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Abstract: The analysis of microarray gene expression data to obtain useful information is a
challenging problem in bioinformatics. Feature selection is an efficient computational technique
in processing the analysis of high-dimensional microarray data. Due to the lack of label infor-
mation in practice, unsupervised feature selection is considered to be more practically important
and correspondingly more difficult. In this paper, we propose a novel unsupervised feature se-
lection method, which utilizes local regression and discriminant analysis for structure learning
on microarray gene expression data. By imposing row sparsity on the weight matrix through
l2,1-norm regularization, the proposed method optimizes for selecting the discriminative genes
which are more informative and better capture the interesting natural classes of samples. We de-
velop an effective algorithm to solve the l2,1-norm-based optimization problem in our method
and present the convergence analysis. Finally, we evaluate the proposed method on real microar-
ray gene expression datasets. The experimental results demonstrate that the proposed method not
only achieves good performance, but also outperforms other state- of-the-art unsupervised feature
selection methods.
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1 Introduction

In recent decades, DNA microarray techniques have enabled biologists to simultane-

ously measure the expression level of thousands of genes in specific samples at a given

time and under certain conditions [De Rinaldis 2007]. High-throughput expression pro-

filing can be used to compare the level of gene transcription to obtain valuable biolog-

ical information, and thus assists in diagnosis, prognosis, and treatment of the disease.

In a typical microarray dataset, the number of genes is several thousand, far exceeding

the limited number of samples, which is one of the main problems for data analysis.

Although a large number of genes are measured in experiments, usually many genes

are not useful for producing a desired learning or predictive result. The limited number

of samples may lead to overfitting due to the noisy genes. Thus, the direct application

Journal of Universal Computer Science, vol. 24, no. 6 (2018), 725-741
submitted: 22/5/17, accepted: 15/10/17, appeared: 28/6/18 © J.UCS



of data analysis methods to original high-dimensional microarray data is usually ineffi-

cient [Somorjai et al. 2003]. In microarray data, usually only a smalle number of genes

show strong correlation with the targeted phenotypes [Golub et al. 1999], which are

called informative genes. Selecting the informative genes is important for data analysis

to identify the set of genes that can further help in finding the biological information

embedded in microarray data.

Feature selection has become one of the most important computational techniques

to microarray data analysis. The goal of feature selection is to search for the most dis-

criminant feature/gene subset that can distinguish different classes. Feature selection

brings the following immediate effects for microarray data analysis: speeding up the

algorithms, reducing the risk of overfitting, and improving the accuracy of the pre-

dictive results [Dy and Brodley 2004]. Based on the availability of label information,

feature selection can be broadly classified into supervised and unsupervised methods

[Guyon et al. 2002]. In many bioinformatics applications, with the rapid accumula-

tion of high-dimensional data, the given datasets are usually without any class label

information, and it is usually too expensive to perform the labeling through experts

[Zhang et al. 2002]. Thus, it is of great importance to develop unsupervised approaches

that can perform the feature selection task with only the unlabeled data.

In this paper, we propose a novel method for unsupervised feature selection, which

incorporates local regression and discriminant analysis into a learning model to select

genes in microarray data analysis. The global structure of microarray data is captured

by discriminant analysis, and the local manifold structure is revealed by local regres-

sion. l2,1-norm sparse regression is also added in the model as a constraint to learn the

gene weights correlatively. The resultant formulation of the proposed method optimizes

for selecting the most discriminative features which can better capture both the global

and local data structure, i.e., selecting the most discriminative genes that are more infor-

mative and better capture the interesting natural clusters of samples. We develop an it-

erative algorithm to effectively solve the optimization problem in the proposed method.

We also present the convergence analysis of the algorithm. Experimental results on six

real microarray gene expression datasets demonstrate the effectiveness of the proposed

method.

2 Related work

Many studies have addressed supervised feature selection by learning with a training

set where there are samples with known class labels [Hall 2000, Yassein et al. 2016].

Unsupervised feature selection is more challenging than supervised feature selection,

since the definition of relevance of features becomes unclear due to the lack of label

information [Dy and Brodley 2000].

Unsupervised feature selection has attracted increasing attention in recent years.

Without the label information, a variety of methods have been adopted to perform unsu-

pervised feature selection by extracting features that effectively maintain the important
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underlying structure of data [Ye et al. 2016]. The global data structure is quite important

in data structure learning. The Max Variance (MaxVar) method [Herrero et al. 2003]

and principal component analysis [Ding 2003] are two typical methods to preserve the

global structure of data.

Instead of learning the global structure, a family of methods perform unsupervised

feature selection by preserving the local structure of data. The importance of local struc-

ture learning has been well recognized in the recent development of unsupervised fea-

ture selection methods. LapScore considers the local preserving property of individual

features [He et al. 2006]. MCFS [Cai et al. 2010] selects the features that can best pre-

serve the multi-cluster structure. JELSR [Hou et al. 2011] constructs a graph based on

locally linear approximation, and unifies embedding learning with sparse regression to

perform feature selection. NDFS [Liu et al. 2012] utilizes spectral clustering to learn

the cluster labels, by which a feature subset is selected during the learning of cluster

labels.

Discriminant analysis is important to unsupervised feature selection. The objective

of discriminant analysis is to select discriminative features such that the within-class

distance is as small as possible and the between-class distance is as large as possible

[Fukunaga 2013] . Yang et al. [Yang et al. 2012] have proposed a local discriminant

analysis method for unsupervised feature selection by defining a local discriminative

score to evaluate the within-class scatter and the between-class scatter. However, the

discriminant analysis is applied only to local structure learning, which may neglect

some informative features from the global perspective.

In this paper, we consider both global and local structure learning for unsupervised

feature selection in Microarray data analysis. We apply discriminant analysis for global

structure learning. Meanwhile, we utilize local regression for local structure learning.

Local regression is effective for capturing the nonlinear geometrical information of data

[Sun et al. 2008]. We incorporate local regression, discriminant analysis and l2,1-norm

regularization into a framework for unsupervised feature learning, with the objective to

select the most discriminative genes in microarray data analysis.

3 Notations and preliminaries

In a gene expression microarray study, the output of the gene expression microarray

study is recorded as a gene expression data matrix X = (xij)m×n (m � n) that con-

tains the expression of m features/genes across n samples. For the sake of convenience,

we use s1, s2, ..., snto denote the n unlabeled samples and g1, g2,..., gm to denote the

m genes. Thus, xij is the expression level of gene gi in sample sj .

Feature selection is to select the most informative d (d < m) genes to differentiate

the samples originating from different clusters. Consider that s1, s2, ..., sn are sampled

from c clusters. We use L = [l1, 12, ..., lc] ∈ {0, 1}
n×c to denote the label matrix,

where li = [l1i, l2i, ..., lni]
T ∈ {0, 1}n×1 is the label vector containing the labels of n
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samples in cluster i. lji = 1 if sj is in cluster i, and lji = 0 otherwise. Let F denote the

scaled cluster indicator matrix and define it as F = [F1, F2, ..., Fn]
T = L(LTL)−1/2.

3.1 Local regression

We construct a local label predictor pi = [p1i, p2i, ..., pni]
T to estimate the cluster

label li in cluster i. We choose kernel regression as the local predictor. Motivated by

the kernel density estimation [Sun et al. 2008], based on the neighborhood of si, the

predictor pti(t = 1, .., n) is defined as

pti =

∑
sj∈Ni

K(si, sj)ltj∑
sj∈Ni

K(si, sj)
, (1)

where K(·, ·) is the kernel function and Ni is the neighborhood of si. Define a matrix

M = (mij)n×n, where

mij =

{
K(si,sj)∑

sj∈Ni
K(si,sj)

, sj ∈ Ni,

0, otherwise.
(2)

From equations (1) and (2), we have pi = Mli. Let P = [p1, p2, ..., pc] be the pre-

dictive matrix. Thus, we can obtain P = ML. To reduce the side effect of irrelevant

and noisy genes, we formulate the optimization problem by using l1-norm regulariza-

tion which has the effect of reducing the large fitting error.

min
L
‖L−ML‖1 = min

li

c∑
i=1

‖li −Mli‖1. (3)

As suggested in [Sun et al. 2008], we use the scaled cluster indicator matrix F to re-

place L, since equation (3) is difficult to derive in a quadratic form, which can lead to

better performance in practice.

min
F
‖F −MF‖1. (4)

From [Sun et al. 2008], we know that equation (4) is equivalent to minimizing the fol-

lowing problem,

min
F

Tr(FTGF ), (5)

where G = B − (M +MT ) and B is an n× n diagonal matrix with bi =
∑n

i=1(M +

MT )ij on the diagonal. Since F = L(LTL)−1/2, it can be proved that FTF = Ic,

where Ic is an identity matrix with c dimensions.
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3.2 Discriminant analysis

The linear discriminant analysis is to find a linear transformation matrix W that projects

the data matrix X to the low-dimensional space WTX . The total scatter matrix St and

the between-cluster scatter matrix Sb are defined as [Ye et al. 2016, Fukunaga 2013]

St =
∑n

i=1
(xi − μ)(xi − μ)T = X̃X̃T , (6)

Sb =
∑c

i=1
ni(μi − μ)(μi − μ)T = X̃FFT X̃T , (7)

where μ is the mean of all data, μi is the mean of data in cluster i, ni is the number

of data in cluster i, X̃ = XHn is the data matrix after being centered and Hn = I −
1
n1n1

T
n . The objective of linear discriminant analysis is to minimize the within-cluster

distance while maximizing the between-cluster distance in the lower dimensional space

as

max
W

Tr((WTStW )−1WTSbW ). (8)

Let W = [w1, ..., wm]T ∈ R
m×q , where wi is the ith row of W . In the lower

dimensional space WTX , wi corresponds to the weight of feature gi. Thus, the weight

of each gene can be calculated according to the transformation matrix W .

4 Unsupervised feature learning for gene selection

In this section, we propose a novel method for gene selection in microarray data analysis

by unsupervised feature learning. The proposed method incorporates Local regression

and Discriminant analysis for unsupervised Feature Selection. Thus, we refer to it as

the LDFS method.

4.1 The objective function

By incorporating local regression, discriminant analysis and l2,1-norm regularization

into a framework for unsupervised feature learning, the objective function of the pro-

posed LDFS method is formulated as

min
W,F
−Tr(WTSbW ) + α‖W‖2,1 + βTr(FTGF ),

s.t.FTF = Ic, F ≥ 0,WTStW = I,
(9)

where α and β are two balanced parameters. The condition of F = Y (Y TY )−1/2

is relaxed to FTF = Ic. F is constrained to be nonnegative, which can help to re-

lieve the deviation from the true solution [Liu et al. 2012]. To avoid the trivial solution

[Tao et al. 2016], the transformation matrix W is constrained to be uncorrelated with

respect to St, i.e., WTStW = I .
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The term ‖W‖2,1 in equation (9) is introduced to ensure that the transformation

matrix W is sparse in rows. Since the ith row wi corresponds to the weight of gene gi,

the sparsity constraint on rows make W suitable for gene selection. Each gene is ranked

according to ‖wi‖2 in descending order and the top d genes are selected.

4.2 Optimization

The optimization problem in equation (9) is not convex when both W and F are opti-

mized simultaneously. Also, the l2,1-norm regularization term is non-smooth. We pro-

pose an iterative algorithm to divide the problem into two steps: learning W while fixing

F , and learning F while fixing W .

According to equations (6) and (7), we replace St with X̃X̃T and replace Sb with

X̃FFT X̃T in equation (9). Furthermore, we replace FTF = Ic with γ
2 ‖F

TF − Ic‖
2
F

in the objective function. Thus, equation (9) can be rewritten as

min
W,F
−Tr(WT X̃FFT X̃TW ) + α‖W‖2,1 + βTr(FTGF ) +

γ

2
‖FTF − Ic‖

2
F ,

s.t.F ≥ 0,WT X̃X̃TW = I,

(10)

where γ > 0 is a parameter which should be large enough to ensure the orthogonality.

4.2.1 Optimize W by fixing F

The optimization problem for updating W is equivalent to the following problem.

min
W

Tr(WT X̃FFT X̃TW ) + α‖W‖2,1,

s.t.WT X̃X̃TW = I.
(11)

Let U ∈ R
m×m be a diagonal matrix with the ith diagonal element as Uii =

1
2‖wi‖2

.

Since
∂‖W‖2,1

∂W = 2UW , by constructing an auxiliary function and replacing ‖W‖2,1
with WTUW in equation (11), the problem is equivalent to

min
W

Tr(WT (−X̃FFT X̃T + αU)W ),

s.t.WT X̃X̃TW = I.
(12)

The solution of equation (12) can be obtained by solving the following generalized

eigenproblem.

(−X̃FFT X̃T + αU)w̃ = λX̃X̃T w̃. (13)

The matrix W ∈ R
m×q which contains the eigenvectors corresponding to the q smallest

eigenvalues as the column vectors is the solution of (13). Then, we normalize W such

that (WT X̃X̃TW )ii = 1, i = 1, ..., q.
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4.2.2 Optimize F by fixing W

The optimization problem for updating F is equivalent to the following problem.

min
F
−Tr(WT X̃FFT X̃TW ) + βTr(FTGF ) +

γ

2
‖FTF − Ic‖

2
F ,

s.t.F ≥ 0.
(14)

Since Tr(WT X̃FFT X̃TW ) = Tr(FT X̃TWWT X̃F ), let Q = βG− X̃TWWT X̃ ,

and (14) can be rewritten as

min
F

Tr(FTQF ) +
γ

2
‖FTF − Ic‖

2
F ,

s.t.F ≥ 0.
(15)

Following [Liu et al. 2012], we update F by multiplicative rules, as

Fij ← Fij
(γF )ij

(MF + γFFTF )ij
. (16)

Then, F is normalized to satisfy that (FTF )ii = 1, i = 1, ..., n.

Based on the above analysis, we summarize the procedure of the proposed LDFS

method in Algorithm 1. The proposed algorithm will stop when the objective function of

equation (9) tends to a constant or the change is smaller than a threshold. The threshold

is set very close to zero.

4.3 Discussion

In this section, we first show the convergence behavior of Algorithm 1 and then discuss

the time complexity.

4.3.1 Convergence analysis

We prove that the objective function of equation (9) is non-increasing under the up-

dating rules of W and F in Algorithm 1. Before analysis, we show a lemma from

[Nie et al. 2010].

Lemma 1 For any nonzero vectors s and h, the following inequality holds:

‖s‖2 −
‖s‖22
2‖h‖2

≤ ‖h‖2 −
‖h‖22
2‖h‖2

. (17)

The convergence behavior of LDFS is summarized in the following theorem.

Theorem 1 Algorithm 1 will monotonically decrease the value of the objection function

in equation (9) in each iteration.
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Algorithm 1 The proposed LDFS method

Input: Gene expression data matrix X ∈ R
m×n; Parameters α, β, γ, k, c, q; Number

of features to select d;

Output: d selected features;

1: Construct the k-nearest neighbor graph and calculate M and G;

2: The iteration step t = 1; Initialize F 1 ∈ R
n×c and set U1 ∈ R

m×m as an identity

matrix;

3: Calculate W 1 by solving the generalized eigenproblem (−X̃F 1(F 1)T X̃T +

αU1)w̃ = λX̃X̃T w̃;

4: repeat

5: Calculate Qt = βG− X̃TW t(W t)T X̃;

6: F t+1
ij = F t

ij
(γF t)ij

(QtF t+γF t(F t)TF t)ij
;

7: Update the diagonal matrix U t+1 with the ith diagonal element as U t+1
ii =

1
2‖wt

i
‖2

;

8: Calculate W t+1 by solving the generalized eigenproblem

(−X̃F t+1(F t+1)T X̃T + αU t+1)w̃ = λX̃X̃T w̃;

9: t=t+1;

10: until Convergence

11: Sort each gene gi according to ‖wi‖2 in descending order and select the top d

ranked ones.

Proof: We rewrite the formulation in equation (9) as

Θ(W,F ) = −Tr(WT X̃FFT X̃TW ) + α‖W‖2,1 + βTr(FTGF )

+
γ

2
‖FTF − Ic‖

2
F .

(18)

We show that Θ(W t+1, F t+1) ≤ Θ(W t, F t).

We first prove Θ(W t+1, F t) ≤ Θ(W t, F t) when F t is fixed. With F t fixed,

Θ(W t, F t) = Tr((W t)TBtW t) + α‖W t‖2,1. In the (t + 1)th iteration, W k+1 is

obtained from

min
W,WT X̃X̃TW=I

Tr(WT (−X̃F t(F t)T X̃T + αU t)W ), (19)

which indicates that

Tr((W t+1)T (−X̃F t(F t)T X̃T + αU t+1)W t+1)

≤ Tr((W t)T (−X̃F t(F t)T X̃T + αU t)W t).
(20)
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Since ‖W‖2,1 =
∑m

i=1 ‖wi‖2, we obtain

Tr((W t+1)T (−X̃F t(F t)T X̃T )W t+1) + α‖W t+1‖2,1

+α
∑m

i=1
(
‖wt+1

i ‖22
2‖wt

i‖2
− ‖wt+1

i ‖2) ≤ Tr((W t)T (−X̃F t(F t)T X̃T )W t)

+α‖W t‖2,1 + α
∑m

i=1
(
‖wt

i‖
2
2

2‖wt
i‖2
− ‖wt

i‖2).

(21)

According to Lemma 1, we know

‖wt+1
i ‖22

2‖wt
i‖2
− ‖wt+1

i ‖2 ≥
‖wt

i‖
2
2

2‖wt
i‖2
− ‖wt

i‖2. (22)

Combining equations (21) and (22), we have

Tr((W t+1)T (−X̃F t(F t)T X̃T )W t+1) + α‖W t+1‖2,1

≤ Tr((W t)T (−X̃F t(F t)T X̃T )W t) + α‖W t‖2,1
(23)

That is

Θ(W t+1, F t) ≤ Θ(W t, F t). (24)

Next, we prove Θ(W t, F t+1) ≤ Θ(W t, F t) when W t is fixed by using the method

in [Yang et al. 2011]. For the sake of convenience, we denote

g(F ) = Tr((FTQF ) +
γ

2
‖FTF − Ic‖

2
F . (25)

With W t fixed, we have Θ(W t, F t) = g(F t). It is easy to prove g(F t+1) ≤ g(F t).

Thus, we have

Θ(W t, F t+1) ≤ Θ(W t, F t). (26)

According to equation (24), we have Θ(W t+1, F t+1) ≤ Θ(W t, F t+1) ≤ Θ(W t, F t).

Thus, Algorithm 1 monotonically decreases the objective value in each iteration till

convergence. �

4.3.2 Complexity analysis

To optimize the objective function of LDFS, the most time-consuming operation is to

solve the generalized eigenproblem (−X̃FFT X̃T + αU)w̃ = λX̃X̃T w̃, which has a

time complexity of O(m3), where m is the number of features/genes. Empirical results

show that the convergence is fast and only several iterations (less than 10 iterations in

the experiments) are needed to reach convergence. Thus, the proposed method scales

well in practice.
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Table 1: Properties of Datasets

Dataset # of samples # of Genes # of Clusters

LUNG 203 3312 5

COLON 62 2000 2

TOX-171 171 5748 4

GLIOMA 50 4434 4

LYMPHOMA 96 4026 9

ALLAML 72 7129 2

5 Experiment

In this section, we conduct experiments to evaluate the performance of the proposed

LDFS method on microarray gene expression datasets. We perform two groups of ex-

periments. In the first group, we test the performance of LDFS by using K-means

clustering. In the second group, we test the performance of LDFS by using Nearest

Neighbors (NN) classifier. We compare the proposed LDFS method with several state-

of-the-art unsupervised feature selection methods, including LapScore [He et al. 2006],

MCFS [Cai et al. 2010], JELSR [Hou et al. 2011] and NDFS [Liu et al. 2012]. We also

compare these feature selection methods with the baseline method which uses all the

features for clustering and classification. In the experiments, the number of selected

genes is ranged over {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. The parameters are

tuned over {10−6, 10−4, 10−2, 1, 102, 104, 106}. The number of nearest neighbors is

set as k = 5. We report the best result of all the methods by using different parameters.

5.1 Dataset description

In the experiments, six public gene expression datasets are collected to illustrate the

performance of different feature selection methods. The datasets are LUNG, COLON,

TOX-171, GLIOMA, LYMPHOMA and ALLAML, which are downloaded from http:

//featureselection.asu.edu/datasets.php. We summarize the proper-

ties of the datasets in Table 1 and briefly introduce them as follows.

– LUNG: 203 samples are described by the expression level of 12600 genes. The

samples consist of 5 clusters with 139, 21, 20, 6, and 17 samples. The 3312 genes

with standard deviations larger than 50 expression units are retained for the 203

samples.

– COLON: 62 samples are collected from two clusters. 22 samples in one of the

clusters are collected from a tumor biopsy, and the other 40 samples in the other

cluster are normal.
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Table 2: NMI (mean% ± std) of Different Methods

Dataset LUNG COLON TOX-171 GLIOMA LYMPHOMA ALLAML

Baseline 48.1±3.6 4.3±0.6 10.1±1.6 41.1±2.1 60.4±4.2 9.8±4.4

LapScore 52.7±4.9 11.0±1.8 14.2±2.1 48.5±2.7 65.3±2.7 13.6±4.2

MCFS 58.8±5.2 7.8±0.5 24.4±1.0 47.0±3.1 65.0± 2.9 13.2±5.0

JELSR 60.8±4.2 70.4±1.7 22.8±4.8 49.8±3.3 59.7±3.6 10.7±4.5

NDFS 60.8±4.1 6.1±2.2 24.9±1.0 50.6±2.9 60.8± 3.8 12.2±5.3

LDFS 63.2±4.4 11.9±2.0 25.9±1.7 51.2±3.0 65.8±3.2 14.1±4.0

– TOX-171: 5748 genes are taken from 171 samples. The samples consist of 4 clus-

ters with 45, 45, 39, and 42 samples.

– GLIOMA: 50 samples are collected from 4 clusters with 14, 7, 14, and 15 samples.

The samples contain the expression level of 4434 genes.

– LYMPHOMA: 96 samples contain the expression level of 4026 genes. The samples

consist of 9 clusters with 46, 11,10, 9, 6, 6, 4, 2, and 2 samples.

– ALLAML: 7129 genes are taken from 72 samples, which belong to patients suf-

fering from acute myeloid leukemia (AML: 25 samples) and acute lymphoblastic

leukemia (ALL: 47 samples).

5.2 Results by clustering

In the first group experiment, K-means clustering is applied to evaluate the performance

of LDFS. We apply two widely used evaluation metrics, i.e., Normalized Mutual Infor-

mation (NMI) and Accuracy (ACC), to evaluate the clustering results. C = {Ci}
c
i=1

denotes the ground truth clustering configuration of a dataset, where c is the ground

truth cluster number. C ′ = {C ′
i}

c′

i=1 denotes the clustering configuration obtained by

a clustering algorithm, where c′ is the obtained cluster number. n is the cardinality of

the whole dataset. ni is the cardinality of Ci. n
′
i is the cardinality of C ′

i. And, nij is the

cardinality of the intersection of Ci and C ′
i. The NMI criteria is defined as

NMI(C,C ′) =

∑c
i=1

∑c′

j=1 nij log(n · nij/(ni · nj))√
(
∑c

i=1 ni log(ni/n))(
∑c′

j=1 nj log(nj/n))
. (27)

A larger value of NMI indicates better performance. Let li denote the ground truth label

of si and l′i denote the index of clustering result of si. ACC is defined as [Ye et al. 2016]

ACC(C,C ′) =

∑n
i=1 δ(li,map(l′i))

n
, (28)
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Table 3: ACC (mean% ± std) of Different Methods

Dataset LUNG COLON TOX-171 GLIOMA LYMPHOMA ALLAML

Baseline 67.0±1.6 53.2±2.3 40.9±2.6 52.0±3.1 56.5±5.3 68.2±6.5

LapScore 60.4±1.9 60.5±2.8 43.9±2.1 60.1±3.2 62.5±3.6 73.7±5.1

MCFS 81.3 ±3.2 58.2±2.5 48.1±3.0 60.4±2.7 60.7± 3.8 73.4±5.8

JELSR 78.7±4.2 58.3±3.2 47.2±3.8 59.5±3.4 58.3±4.2 70.5±6.1

NDFS 77.5±4.1 59.4±3.0 47.6±3.1 58.4±3.3 58.6± 4.5 72.6±5.7

LDFS 85.2±2.4 61.3±2.5 49.6±3.0 61.5±2.9 63.2±4.0 74.1±5.5

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise, map(l′i) is the best mapping

function that permutes clustering labels to match the ground truth labels using the Kuhn-

Munkres algorithm. A larger value of ACC indicates a better clustering result.

Each feature selection method is first performed to select genes on the gene expres-

sion data sets. After selecting the genes, K-means clustering is performed by using only

the selected genes. We repeat each experiment 20 times with random initializations and

report the mean performance with standard deviation.

First, we compare the performance of the feature selection methods on the six gene

expression datasets. The experimental results in terms of NMI and ACC evaluation met-

rics are shown in Tables 2 and 3, respectively. We can see from the two tables that most

of the unsupervised feature selection methods perform better than the baseline method.

Gene selection can improve the accuracy of clustering results. The proposed LDFS

method performs better than the other methods on the six datasets. This is because

LDFS utilizes local regression and discriminative analysis simultaneously to learn the

weight of each gene.

Then, we evaluate the performance of the clustering results on the six datasets by

varying the number of selected genes. The performance of the clustering results in terms

of NMI and ACC evaluation metrics are shown in Figures 1 and 2, respectively. We can

see from the figures that the proposed LDFS method performs better than other methods

in most cases when selecting different number of genes. Note that for different datasets,

the numbers of selected genes to obtain the best results are different. For example, in

Figure 1, on the Lung dataset, the optimized gene number is about 180, while on the

Colon dataset, the optimized gene number is about 60. This is because in different

microarray datasets, the correlations of genes are different. In Figure 2, the trend of the

performance when using the ACC evaluation metric is very similar to that when using

the NMI evaluation metric. The proposed LDFS method obtains better performance

than other methods when both NMI and ACC evaluation metrics are applied.
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Figure 1: NMI by varying the number of selected features/genes.

5.3 Results by classification

In the second group, Nearest Neighbors (NN) classifier is applied to test the perfor-

mance of LDFS. We utilize 5-fold cross-validation by which the original samples are

randomly partitioned into 5 equal-sized subsets. One subset is retained as the validation

data for testing the model, and the remaining 4 subsets are used as training data. The

cross-validation process is then repeated 5 times (the folds), with each of the 5 subsets

of samples being used exactly once as the validation data. We perform gene selection

using the training data, and evaluate the performance of the selected features on the test

data. The experiments are repeated 20 times on the best parameter combination. We

report the mean classification error with standard deviation.
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Figure 2: ACC by varying the number of selected features/genes

Table 4 shows the classification results of different methods on the six datasets. We

can see that the proposed LDFS method has a lower classification error than the other

methods. Most of the unsupervised feature selection methods perform better than the

baseline method, except on the LUNG and GLIOMA datasets. Specially, on the LUNG

dataset, only the proposed unsupervised feature selection method performs better than

the baseline method. This is because, by the proposed method the selected genes have

less redundancy and have a higher accuracy in predictive results.

The classification performances when varying the number of selected genes are
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Table 4: Classification Error (mean% ± std) of Different Methods

Dataset LUNG COLON TOX-171 GLIOMA LYMPHOMA ALLAML

Baseline 5.9±1.6 22.4±3.3 39.2±4.6 22.0±3.0 16.7±3.0 18.7±4.6

LapScore 8.9±1.7 16.4±3.0 37.9±4.1 22.2±3.2 15.6±2.3 13.9±3.5

MCFS 6.8±1.2 16.1±2.8 29.5±3.8 19.2±2.8 15.5± 2.6 13.6±4.0

JELSR 7.3±2.0 17.2±3.2 31.8±4.2 20.1±3.1 16.6±2.9 17.3±3.7

NDFS 8.4±1.6 17.6±3.1 34.3±3.7 22.0±2.7 16.1± 3.2 15.3±4.1

LDFS 5.4±2.0 15.3±2.9 28.8±4.0 18.6±3.0 15.0±3.1 13.2±3.8

shown in Figure 3. The proposed LDFS method has a lower classification error than

other methods on most of the selected features. We note that LDFS also has a better

stability than other methods on most of the datasets. Moreover, we also notice that

LDFS obtains better results than other methods with fewer features on most of the

datasets. For example, on the LUNG, TOX-171, and ALLAML datasets, with the fewest

selected features (10 features), LDFS obtains the best performance of all the methods.

6 Conclusions and Future Work

In this paper, we apply unsupervised feature selection in microarray data analysis, by

incorporating local regression, discriminant analysis, and l2,1-norm regularization into

a framework for data structure learning. The proposed method optimizes for selecting

the most discriminative genes that have less redundancy and a higher accuracy in pre-

dictive results. We derive an effective algorithm to solve the optimization problem of

the proposed method and present the convergence analysis. Experiments on six real

microarray gene expression datasets demonstrate that the proposed method not only

achieves good performance, but also outperforms other state-of-the-art unsupervised

feature selection methods. In the experiments, we use the gene expression datasets that

are wildly used for feature selection methods to demonstrate their effectiveness. The

digital gene expression datasets obtained by next-generation sequencing techniques are

interesting and important. We will learn more about the digital gene expression datasets

and conduct experiments on the digital gene expression datasets in the further work.
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Figure 3: Classification Error by varying the number of selected features/genes.
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