and the Matching Find-Guess Problem

([Fujisaki and Okamoto 1999]).

Definition 11 Matching Diffie-Hellman Problem (MDHP) in G2. For

every r ∈ Z∗q given Q, rQ ∈ G2 and V0, V1, rVb, rVb̄ ∈ G2, the problem is to

output b ∈ {0, 1}.
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Definition 12 Matching Find-Guess Problem (MFGP). For ev-

ery plaintexts x0, x1 and for every secret symmetric keys K0,K1 given

(EncK0
(x0), EncK1

(x1), xb, xb), the problem is to output b ∈ {0, 1}.

Theorem13. If there exists a static adversary in the semi-honest model that

breaks sender anonymity in BILMIX, there exists a polynomial time algorithm Â

that solves the co−BDHP1,2, or else it solves either the MFGP or the MDHP

with probability non-negligibly better than 1/2 in the random oracle model.

Proof. First of all, we prove that if BILMIX does not provide sender anonymity,

i.e. there exists a polynomial time algorithm Aanon, we can construct an efficient

algorithm A that solves the following problems with the help of Aanon.

Definition 14 BILMIX Problem (BP). For any P, sP ∈ G1 and

Q, rQ, rxQ ∈ G2 there are tuples (V0,M
(0)
ξ ), (V1,M

(1)
ξ ), (rVb,M

(b)
ξ+1),

(rVb̄,M
(b̄)
ξ+1) given, where s, r, x ∈ Z∗q , Vi ∈ G2, moreover M

(i)
j are ci-

phertexts for i ∈ {0, 1} and j ∈ {ξ, ξ + 1}, where M
(b)
ξ+1 = Dec

K
(b)
ξ

(M
(b)
ξ ) and

K
(b)
ξ = H2(e(sP, Vb)

rx). The problem is to output b ∈ {0, 1}.

We construct the efficient algorithm A, as follows. A simulates the operation

of the players of Sys, i.e. mix servers, RA and the corrupt senders. The honest

senders and the honest mix server, denoted by (S0, S1),Mξ, respectively, are

chosen at the beginning. A sets rQ to be the message being sent to the next

mix server by Mξ and rxQ to be the public key of Mξ. Afterwards, A generates

the remaining secret/public keys and input messages. A during the simulation

rejects secret key exposure queries with respect ξth key. A simulates the view

by simulating the keys and the list of ciphertexts in the following way.

A sets sP as a public key for RA and simulates keys of the ascending servers

by randomly choosing mξ+1,mξ+2, . . . ,mN and xξ+1, xξ+2, . . . , xN to be the

secret keys, and generating mξ+1rQ, mξ+1mξ+2rQ,. . . ,(
∏N

k=ξ+1mk)rQ

and xξ+1mξ+1rQ, xξ+2mξ+1mξ+2rQ, . . . , xN (
∏N

k=ξ+1mk)rQ to be

the public keys. For the descending servers A randomly chooses

mξ−1,mξ−2, . . . ,m1 and xξ−1, xξ−2, . . . , x1 as secret keys, and sets Q,m−1ξ−1Q,

m−1ξ−1m
−1
ξ−2Q,. . . , (

∏ξ−1
k=2m

−1
k )Q and xξ−1Q, xξ−2m

−1
ξ−1Q, xξ−3m

−1
ξ−1m

−1
ξ−2Q, . . . ,

x1(
∏ξ−1

k=2m
−1
k )Q as public keys. The following public values are also gen-

erated for all servers (starting from the first one): x1(
∏ξ−1

k=2m
−1
k )Q,. . . ,

(
∏ξ−2

k=1 xk)m
−1
ξ−1Q, (

∏ξ−1
k=1 xk)Q, (

∏ξ−1
k=1 xk)xrQ, (

∏ξ−1
k=1 xk)xxξ+1rmξ+1Q, . . . ,

(
∏ξ−1

k=1 xk)x(
∏N

k=ξ+1 xkmk)rQ.

A reveals the secret values of corrupt users and all public ones to Aanon, then

randomly chooses permutations for the corrupt servers and also reveals them to

Aanon. For simplicity, we set all corrupt server permutations to the identity.
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The list of messages are simulated as follows. Denote the elements of the list

sent to Mj by V
(i)
j ||M

(i)
j , where i = 1, . . . , n is the index number of a sender

and j = 1, . . . , N the sequential number of a mix server. A simulates the list for

Mξ+1 by inserting (rVb,M
(b)
ξ+1) and (rVb̄,M

(b̄)
ξ+1) into random positions and for

the rest of the list A randomly chooses y
(i)
ξ+1 ∈ Z∗q , calculates V

(i)
ξ+1 = y

(i)
ξ+1Q and

randomly chooses M
(i)
ξ+1 from the ciphertext space. Then A simulates the list

for Mξ, he inserts (V0,M
(0)
ξ ) and (V1,M

(1)
ξ ) into the proper positions, for the

rest of the list randomly chooses y
(i)
ξ ∈ Z∗q and sets V

(i)
ξ = y

(i)
ξ Q. A computes

M
(i)
ξ = Enc

K
(i)
ξ

(M
(i)
ξ+1), where K

(i)
ξ = H2(e(srP, rxQ)u

(i)

), where u(i) = m−11 ·

. . . ·m−1ξ−1y
(i)
ξ t
−1

, where t ∈ Z∗q is randomly chosen.

For descending serversA randomly choosesm
(i)
j for j = ξ−1, . . . , 1, calculates

V
(i)
j = (m

(i)
j )−1 · V

(i)
j+1, and K

(i)
j = H2(e(sP, V

(i)
j+1)

xj ) and computes M
(i)
j =

Enc
K

(i)
j

(M
(i)
j+1).

For ascending servers A randomly chooses m
(i)
j for j = ξ + 2, . . . , N − 1,

calculates V
(i)
j = m

(i)
j−1 · V

(i)
j−1 and K

(i)
j = H2(e(sP,m

(i)
j V

(i)
j )xj ) and computes

M
(i)
j = Dec

K
(i)
j

(M
(i)
j−1).

After decryption the last server receives the plaintexts that are revealed to

Aanon. Plaintext pi is a form of msgi||signi||rvi. A outputs μi, εi, where μi =

e(sP,mNV
(i)
N ) · e(tsigni,

∏N
k=ξ+1mkrQ) and chooses εi ∈ {0, 1}l randomly.

During simulation A calls random oracles for calculating hash values. After

A reveals the list of plaintexts, ciphertexts and all intermediate results, i.e.

properly simulated views and lists, Aanon distinguishes the two messages in

MN ’s list originate from S0 and S1, i.e outputs b. From this result A can derive

the correspondence between the pairs given in BILMIX Problem and output b.

We get the advantage of static adversary as AdvA = AdvAanon
.

As a second step we prove the following lemma.

Lemma15. If A breaks BP, there exists a polynomial time algorithm Â that

breaks the co−BDHP1,2, or else it breaks either the MFGP or the MDHP .

For solving the co − BDHP1,2 or else for solving either the MFGP or the

MDHP we create algorithms Âco−BDHP1,2 , ÂMFGP , ÂMDHP , respectively. We

construct Â as follows.

1. Â receives a co − BDHP1,2 instance (P, aP, bP) ∈ G3
1 and (Q, aQ, cQ) ∈

G3
2 and an MFGP instance (EncK0

(x0), EncK1
(x1), xb, xb) and an MDHP

instance (Q, rQ, (V0, V1), (rVb, rVb)).

2. Input each instance to the appropriate algorithm, to Âco−BDHP1,2 or ÂMFGP

or ÂMDHP .

909Huszti A., Kovacs Z.: Proving Anonymity for BILMIX



3. Output the data received from the algorithms as a solution to the input

instances.

Let list the steps of the algorithms Âco−BDHP1,2 , ÂMFGP and ÂMDHP .

Âco−BDHP1,2
after receiving its input generates a problem instance for the sub-

routine A. A solves the problem and outputs the necessary data to Âco−BDHP1,2
.

Âco−BDHP1,2
passes the output to Â. A has access to the random oracle H2.

Denote the maximum number of queries to H2 by qnum, that is polynomial in

the security parameter λ. We assume that there is j ∈ {0, 1}, such that the value

e(sP, Vj)
rx is among the values that A can ask from H2. If A asks the proper

e(sP, Vj)
rx, A solves the co − BDHP1,2. Let Qi denote the value that is asked

from H2. We denote the probability that e(sP, Vj)
rx is element of the list:

Pco−BDHP1,2
:= Pr[∃i ∈ {1, . . . , qnum}, ∃j ∈ {0, 1} : Qi = e(sP, Vj)

rx].

Algorithm Âco−BDHP1,2
:

1. Receives (P, aP, bP) ∈ G3
1 and (Q, aQ, cQ) ∈ G3

2.

2. Sets rQ := Q, rxQ := cQ, Q := r−1Q, where r ∈ Z∗q randomly chosen.

3. Sets P := P, sP := bP.

4. Chooses b0 ∈ {0, 1} randomly.

5. Sets V ′b0 := aQ and randomly chooses V ′
b0

∈ G2.

6. Calculates V0 := r−1V ′0 and V1 := r−1V ′1 .

7. Randomly chooses ciphertexts M
(0)
ξ ,M

(1)
ξ from the ciphertext space, keys

K0,K1 from the keyspace and calculates M
(i)
ξ+1 = DecKi

(M
(i)
ξ ) for i ∈ {0, 1}.

8. Chooses b ∈ {0, 1} randomly.

9. Chooses i ∈ [1, . . . , qnum] randomly.

10. Sends problem instance {P, sP,Q, rQ, rxQ, (V0,M
(0)
ξ ),(V1,M

(1)
ξ ),

(V ′b ,M
(b)
ξ+1), (V

′

b̄
,M

(b̄)
ξ+1)} to A.

11. A makes a query to H2. If he asks the i-th query, output the value A asked

and stop.

We note that the simulation is perfect only if the proper Qi – that gives the

solution to the problem instance – is asked, otherwise no query is sent to H2.

In case Â receives an MFGP problem instance, it is forwarded to ÂMFGP .

Algorithm ÂMFGP :

1. Receives (M
(0)
ξ := EncK0(x0),M

(1)
ξ := EncK1(x1),M

(b)
ξ+1 := xb,M

(b)
ξ+1 := xb).

2. Randomly chooses P ∈ G1, Q ∈ G2 and s, r, x ∈ Z∗q calculates sP ,rQ and

rxQ.

3. Randomly chooses V0, V1 ∈ G2 and calculates V ′0 = rV0, V
′
1 = rV1.

4. Randomly chooses b0 ∈ {0, 1}.

5. Sends problem instance {P, sP,Q, rQ, rxQ, (V0,M
(0)
ξ ),(V1,M

(1)
ξ ),
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(V ′b0 ,M
(b)
ξ+1), (V

′

b̄0
,M

(b̄)
ξ+1)} to A.

6. A makes a query to H2. For all queries randomly chooses a value form the

keyspace.

7. Returns value b that is output by A.

If Â receives a MDHP problem instance, then it is forwarded to ÂMDHP .

Algorithm ÂMDHP :

1. Receives (Q, rQ, (V0, V1), (rVb, rVb)).

2. Randomly chooses P ∈ G1, s, x ∈ Z∗q and calculates sP and rxQ.

3. Randomly chooses ciphertexts M
(0)
ξ ,M

(1)
ξ from the ciphertext space, keys

K0,K1 from the keyspace and calculates M
(i)
ξ+1 = DecKi

(M
(i)
ξ ) for i ∈ {0, 1}.

4. Randomly chooses b0 ∈ {0, 1}.

5. Sends problem instance {P, sP,Q, rQ, rxQ, (V0,M
(0)
ξ ),(V1,M

(1)
ξ ),(rVb,M

(b0)
ξ+1 ),

(rVb,M
(b0)
ξ+1 )} to A.

6. A makes a query to H2. For all queries randomly chooses a value form the

keyspace.

7. Returns value b that is output by A.

ÂMFGP generates the instance {P, sP,Q, rQ, rxQ, (V0,M
(0)
ξ ),

(V1,M
(1)
ξ ),(V ′b0 ,M

(b)
ξ+1) (V ′

b̄0
,M

(b̄)
ξ+1)} and ÂMDHP calculates the instance

{P, sP,Q, rQ, rxQ, (V0,M
(0)
ξ ),(V1,M

(1)
ξ ),(rVb,M

(b0)
ξ+1 ), (rVb,M

(b0)
ξ+1 )}.

Note that these instances might not be correct to A, since b may not equal to

b0. If b �= b0, A does not stop in tpoly steps, where tpoly is polynomial in λ.

Therefore Â chooses b ∈ {0, 1} randomly.

The success probability of Â is calculated as follows. Assume that

Pco−BDHP1,2
is not negligible. The probability that Âco−BDHP1,2

outputs Qi =

e(sP, Vb0)
rx is

Pco−BDHP1,2

2qnum . That is not negligible.

The other case is when Pco−BDHP1,2
is negligible. ÂMFGP and ÂMDHP re-

ceive an input and generate the problem instances to A. The probability that

b = b0 and b �= b0 is 1
2 . In case b = b0 the success probability equals to the

success probability of A, denoted by PA. When b �= b0, Â chooses b ∈ {0, 1}, let

Pb denote the probability that b is chosen. Hence, the probability that Â outputs

the bit b is (1 − Pco−BDHP1,2
)( 12PA + 1

2Pb). Assuming PA ≥ 1
2 + μ, where μ is

not negligible and Pb =
1
2 we get

(1− Pco−BDHP1,2
)(
1

2
PA +

1

2
Pb) ≥ (

1

2
+
μ

2
)− (

1

2
+
μ

2
)Pco−BDHP1,2

≥
1

2
+ μ̂,

for some μ̂ that is not negligible. Therefore the success probability of Â is not

negligible. Since all algorithms are efficient, Â is efficient as well.
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We also prove that if DDH2,2,2 Problem is hard, then the adversary is not

able to link the plaintexts with their senders, even if RA reveals all data from

the database, except the secret key s and R provides all data including the

secret keys. We define variations of a new problem called Divisible Decisional

Factorized Diffie-Hellman Problem(DDF-DHP) as follows.

Definition 16 The DDF −DHi,j Problem. Given a pairing problem in-

stance Γ = (q,G1, G2, GT , P1, P2, e) and values i, j ∈ {1, 2} we define the

DDF − DHi,j Problem to be the following: Given aPj , bPj , xPj and cPi, with

a, b, c, x ∈ Z∗q , we are asked to decide whether c ≡ x/ab (mod q).

Lemma17. Given a pairing problem instance Γ = (q,G1, G2, GT , P1, P2, e) if

there is an efficient adversary that breaks DDF −DHi,j Problem, then we can

construct a polynomial time algorithm that breaks the DDHj,j,j Problem, where

values i, j ∈ {1, 2}.

Proof. ADDHj,j,j
algorithm is constructed as follows. ADDHj,j,j

receives in-

put aPj , bPj , cPj , with a, b, c ∈ Z∗q , generates and submits input instance

(aPj := aPj , bPj := bPj , xPj := dcPj , cPi := dPi) to ADDF−DHi,j
, where d ∈ Z∗q

chosen randomly. ADDHj,j,j
returns the output (true or false) received from

ADDF−DHi,j
. If ADDF−DHi,j

is efficient, then ADDHj,j,j
is efficient as well.

Theorem18. If there exists a static, efficient adversary in the semi-honest

model that links plaintexts with their senders in BILMIX, there exists a poly-

nomial time algorithm ADDF−DH1,2
that solves DDF −DH1,2 Problem in the

random oracle model.

Proof. RA possesses a list of triplets (Si, H1(msg)+u(i)P, s(H1(msg)+u(i)P ))

and R has a list of tuples (msg,H1(msg), sH1(msg), rsH1(msg), rmu
(i)Q). Let

A′ denote the adversary who can link plaintexts with their senders, i.e. decide

whether an element msg from the list of R is generated by Si from the list of

RA. We construct the efficient algorithm ADDF−DH1,2 as follows.

Algorithm ADDF−DH1,2
:

1. Receives (P,Q, aQ, bQ, xQ, cP), where P and Q are generators of G1 and

G2, respectively.

2. Simulate public key inputs for A′: P := P, sP := tP, srP := vP, where

t, v ∈ Z∗q are randomly chosen

Q := Q, sQ := tQ, rQ := aQ, mQ := bQ, xmQ := lbQ, where l ∈ Z∗q is

randomly chosen

3. Simulate a list element of R: msg := bs, H1(msg) := T, sH1(msg) := tT,

rsH1(msg) :=M, rmu(i)Q := xQ, where bs is a random bitsring and T,M ∈ G1

are chosen randomly

4. Simulate a list element of RA: Si := I, H1(msg) + u(i)P := T + cP,
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s(H1(msg) + u(i)P ) := t(T + cP), where I is a random bitstring

5. Simulates a list element of ββ: μi := e(tP, xQ) · e(M, bQ), εi := I ⊕H2(μ
l
i)

6. Sends all data to A′.

7. Returns value b ∈ {true, false} that is output by A′.

During simulation ADDF−DH1,2 calls random oracles for calculating hash values.

We get the advantage of static adversary as AdvADDF−DH1,2
= AdvA′ .

5 Conclusions and future work

As far as we know, our proposal (BILMIX) is the first hybrid mixnet based

on asymmetric bilinear pairings. We have given an experiment-based security

definition of sender anonymity and also proved that the mixnet we proposed

provides anonymity against static adversaries in the semi-honest model, as-

suming that the co-Bilinear Diffie-Hellman Problem, the Matching Find-Guess

Problem and the Matching Diffie-Hellman Problem are hard. We also defined

variations of a new problem called Divisible Decisional Factorized Diffie-Hellman

Problem (DDF-DHP), we show that finding connection between data stored by

RA and R is at least as hard as breaking DDF-DHP, with the assumption that

secret keys of RA and ββ are kept secret. The next step is to extend BILMIX

to achieve end-to-end verifiability in a malicious model.
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