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Abstract: In this era characterized by rapid improvements in the quality of living, people are 
eager to seek better medical services. However, the medical resource shortage threatens 
people’s daily lives and has become an important factor causing dissatisfaction. Furthermore, 
as a sub-branch of artificial intelligence, computational intelligence is widely used to solve 
real-world problems like resource allocation. This paper proposes a medical resource allocation 
model based on mass customization, considering parameters such as doctors’ professional 
level, patient preferences, and the medical station distribution. This model aims at optimizing 
and balancing the uneven distribution of medical resources by taking into account the patient 
requirements and medical costs. Moreover, a genetic algorithm is applied to improve the 
computational efficiency of the proposed method. The results show that the medical resource 
allocation model based on mass customization can lead to a higher profit. Suggestions are also 
discussed for sustainable development in medical service based on mass customization. 
 
Keywords: mass customization, medical resources, computational intelligence, allocation 
model, willingness to pay 
Categories: H.4.0 

1 Introduction  

In China, with the rapid economic growth and accelerated transformation of society, 
people’s living standards continue improving. Therefore, we need to develop public 
services that are compatible with the level of economic and social development. In the 
past few years, the Chinese government has put forward a series of policies to 
promote equalization of the public service [Office of the State Council, 15]. As an 
important part of public service, the public health services reflect the public welfare 
of medical services. Additionally, they provide opportunities for the progressive 
realization of accesses to basic health services for all people, which is also the key to 
improving the health conditions of Chinese nationals and extending their average life 
expectancy. 
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Currently, China has established a coverage of the urban and rural health service 
system, which is comprised of hospitals, primary healthcare institutions, and 
professional public health institutions. However, in some cases, medical resource 
allocation is unreasonable and affects the fairness and efficiency of medical services. 
The service capacity of the medical institutions at the grassroots level is insufficient. 
Additionally, their utilization efficiency is not high [Office of the State Council, 15]. 
To solve these problems, Li Bin, Director of the National Health Program in China, 
proposed that China form a 15-minute medical service circle by 2030. That is to say, 
wherever we are, we can easily reach a healthcare institution within 15 minutes, 
making it more convenient for patients to see a doctor [Li, 16]. Furthermore, the 
concept of mobile medical services is proposed to settle the uneven medical resource 
distribution in China. The advantages of mobile medical services are to help patients 
make use of medical resources thoroughly and to promote the rational allocation of 
these resources.  
With the continuous increase in people’s income, their medical needs are gradually 
diversified. Some tend to see a doctor whenever they want, while some hope to get 
more professional medical services, etc. However, because of the limited medical 
resources and input costs, the demands of all patients cannot be fully met. We can 
only reduce the costs and provide the medical services to meet most patients’ needs.  
Moreover, the optimization of resource allocation requires high time complexity, for 
it is regarded as an NP-hard (Nondeterministic Polynomial time) problem. There is 
not any effective algorithm for this kind of problem for the time being. Nevertheless, 
it is easy for us to calculate the result for any one of the scheme. If we traverse all of 
the schemes, we may get the best solution, which will, however, lead to an 
exponential growth for the calculation time. To improve its computational efficiency, 
we applied the genetic algorithm to the calculation. 

In this paper, we apply mass customization (MC) in the public medical model, 
aiming to balance costs and services provided by the public medical system for a 15-
minute medical service circle. The literature review is elaborated in the following 
section, and the model construction is demonstrated in the third section. Additionally, 
the case study is discussed in the fourth section, while the summary is illustrated in 
the fifth section.  

2 Literature Review 

2.1 Medical resources allocation base on MC 

MC is currently a very popular production or service mode. Customers can no longer 
be lumped together in a vast homogeneous market, but are individuals whose 
individual wants and needs can be ascertained and fulfilled. Fragmenting demands 
can yield powerful advantages. Leading companies have created processes for low-
cost, volume production of great variety, and even for individually customized goods 
and services. They have discovered the new frontier in business competition: MC 
[Joseph, 92]. It seeks to both meet individual needs and achieve the low costs brought 
about by mass production as much as possible [Daaboul, 11]. Although mass 
production and personalized requirements seem to be a paradox, its trend is already 
recognized by researchers and enterprises [Bonev, 15]. One of the effective means to 
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reduce costs is to improve the economies of scale. Currently, MC is widely applied 
throughout the world. For example, in the Korean housing market, additional 
manpower for site management is reduced through MC [Shin, 08]. While the 
dominance-based rough set approach (DSRA) is used to achieve MC in the area of 
airline services [Liou, 10]. 
From the patient's point of view, care customization has always been an important 
aspect of healthcare quality. Patients want to feel that they are getting the care tailored 
to their particular needs [Minvielle, 14]. Personalized healthcare (PHC) can be 
defined as a customization of the medical provision that accommodates individual 
differences in all stages in the process, from prevention to diagnosis and treatment, to 
post-treatment follow-up [Boccia, 12]. PHC is gaining popularity globally to combat 
clinical complexities underlying various metabolic or infectious disorders including 
diabetes, cardiovascular diseases, communicable diseases etc. [Kuldeep, 17]. As part 
of PHC, personalized medicine contains personal health planning, early diagnosis, the 
right drug for the right patient, and predictable side effects [Fierz, 04] [Cutica, 14] 
[Abrahams, 09]. Furthermore, personalization in nutritional needs is an emerging 
trend, whereby food and drink products are scientifically formulated to address 
consumers’ individual nutritional needs, arising from key lifestyle health conditions, 
such as heart disease, diabetes, and bone/joint health [Jane, 08]. An emerging goal of 
medical nutrition therapy is to tailor dietary advice to an individual's genetic profile 
[Vakili, 07]. The principles of PHC are summarized in regards to several aspects, 
such as treatment, risk control, and lifestyle refinement [Salvi, 12]. 

However, the high cost of customization in medical services makes its weakness 
more and more obvious: the limited medical resources cannot meet all personal needs. 
Thus, MC is a key method to solve this problem appropriately. In further detail, MC 
aims to provide clients with an adequate diversification of products and services, as 
well as ensuring that consumers can get a particular product and/or service they need 
at a relatively low price. The balance between costs and requirements is the focus of 
MC research [Wang, 14]. Additionally, there are several key decision factors in an 
MC strategy: customer sensitivity, process amenability, and competitive environment 
[Hart, 95]. However, adopting MC successfully in healthcare requires overcoming 
several barriers. First, because it defies traditional cost analysis, it requires innovative 
business models in which customization and cost control are jointly optimized. 
Second, it requires an understanding of how the viewpoint of the service beneficiaries 
(patients and their relatives) can be taken into account. Next, it requires an 
understanding of how to combine the use of information technologies and the 
workforce in the same work organization to re-engineer the care process. Finally, it 
requires wisdom in the choice of the criteria on which care customization is based, as 
care customization is subject to opposing objectives [Minvielle, 14]. 

In this paper, an MC model on medical resource allocation is proposed, aiming to 
consider both cost and personalized requirements. By quantifying the customers’ 
demands, this model seeks maximized profit in both economization and customization 
effects. 

2.2 Computational intelligence in medical resource allocation 

Computational intelligence (CI) is a sub-branch of AI, which is characterized by the 
capability to make computational adaptions, fault tolerance, high computational 
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speed, and less error-prone to noisy information sources. Furthermore, CI represents 
algorithms for solving real-world problems somewhat intelligently, as similar 
problems are solved by natural systems [Konar, 06]. This class of CI algorithms 
encompasses algorithms like artificial neural networks (NNs), evolutionary 
computation (EC), swarm intelligence (SI), artificial immune systems (AISs) and 
fuzzy systems (FSs). A commonality of all these algorithms is that the principles for 
their operations are borrowed from natural systems [Engelbrecht, 07]. For instance, a 
genetic algorithm (GA) is inspired by the process of natural selection. In detail, 
computational technology can be applied in several fields, such as sports [Fister, 15], 
medicine [Wiwanitkit, 16], and detection system [Wu, 10]. 

For special elaboration, the medical resource allocation problem is interpreted as 
a constraint satisfaction problem (CSP) [Tsai, 09], which is demonstrated as a set of 
variables and a set of constraints on the value of the variables. CSPs on finite domains 
are typically solved using search algorithms. There are five basic search algorithms 
for CSPs: Naive Backtracking (BT), Back Jumping (BJ), conflict-directed Back 
Jumping (CBJ), Back Marking (BM), and forward checking (FC) [Prosser, 93]. 
Furthermore, allocation issue is an NP-hard problem, which can also be solved by a 
genetic algorithm. Genetic algorithms are widely used in optimization and search 
problems by relying on bio-inspired operators, such as crossover, mutation, and 
selection. [Mitchell, 96]. 

In further detail, Valouxis and Housos [Valouxis, 03] proposed a refined model 
and an efficient solution methodology for the monthly work shift and rest assignment 
of hospital nursing personnel. The integrated model utilizing the strengths of 
operational research and AI was applied to the solution. Similarly, more and more 
scholars have focused on the nurse allocation model [Oughalime, 08] [Dowsland, 
98]]. Tsai and Li [Tsai, 09] developed a two-stage mathematical modelling for a nurse 
scheduling system by applying a GA wherein hospital management requirements, 
government regulations, and nursing staff’s shift preferences are incorporated. 
Furthermore, a refinement of the CSP technique is proposed, which is applied to 
reduce hospital costs [Costa, 12]. 

Based on previous sections discussed before, a medical resource allocation model 
is proposed in the following section, aiming to settle the problem caused by the 
paradox of costs and individual demands. Additionally, the GA is applied to solve the 
NP-hard problem. 

3 MC Modelling 

3.1 Assumptions 

People tend to see a doctor near their residence for convenience when diseases are 
neither severe nor difficult to handle. Otherwise, they will select large-scale hospitals 
in the central part of the city for better medical treatment. Besides, doctors belonging 
to mobile medical stations are flexible to be assigned according to various 
reservations in different regions. 

This proposed allocation model aims at maximizing the revenue and 
customization simultaneously. To simplify the model and to seize the main issues to 
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be concerned in the paper, several assumptions are proposed before the modelling 
process as follows: 

Assumption 1. Doctors can be grouped into several types according to their 
different professional skills. To maximize their efficiency, one doctor would be 
allocated to treat one type of disease. 

Assumption 2. To optimize the resource allocation, patients should select their 
treatment in advance. Meanwhile, patients are able to select multiple treatments one 
day to save their time and payment on transportation. 

Assumption 3. To standardize the process of treatment, each type of disease 
would take a same duration of time, thereby normalizing each doctor’s timetable. 
Moreover, costs and payment for the identical treatment would be fixed. 

Assumption 4. Doctors can treat only one patient at a time to ensure the effect of 
the treatment. Similarly, patients can select only one treatment at a time. 

Assumption 5. Doctors, assigned to one mobile medical station, would receive a 
fixed basic salary and bonus according to the number of patients they treated. 
Additionally, senior professional-level doctors can obtain a higher basic salary than 
junior ones. 

Assumption 6. Considering the selected time slot of a patient would be the best 
choice for a hospital to increase patients’ willingness to pay, while any adjustment of 
time would decrease their willingness to pay. Furthermore, patients tend to select 
those doctors with a senior professional level and regard it worthy of paying more for 
their professional skills. 

It is commonly known that the uneven distribution of medical resources between 
rural and urban areas has been a subject of public criticism. Particularly, non-mobile 
large-scale hospitals attract the most talented doctors, thus widening the gap. This 
paper proposed a mobile medical allocation model, aiming to narrow the gap between 
prosperous regions and backward ones by moving medical resources including 
doctors and equipment. 

However, because of the limited medical resources and doctor shortage, patients’ 
demands would not be totally satisfied. That is to say, we would allocate doctors 
according to maximized revenue and satisfaction rather than simply considering 
everyone’s demands. Only in this way can the utilization of medical resources be 
maximized in practice. 

Table 1 shows the critical parameters used in this model, including variables and 
constants. 

 
Symbol Definition Unit ݓ Number of mobile medical stations  ܥ The ith

 mobile medical station  ܯ Number of patients in the ith station patient ݇ Number of disease types  ܦ ܰ Number of doctors who are allocated to the ith station and 
treat the fth

 disease 
doctor ܦ ܲ A Boolean value (if the jth

 doctor in ith
 station is professional, ܦ ܲ = 1; or, ܦ ܲ =  Cost of the fthܥ  (0

 disease $ ܶ Treatment time consumed for the fth disease minute 
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ܲ Payment for the fth
 disease $ ܴܣ Amount of treatments ordered by the mth

 patient in the ith
 

station 
 A Boolean value (if the mth patient in the ithܴܣ 

 station ordered 
the fth

 treatment, ܴܣ = 1; or, ܴܣ = 0) 
 

ܶ A Boolean value (if the fth
 treatment ordered by the mth

 

patient in the ith
 station is available, ܶ = 1; or, ܶ = 0) 

 ܵ Basic salary for all allocated doctors $ ܵܣ Additional basic salary for senior doctors $ ܤ Bonus from per treatment $ ܤܣ Additional bonus from treatment given by senior doctors $ ܲ ܲ A Boolean value (if the doctor treat the fth
 disease reserved 

for the mth
 patient in the ith

 station is a senior professional 
doctor, ܦ ܵ = 1; or, ܦ ܵ = 0) 

 

ܱ ܶ Ordered time for the fth treatment selected by the mth
 patient 

in the ith
 station 

minute ܣ ܶ Actual reserved treatment time for the fth treatment ordered 
by the mth

 patient in the ith station 
minute ܲܨ Marginal payment on professional level, i.e., increase in the 

amount of willingness to pay for reserved senior professional 
doctors 

$ 

ܶܲ Marginal payment on time, i.e., reduce the amount of 
willingness to pay for the adjusting time compared with the 
ordered time 

$ 

ܲ ܺ Willingness to pay for actual treatment $ ܲ ܻ Increased willingness to pay caused by the doctor’s 
professional level 

$ ܼܲ Reduction in the willingness to pay caused by time $ ܥܣ Marginal cost for each additional patient $ 
a Scale of attention to professional level for patients  
b Scale of attention to time for patients  M݅ Cost for equipment maintenance in a station $ ܶ݅ܥ Total cost in a station $ ݅ܥܨ Total fixed cost for a station  $ ܴ݅ Total revenue in a station $ ܲ݅ Total profit in a station $ 

Table 1: Model parameters 
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3.2 Modelling process 

To maximize the profit of the MC model, the following is shown as an objective 
function where the problem is to be solved: ܽݔܽ݉݃ݎ∑ ( ܲ) = ∑ݔܽ݉݃ݎܽ (ܴ −  (ܥܶ
The total profit can be calculated by the total revenue minus the total costs; the 
parameters impacting on profit are depicted in Figure 1. 
 

 

Figure 1: Basic parameters comprising total profits 

To explain this in greater detail, this paper divides the MC medical costs ∑ ௪ୀଵܥܶ  
into two parts: fixed costs and variable costs based on the assumptions above. The 
fixed costs include doctors’ basic salaries and medical equipment maintenance, and 
the variable costs relying on the patients include the actual material costs and bonus 
for doctors. Thus, we have 	ܶܥ௪

ୀଵ =(ܥܨ +  Cெܣ
ୀଵ )௪

ୀଵ  

where ܥܨ  contains the total basic salaries for both junior and senior professional-
level doctors as well as the costs for equipment maintenance, noted as: 

ܥܨ = ܵ ∗ܦ ܰ
ୀଵ + ܵܣ ∗  ܦ ܲ

∑ ேೖసభ
ୀଵ +  ܯ

Furthermore, ܥܣ is the combination of actual costs and additional bonuses for 
both junior and senior professional-level doctors. Additionally, ܲ ܲ , a Boolean 
value for whether the doctor is senior professional level for each treatment, means 
nothing when the selection is unavailable, noted as: 

Total profits

Total costs

Fixed costs

Doctors' basic
salaries

Medical
equipment

maintenance

Variable costs

Material costs
for additional

patients

Bonus for
additional
patients

Total revenue

Basic treatment
payment

Doctors'
professional

level

Reduction by
time adjusting
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ܲ ܲ=൞ 0， ܶ = 0	0， ܶ = 1	ܽ݊݀	doctor	with	junior		professional	level1， ܶ = 1	ܽ݊݀	݀octor	with	senior	professional	level 
Under this circumstance, ܣC is calculated as: ܣC = 	(ܴܣ ∗ ܥ ∗ ܶ + ܤ ∗ ܴܣ ∗ ܶ + ܤܣ ∗ ܲ ܲ)

ୀଵ  

As mentioned above, the total cost	∑ ௪ୀଵܥܶ  is calculated as follows: 

ܶܥ௪
ୀଵ =(ܵ ∗ܦ ܰ

ୀଵ + ܵܣ ∗  ܦ ܲ
∑ ேೖసభ

ୀଵ + ௪ܯ
ୀଵ + (ܴܣ ∗ ܥ ∗ ܶ + ܤ ∗ ܴܣ ∗ ܶ + ܤܣ ∗ ܲ ܲ)

ୀଵ
ெ
ୀଵ ) 

Compared with non-mobile hospitals, a key issue with MC medical modeling is 
how patients can reasonably share the relatively high operating costs that may be 
incurred in customization. We should first discuss and identify potential patients’ 
willingness to pay for treatment. Different patients have different expectations based 
on their various needs, and thus different functions of willingness to pay correspond 
to different patients. The key elements of willingness to pay to be considered are time 
and professional level, as different patients are assigned a various scale of attention to 
time and professional level parameter. 

Specifically, the total revenue in a station R  consists of the basic treatment 
payment (ܲ ܺ), the additional willingness to pay for the professional level (ܲ ܻ), 
and the reduction of the willingness to pay caused by time adjusting (ܼܲ). ܴ௪

ୀଵ = (ܲ ܺ − ܲ ܻ + ܼܲ)ெ
ୀଵ

௪
ୀଵ  

Among the above-mentioned parameters, ܲ ܺ  relies on whether the patient’s 
order for the treatment at the specific station is available, which is calculated as: ܲ ܺ = ܴܣ ∗ ܲ ∗ ܶ

ୀଵ  

Additionally, ܲ ܻ  demonstrates the professional-level influence on the 
willingness to pay. To refine the different scale of attention to the professional level, 
we set ܽ as the parameter to depict various patients: ܲ ܻ = ܽ ∗ ܲܨ ∗  ܲ ܲோ

ୀଵ  

Furthermore, ܼܲ indicates the willingness to pay on time adjusting, where the 
adjusting degree is calculated by หܱ ܶ − ܣ ܶห. Similar to ܲ ܻ, we set ܾ as the 
parameter to indicate the different scale of attention to time adjusting, thereby 
facilitating the model effect:  
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ܼܲ = ܾ ∗ ܶܲ ∗  (หܱ ܶ − ܣ ܶห ∗ ܶெே
ୀଵ ) 

In sum, the total revenue considering ܲ ܺ, ܲ ܻ, ܼܲ is calculated in detail as 
follows: ܴ௪

ୀଵ =(ܴܣ ∗ ܲ ∗ ܶ
ୀଵ − ܽ ∗ ܲܨ ∗  ܲ ܲோ

ୀଵ + ܾ ∗ ܶܲெ
ୀଵ

௪
ୀଵ ∗  (หܱ ܶ − ܣ ܶห ∗ ܶெே

ୀଵ )) 
This is a typical NP-hard combinatorial optimization problem, for the function is 

influenced by the order of different stations and medical resources, which is not 
monotonic. However, if the function ܲ  can be determined, the enumeration method 
can be used to get the global optimal solution at a small calculation scale, when at a 
larger scale, computational intelligence can be applied to find approximately optimal 
solutions. 

3.3 CI application in the model 

The optimization of the objective function above is a non-linear and discrete 
combinatorial optimization problem. The most basic characteristic of such problems 
is that the variables are discrete, which leads to the fact that the objective function and 
the constraint function in the mathematical model are discrete in their feasible 
domain. Many of the real-world problems are essentially discrete events rather than 
continuous events. The methods for solving such problems are divided into two types: 
exact and approximate algorithms. Exact algorithms are generally used to solve small-
scale problems with an acceptable computation time. Approximation algorithms are 
widely adopted to solve large-scale problems to obtain a satisfying solution with an 
acceptable computation cost. This is a commonly accepted compromise in practice 
when facing large-scale problems in computational intelligence. Using the 
enumeration method is not suitable for large-scale problems. Therefore, to be generic, 
approximate algorithms are preferred. 

Approximation algorithms usually include mathematical programming 
algorithms, heuristic algorithms, and evolutionary algorithms. Among these 
algorithms, evolutionary algorithms have an advantage in that they use a common 
algorithm framework but are not limited to problem contexts, which is convenient for 
adaptation with minimum local changes based on the algorithm framework. Hence, a 
popular tool for solving integer programming problems, an evolutionary algorithm 
(EA), is proposed to deal with this example for demonstration due to their advantages 
over other algorithms [Dorigo, 99]. 

In this paper, a GA, a representative method of an EA, is designed using integer 
encoding and implemented to solve an optimization problem for model testing. 
Moreover, the specific steps of GA is generally listed as follows. 
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Algorithm: Genetic Algorithm 
Input: A initial population P(0), Number of individuals in P(0):  M 
Output: All the populations P 
Procedure: 
1 initialize P(0); 
2 t = 0; 
3 while (t <= T)  do 
4  for i = 1 to M  do 
5   Evaluate fitness of P(t)  
6  end for 
7  for i = 1 to M  do 
8   Select operation of P(t)  
9  end for 
10  for i = 1 to M/2  do 
11   Cross over operation of P(t)  
12  end for 
13  for i = 1 to M  do 
14   Mutation operation to P(t); 
15  end for 
16  for i = 1 to M  do 
17   P(t+1) = P(t) 
18  end for 
19  t = t + 1 
20 end while 
21 return  P 
 

To design a GA, the most important step is to design a chromosome that 
represents a valid solution structure for a targeted optimization problem. Then, the 
fitness function is usually derived from an objective function. This fitness function 
should be set to evaluate alternative solutions from the solution options during the 
evolutionary procedure. To advance the global searching by improving the diversity 
of alternative solutions and improving local searching, genetic operators, including 
crossover, mutation, and selection operators, should be designed. 

The designed chromosome is a sequence of integers that contains the complete 
variables of the objective function. For a chromosome, each variable takes up a fixed 
gene position to represent a gene type, and each gene’s phenotypes are integer values. 

In a GA, the fitness function is used to evaluate alternative solutions. For many 
optimization problems, the objective function can be directly used as the fitness 
function. However, to facilitate the design of the selection operator, the fitness 
function value should fall within the interval of [0, 1]. Hence, in this paper, the 

objective function is standardized as ݂݅ݐ(݆) = ஈ() (ஈ())ೖసభ , which enables the fitness 

value to be within [0, 1]. In the formula, ݂݅ݐ(݆) is the ݆௧  individual’s (alternative 
solution’s) fitness value, where ݆ = 1,2,3, … , ݊, and ݊ is the number of a population 
(one generation’s individuals). ߎ(݆) is the ݆௧ individual’s objective value. 

In our case, there is only one objective function in the optimization process. 
Therefore, the Roulette selection operator, which is widely used in single-objective 
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optimization problems, is adopted for selection operation. Furthermore, the details of 
crossover and mutation operations are elaborated upon in the subsequent paragraphs. 

The crossover operation is used to improve the diversity of the population to 
further the global searching in the evolutionary optimization. This operation applies 
different rules to identify a cross point of two selected individuals and exchange their 
segments of chromosomes. By doing this operation, two parent chromosomes can 
generate a pair of child chromosomes. However, when dealing with classical TSP or 
other combinatorial optimization problems, one of the main difficulties of applying 
EA methods is the design of a suitable crossover operator. This is because it cannot be 
guaranteed that the child chromosomes, which are directly generated by exchanging a 
set of genes, are valid chromosomes representing valid alternative solutions. Hence, 
an additional operation to check and correct invalid individuals within a population 
after crossover operation should be designed. In this paper, two methods were tested. 
The first one is to check all the child chromosomes after the crossover operation and 
then use the original population-generation method, which can generate valid 
chromosomes, to generate a new chromosome to replace any one that is invalid. This 
method can simplify the GA program by improving code reuse and improve the 
population diversity. However, it would result in some children chromosomes missing 
the potential good “patterns” from their parent chromosomes. To compensate for its 
weakness, another method is designed. The main idea is to reset only one or several 
variables’ values. When a child chromosome is invalid following crossover operation, 
its variable is reset to the maximum value. If the reset chromosome is still invalid, two 
or more variables are then reset in the order of their values until the variables reach 
the constraint. By doing this, good “patterns” of parent chromosomes have more 
chance to be passed to their child chromosomes. Finally, to conduct the crossover 
operation, a crossover point on the chromosome structure is randomly selected, then 
the two segments of the parent chromosomes after the crossover point will exchange 
with each other to generate two new child chromosomes. 

The mutation operation is conducted by applying a mutation operator. This 
operator is mainly used to improve the local searching during the evolutionary 
procedure. It differs from crossover selection, which is used to improve the global 
search by changing a large part of the genes of chromosomes. While the mutation 
operation only slightly changes the genes of a chromosome, which can protect good 
“patterns” to help convergence and avoid being trapped by the local optimal. In this 
paper, a single-point mutation operator is adopted. At first, a mutation point is 
randomly selected; then, the gene’s value is reset after the selected point. To ensure 
that the newly generated chromosome is valid, a value is randomly selected from an 
integer set with a dynamic up boundary (maximum integer value), for the gene on the 
mutation position. 

3.4 A Combination of MC and a GA 

In essence, MC involves choosing the most profitable solution among all possible 
solutions. One way is to exhaust all the solutions, calculate their profits, and then find 
the best choice. However, the number of solutions increases exponentially 
corresponding to the basic parameters of each solution, thus making the calculation 
quite complex. As metioned before, the medical resources allocation problem is a 
typical NP-hard problem. The final profit for each solution can be easily calculated, 
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while the global optimal solution, which is time-consuming, is difficult to obtain with 
high computational complexity. However, each allocation solution for medical 
resources can be regarded as a chromosome. By constructing the crossover, mutation, 
and selection operators, a GA can greatly improve the computational efficiency. In 
the real world, we do not need to obtain the best results as long as there is little profit 
gap between the optimal and suboptimal schemes. The difference in the profitability 
of suboptimal schemes can be accepted compared to the time cost of calculating the 
optimal solution. Therefore, we use such an optimization algorithm, GA, to acquire 
the approximate optimal results. 

Coding is the primary and crucial problem to be solved when applying GAs. The 
method of coding affects the operation of genetic operators, such as crossover and 
mutation operators, which determines the efficiecncy of genetic evolution in a high 
degree. In the actual operation of the GA, we use the binary code, where the medical 
resource allocation problem requires quadratic coding. Therefore, we need to convert 
from quadrature to binary, so that the problem can be changed into a more typical one 
that a GA can solve. 

For an MC model, the ultimate goal is not to obtain the highest income or to pay 
the lowest cost, but to obtain the highest profit. Therefore, when we apply the GA to 
the MC model, we need to use the profit as an indicator of the individual in the 
population. By finding the best individual, we can obtain the optimal or suboptimal 
scheme in MC. Thus, the combination of MC and a GA can effectively improve the 
efficiency of calculation, reduce the computational complexity, and reduce the time 
cost. 

 

 

Figure 2: The flowchart of applying the GA to MC 
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4 Case Study 

To verify the model’s reliability and accessibility, data are collected to imitate the real 
world for medical resource allocation based on MC. As depicted in Figure 2, there are 
3 mobile medical stations with 10 patients in Station A, 20 patients in Station B, and 
30 patients in Station C in the chosen region. Furthermore, 12 doctors with different 
treatment domains as well as professional levels belonging to this region are waiting 
for an assignment, aiming to obtain the maximized profit based on MC for the 
government. 

 
Figure 3: Construction of the allocation system 

In further detail, the treatment domain and professional-level conditions of the 12 
doctors in this region are illustrated in Table 2, where 1 represents their ability to 
handle the disease, while 0 indicates that they are unable to operate. Moreover, in the 
row of the professional level, 1 shows the doctor with a senior professional level, and 
0 indicates the junior professional level. 
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Doctor 
No. 

#1 Disease #2 Disease #3 Disease Professional Level 

000001 0 1 0 0 
000002 1 0 0 1 
000003 0 0 1 0 
000004 0 0 1 1 
000005 0 0 1 0 
000006 1 0 0 0 
000007 1 0 0 1 
000008 0 1 0 1 
000009 1 0 0 1 
000010 1 0 0 0 
000011 0 0 1 1 
000012 0 1 0 1 

Table 2: The treatment domain and professional-level conditions of doctors 

Furthermore, selections in Stations A, B, and C are illustrated in detail in Tables 
3, 4, and 5. 1 represents diseases treatments that are selected by patients. 
Simultaneously, patients are supposed to provide their preferred time, which is 
divided into 12 sessions per day. In a case in which the patient did not select one 
treatment, it is assigned 0 for both the disease and time rows in the case study to 
simplify the calculation process. 

 
Patient 

No. 
#1 

Disease 
#1 

Session 
#2 

Disease 
#2 

Session 
#3 

Disease 
#3 

Session 
100001 1 4 0 0 1 5 
100002 0 0 1 4 1 5 
100003 0 0 0 0 1 9 
100004 1 1 1 2 0 0 
100005 1 4 0 0 0 0 
100006 1 5 1 9 1 10 
100007 1 8 0 0 0 0 
100008 0 0 0 0 1 11 
100009 0 0 1 11 1 12 
100010 1 6 0 0 0 0 

Table 3: The reserved treatment and the time of patients around Station A 
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Patient 
No. 

#1 
Disease 

#1 
Session 

#2 
Disease 

#2 
Session 

#3 
Disease 

#3 
Session 

200001 0 0 1 2 0 0 
200002 1 1 1 3 0 0 
200003 1 4 1 6 1 9 
200004 1 5 0 0 1 4 
200005 0 0 0 0 1 7 
200006 0 0 0 0 1 8 
200007 1 4 0 0 0 0 
200008 0 0 0 0 1 3 
200009 1 2 0 0 0 0 
200010 0 0 0 0 1 4 
200011 0 0 1 6 1 5 
200012 1 4 0 0 0 0 
200013 0 0 0 0 1 9 
200014 0 0 0 0 1 10 
200015 1 1 1 3 0 0 
200016 1 7 0 0 0 0 
200017 1 6 1 8 1 11 
200018 1 3 0 0 0 0 
200019 0 0 0 0 1 10 
200020 0 0 1 10 0 0 

Table 4: The reserved treatment and the time of patients around Station B 

Additionally, the values for the basic parameters are shown in Table 6. For 
parameter S (basic salary for all allocated doctors), it is assigned $100 or $150, 
respectively, in two allocation tests, to contrast the profits of optimized solutions 
under different basic salaries. 
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Patient 
No. 

#1 
Disease 

#1 
Session 

#2 
Disease 

#2 
Session 

#3 
Disease 

#3 
Session 

300001 0 0 0 0 1 2 
300002 1 12 1 4 0 0 
300003 1 5 0 0 1 6 
300004 0 0 0 0 1 10 
300005 0 0 0 0 1 6 
300006 1 2 0 0 0 0 
300007 0 0 0 0 1 8 
300008 1 5 0 0 1 4 
300009 0 0 0 0 1 7 
300010 0 0 0 0 1 8 
300011 1 4 0 0 0 0 
300012 0 0 0 0 1 2 
300013 1 4 0 0 0 0 
300014 0 0 0 0 1 11 
300015 0 0 0 0 1 10 
300016 1 10 0 0 0 0 
300017 1 11 1 12 1 10 
300018 1 12 0 0 0 0 
300019 0 0 0 0 1 5 
300020 0 0 1 1 1 4 
300021 1 8 0 0 0 0 
300022 1 7 0 0 1 4 
300023 0 0 0 0 1 7 
300024 0 0 0 0 1 8 
300025 1 6 0 0 0 0 
300026 0 0 0 0 1 2 
300027 1 5 0 0 0 0 
300028 0 0 0 0 1 2 
300029 0 0 0 0 1 10 
300030 0 0 0 0 1 12 

Table 5: The reserved treatment and the time of patients around Station C 

Symbol Definition Value Unit ࢌ Cost of the fth
 disease {9,15,2} $ ࢌࡼ Payment for the fth

 disease {42,55,31} $ ࡿ Basic salary for all allocated doctors 100/150 $ ࡿ Additional basic salary for senior doctors 30 $  Bonus per treatment 6 $  Additional bonus per treatment given by 
senior doctors 

5 $ 

Table 6: The allocation results of doctors in this region 
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By conducting the parameter sensitivity analysis, we amend parameters such as 
the individual crossing probability and gene mutation possibility. The parameters we 
selected for the final calculation are listed in Table 7. 

 

Parameters Test set Selected value 
Size of the population - 50 

Length of the gene fragment - 24 

Probability of individual crossing [0, 1, 0.1]* 0.6 

Probability of gene mutation [0, 0,2, 0.01]* 0.01 

Number of breeding iterations - 500 
*[x, y, z] means that, ranging from x to y, test numbers are selected at the interval of 
z. 

Table 7: The value of the parameters in the GA 

In particular, in the MC model, the calculation objective function uses quaternary 
coding. When assigned, there are 12 doctors, and each doctor has 4 possible 
situations: Station A, Station B, Station C, or none. Consequently, the result for each 
doctor can be encoded as a number from 0 to 3 and the code for all 12 doctors ranges 
from (0000…0000)ସᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥଵଶ  to (3333…3333)ସᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥଵଶ . When applying the GA for the MC model, 

we use binary coding, and (3333…3333)ସᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥଵଶ  is equal to (1111…1111)ଶᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥଶସ  , thus making 

the length of the gene fragment is 24. 
First, we calculate the objective function value. Second, we calculate the 

individual fitness value, and then select the best individual and its corresponding 
function values, recording the best results. Next, by natural selection, some of the low 
adaptive individuals are eliminated, crossed, and mutated. After breeding iterations, 
the final result is obtained. 

When MC is not considered, people sometimes tend to allocate an equal number 
of doctors to each station, which means 4 doctors per station in this case (Method 1). 
Doctors can also be prorated according to the proportion of patients, which results in 
2 doctors for Station A, 4 doctors for Station B, and 6 doctors for Station C (Method 
2). 

By adjusting a doctor’s basic salary, the profits gained from different approaches 
are demonstrated in Tables 8 and Table 9. 
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Solution* Profit Doctor Allocation 

 $ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Solution 1 738 C C C C B B B B A A A A 
Solution 2 694 B B A C B A C B A C B A 
Solution 3 278 C C C C C C B B B B A A 
Solution 4 533 C C C B C B C B A C B A 
Solution 5 1172 C C - C A - B C B A A B 

*Solution 1, 2, 3, 4 and 5 corresponds to Method 1, Method 1, Method 2, Method 1 
and MC Model respectively. 

Table 8: The allocation results for the doctors in the region with a $100 basic salary 

Solution* Profit Doctor Allocation 
 $ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Solution 6 138 C C C C B B B B A A A A 
Solution 7 94 B B A C B A C B A C B A 
Solution 8 -322 C C C C C C B B B B A A 
Solution 9 -67 C C C B C B C B A C B A 
Solution 10 747 - C - C - - B C B - A B 

Table 9: The allocation results for the doctors in the region with a $150 basic salary 

Both Tables 8 and 9 show that the maximized output is obtained via the MC 
Model (Solutions 5 and 10). One possible reason is that traditional methods ignore the 
match degree between doctors and patients, thereby randomly allocating the doctors 
and only focusing on the number of doctors in each station. Moreover, the difference 
among diverse methods manifests that the appropriate allocation would profoundly 
optimize the medical resources’ distribution and maximize the profit. From Table 8 
and 9, we can easily conclude that the increase of costs significantly influences the 
final profit. Moreover, aiming at the maximized profit, MC model would rather 
reduce the number of assigned doctors, thus making some patients’ not be served. As 
illustrated in Table  
10, the number of actual treatments decreased as the doctor’s basic salary increased. 
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Doctor 
No. 

Disease 
No. 

Solution 5 Solution 10 

  Allocation Patient No. Allocation Patient No. 
000001 2 C {20, 2, 17} -  
000002 3 C {28, 26, 22,19,23, 

24,29,15,30} 
C {28,26,22,19,23, 

24,29,15,30} 
000003 1 -  -  
000004 1 C {25,6,11,8,3,13, 

22,21,18,16,17,2} 
C {25,6,11,8,3,13, 

22,21,18,16,17,2} 
000005 2 A {4, 2, 6, 9} -  
000006 1 -  -  
000007 1 B {2,9,7,3,4,12,15, 

16, 17, 18} 
B {2,9,7,3,4,12,15, 

16, 17, 18} 
000008 3 C {12,1,20,8,5,3,9, 

7,10,4,14,17} 
C {12,1,20,8,5,3,9, 

7,10,4,14,17} 
000009 3 B {19, 8, 4, 10, 11, 5, 

6 ,3 ,13 ,14 ,17} 
B {19, 8, 4, 10, 11, 5, 

6, 3, 13, 14, 17} 
000010 3 A {1, 2, 3, 6, 8, 9} -  
000011 1 A {4, 1, 5, 6, 10, 7} A {11, 5, 6, 10, 7} 
000012 2 B {1, 2, 15, 11, 3, 

17, 20} 
B {1, 2, 15, 11, 3, 

17, 20} 

Table 10: The allocation details for Solutions 5 and 10 

A suitable allocation of doctors can balance patients’ requirements and human 
resource costs, thereby gaining the highest profit among the possible solutions. 
Furthermore, the government’s subsidy for a doctor’s salary can allow more patients 
to be treated, and thus largely improving the medical quality. With the constantly 
changing situation, the proposed allocation model based on MC can adjust doctors’ 
assignment to increase profits. 

5 Summary 

This paper proposed a medical resource allocation model based on MC, aiming to 
alleviate the medical resources shortage as well as to function in accordance with the 
concept of a 15-minute medical service circle. In the modelling process, we take into 
account both costs and personalized demands, including time requirements and 
professional level. However, because the medical resource allocation problem is an 
NP-hard problem, it is challenging to list all the options and then find the optimal 
solution. In the real world, the suboptimal scheme, which is not the scheme to get the 
best result but is able to get a result better than most of the others, can be received. 
Therefore, we need to optimize the algorithm to find the optimal solution. To reduce 
the computational complexity and improve the computational efficiency, we use a GA 
and use the profit as the criterion for assessing the optimal individual in each 
population. The results show that the combination of MC and a GA can effectively 
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improve the computational efficiency. Moreover, the results indicate that more 
patients’ needs are satisfied and costs of the medical resource are reduced. 

The essence of MC is to integrate the same needs of different customers to 
achieve both economization and customization effects. From the government’s point 
of view, costs can be reduced by making doctors mobile, thus maximizing the 
utilization of medical resources. From the patients’ point of view, personal 
preferences, such as treatment time and doctors’ professional level, are better 
satisfied. 

However, several problems still remain unsettled both in practice and related 
research. If the system is put into practice, the government is supposed to gather as 
many people’s demands as possible, thereby facilitating the integration of similar 
requirements. Besides, publicizing the allocation system to more citizens can benefit 
collecting relevant information. 

Additionally, assumptions are proposed in this paper to simplify the modelling 
process and to concentrate on crucial issues. That is to say, more parameters should 
be taken into account in future studies, such as doctors’ flexibility, i.e., some doctors 
are reluctant to frequently move among mobile stations. Furthermore, with the rapid 
development of society, 15-minute medical service circles may be refined into 10- or 
5-minute medical service circles, which requires the model to keep pace with the 
times. To conclude, more research should focus on the practical demands of people 
and policy adjustments in the future. 
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