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Abstract: Computational Intelligence techniques in medicine have become an increasing area 
of research worldwide. Among them, the application and development of new models and 
algorithms for disease diagnosis and prediction have been an active research topic. The 
research contribution of the current paper is the proposal of a novel classification model, and its 
application to the diagnosis of chronic diseases. One of the main characteristics of the new 
model is that it is designed to deal with imbalanced data. With the purpose of making 
experimental comparisons to demonstrate the benefits of the proposed model, we tested five 
classification models, over medical data. The application of the supervised classification 
algorithms is done over the Knowledge Extraction based on Evolutionary Learning (KEEL) 
environment, using a distributed optimally balanced stratified 5-fold cross validation scheme. 
In addition, the experimental results obtained were validated in order to identify significant 
differences in performance by mean of a non-parametric statistical test (the Friedman test), and 
a post-hoc test (the Holm test). The hypothesis testing analysis of the experimental results 
indicates that the proposed model outperforms other supervised classifiers for medical 
diagnosis.  
 
Keywords: medical informatics, disease prediction and diagnosis, computational intelligence 
Categories: J.3, I.2.1, I.2.6, I.5.1 

1 Introduction  

The social impact of chronic diseases in the population is one of the current topics in 
scientific research worldwide [Fazekas, 06]. The efforts made by the research groups 
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are remarkable, with obvious interest to minimize the negative effects of this type of 
maladies. For professionals involved in public health issues, it is evident that early 
diagnosis of a chronic disease in a patient increases their chances of survival [Abdar 
et al, 17]. 

In this context, Computational Intelligence techniques in medicine have become 
an increasing area of research worldwide, and the application and development of 
new models and algorithms for disease diagnosis and prediction is an active research 
topic. A careful analysis of these techniques, models and algorithms, allows us to 
realise that they have weak points and failures that are worth facing.  

For example, some models depend on the availability of a certain type of actual 
failure data [Chang et al., 06]; others are modular and have the disadvantage that if 
any of the modules fail, the diagnosis will not be carried out [Havlik et al., 13]; some 
more behave like boxes, which makes impossible to determine which instances were 
classified incorrectly and why [Rijo et al, 14]; some, although useful in show correct 
early diagnoses, require pre-processing data, modifying thus the original dataset 
[Abdar et al, 17]. 

In the effort to try to minimize the disadvantages described previously, in this 
paper we introduce a novel classification model, designed for the diagnosis of chronic 
diseases. The new model diminishes the undesired effects of the curse of 
dimensionality; it deals with the presence of small disjoints by detecting subclasses in 
classes; it deals with imbalanced data, and handles mixed as well as incomplete data; 
besides, it deals with class overlapping. In addition, the proposed model is 
interpretable and transparent, due to we know exactly why an instance belong to a 
certain class. This is a clear advantage over other classifiers of the state of art, 
including the ones mentioned above.  

The rest of the article is organized as follows: section 2 briefly describes several 
algorithmic solutions for assisting medical diagnosis, which have been proposed in 
recent years; Its benefits and its main disadvantages are specified. In section 3, the 
proposed model and its training and classification phases are explained in detail. We 
used several medical related datasets to test our proposal, and the numerical 
experiments carried out are shown in section 4. The paper ends with the conclusions 
and future works at Section 5. 

2 Related works 

In the current specialized literature several computational algorithmic solutions for 
medical diagnosis are reported. The most outstanding are mentioned below.  

Chang et al. developed a Web-based decision support system considering the 
sensitivity analysis as well as the optimal prior and posterior decisions for some 
chronic diseases. It can deal with uncertain prior knowledge about the physiological 
system by considering the optimal prior decision and with the sensitivity analysis and 
the optimal posterior decision [Chang et al., 06]. However, it can do it only if actual 
failure data were available. 

In addition, Havlik et al.  propose a solution for rapidly developing devices for 
telemedical applications, remote monitoring and assistive technologies [Havlik et al., 
13]. The approach was to develop a modular system consisting of input modules for 
signal acquisition, a control unit for signal pre-processing, handshaking of data 
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communication, controlling the system and providing the user interface and 
communication modules for data transmission to a superordinate system; however, if 
any of the modules fail, the diagnosis will not be carried out. 

Rijo et al. used a text mining approach to support medical decisions relating to 
epilepsy diagnosis and ICD-9-based classification in children [Rijo et al, 14]. They 
put forward a text mining approach using electronically processed medical records, 
and apply the K Nearest Neighbour technique as a white-box multiclass classifier 
approach to classify each instance, mapping it to the corresponding ICD-9-based 
standard code. Due to this classifier is treated as a white-box, it is not possible to 
determine which instances were classified incorrectly and why; besides that, the 
author proposes as future work foreseen in substantially enlarging the dataset, since 
having more records with other seizure type’s classification, and providing the 
extraction of more relevant features will provide greater performance to the results. 

Fazekas addressed the examination of the periodicity of the childhood leukaemia 
in Hungary using seasonal decomposition time series [Fazekas, 06]. The dataset used 
was from the Hungarian Paediatric Oncology Workgroup, and contained the data of 
all the patients with lymphoid leukaemia diagnosed between 1988 and 2000. These 
data highlight the role of the environmental effects, like viral infections, epidemics, 
among others on the onset of the disease. They did not found any seasonal pattern and 
they concluded there is little evidence of any seasonality in the diagnosis of acute 
lymploblastic leukaemia. 

To sum up, because of the importance of chronic diseases and increase the 
number of people who suffer from this, Abdar et al. studied liver disease through 
using two computational intelligence methods [Abdar et al, 17]. In the mentioned 
application, they considered 583 instances of liver disease dataset from the UCI 
repository. However, they do data pre-processing, and modify the original dataset. 

It should be noted that each of the solutions described above has weaknesses and 
limitations, which limit the desired results, with the negative consequences in the 
diagnoses they produce. Therefore, it is necessary to carry out research, such as the 
present article, where solutions are proposed that overcome the weaknesses and 
limitations of current models. 

3 Proposed model for medical data diagnosis 

This section is devoted to the explanation of the proposed model for medical 
diagnosis: the Assisted Classification for Imbalance Data (ACID) model. Subsection 
3.1 explains the main ideas of the model, as well as its functioning. Subsection 3.2 
details the training phase of ACID, while subsection 3.3 addresses the classification 
phase.  

ACID model is designed to deal with imbalanced data, very common in medical 
domains (usually, the number of sick people is much lower than the number of 
healthy ones). In addition, it is intended for handling mixed as well as incomplete 
data, which is also a common situation in medical scenarios. Since ACID is a 
supervised model, it requires as an input a set ܶ of classified instances, described by a 
set of features = ,ଵܣ} … , ݔ ௡} . The value of the i-th feature of an instanceܣ ∈ ܶ is 
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denoted by ݔ௜. If this value is unknown (missing), ݔ௜ = ′? ′. Each instance must 
belong to only one of a set of classification classes ܭ = ,ଵܭ} … ,  .{௣ܭ
3.1 Assisted Classification for Imbalance Data (ACID) 

Wolpert demonstrate that no classification algorithm can outperform all others 
according to all performance measures, in all domains [Wolpert, 01]. However, some 
desired characteristics included in the proposed model makes ACID a good 
classification model for medical diagnosis.  

One of the key aspects of medical diseases datasets is that they are often 
imbalanced. That is, the number of instances in the majority class is greater than the 
number of instances in the minority class, which is usually the class of interest. The 
classification of imbalanced data is challenging and several factors influence it. In the 
following, we discuss some of them [López et al., 13]:  

1. Bias to majority class. Some classifiers bias towards majority class, due to 
their functioning. For instance, Neural Networks do weights adjustment 
considering the overall error, not the error of each of the classes. Similarly, 
Decision Trees usually have pruning or leave creation criteria based on the 
overall homogeneity of leaves, while Support Vector Machines adjust their 
parameters considering the overall performance. 

2. Presence of small disjoints. Small disjoints are found when a class occupies 
different region in the feature space. Thus, the so-called subclasses or 
subtypes emerge. Subclasses contains instances of the same class, but very 
different from each other. The presence of small disjoints affects classifiers a 
lot.  

3. Class overlapping. In such scenarios, the Bayes risk increases, and the 
performance of classifiers diminish.  

4. The curse of dimensionality. It affects similarity-based classifiers, due to as 
the number of dimensions increases, the instances tend to appear to be “more 
similar”.  

In figure 1, we show an example of the clover dataset [Napierala et al., 10], 
exemplifying some of the above-mentioned factors influencing imbalanced data 
classification. Medical datasets usually have those factors. In [Napierala et al., 10], 
the authors show a representation of two medical datasets, in which is clear the 
presence of small disjoints and class overlapping. In addition, in such study the 
authors mention the curse of dimensionality.  

Patients descriptions may be somehow dispersed, that is, very different patients 
have diseases. For instance, if a value of a certain exam is outer of some normal 
boundaries, the results indicate a disease. For instance, an adult patient having a 
glucose level when fasting lower than 4.0 mmol/L (72 mg/dL) or greater than 6.0 
mmol/L (108 mg/dL), is considered as sick, while a patient with a glucose level 
between 4.0 to 6.0 mmol/L (72 to 108 mg/dL) is considered as healthy. Figure 2 
depicts this example. 
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a) b) 

 
c) d) 

Figure 1: Example of factors influencing imbalanced classification in Clover dataset. 
a) presence of small disjoints (subclasses) within a class, b) class overlapping, c) 
original decision regions and d) bias towards majority class, in this example, by the 5 
Nearest Neighbor classifier.  

 

Figure 2: Example of a class (sick) occupying two regions in the feature space. 
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To deal with imbalanced data, affected by the previously explained factors, we 
design a novel classification algorithm. The ideas behind the proposed classifier are 
the following: 

1. Diminishing the effects of the curse of dimensionality. To do so, we use a 
metaheuristic algorithm, to obtain attribute weights. In addition, we consider 
as irrelevant those attributes having lower weights. By doing so, we ensure 
that the classifier only considers relevant features.  

2. Dealing with small disjoints. We seek for presence of small disjoints in 
classes. To do so, we structure each class separately, to find the different 
subclasses (disjoints) of the class. We consider a subclass has very similar 
instances, being different from the instances of other subclasses. We use 
clustering techniques to find those subclasses.  

3. Bias to majority class. To guarantee that our classifier is unbiased towards 
majority class, we use a similarity-based strategy, which gives the same 
similarity possibilities to each class. Our strategy consists on obtaining the 
similarity to each subclass, and then return the most similar subclass of each 
class. That is, each class has only one more similar subclass. Then, we will 
label the instance according to the label of the most similar subclass, among 
all classes. It guarantees that each class has a single similarity value for 
comparison purposes, being unbiased to any of the classes.  

4. Dealing with class overlapping. To diminish the influence of class 
overlapping, we aggregate the similarity of the instance to classify with 
respect to a subclass. That is, instead of considering the most similar 
instance, we use aggregation operators to compare an instance with a set of 
instances in a subclass. It guarantees that class overlapping and noisy or 
mislabeled instances influence less the classification process.  

In the following, we detailed the training and classification phases of ACID. 
Training addresses previous ideas one and two, while classification addresses 
previous ideas three and four.   

3.2 ACID: training phase 

3.2.1 Diminishing the effects of the curse of dimensionality 

The training phase of ACID starts by dealing with the curse of dimensionality. To do 
so, we compute attribute weights by using Differential Evolution (DE). We use 
Differential Evolution due to this algorithm obtained a good performance in 
experiments with other supervised classifiers [Ramírez et al. 15]. First, we determine 
the adequate codification strategy for weight computation. Features weights 
computation is a kind of continuous optimization problem, due to the features weights 
are real values.  

To apply DE, we codify the feature weights as an array of real values in the [0,1] 
interval. It allows us to analyze the relative importance of features in the classification 
process. Considering this codification, zero means that the feature is completely 
irrelevant; while one means this feature is highly relevant for the classification task. 
In addition, the codification in the [0,1] interval facilitates further developments of a 
fuzzy version of the ACID model. 
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The array of values will have as length the number of features that describe the 
problem. Figure 3 shows an example of an individual of DE, which codifies the 
feature weights associated to a dataset with four attributes.   

 
0.30 0.25 0.68 0.92 

Figure 3: Codification of a Differential Evolution individual in the ACID model. 

Fitness function definition constitutes a key aspect in optimization algorithms. In 
this research, we used averaged True Positive Rate [Fernández et al., 13] as fitness 
function. To obtain fitness, it is necesary to have a validation set. We divided the 
training set into two subsets: training and validation, by means of a Hold-Out 
procedure, having 70% of instances for training, and 30% of instances for fitness 
computation. Figure 4 illustrates fitness computation process in the ACID model.  

 

 

Figure 4: Fitness computation in the ACID model. 

We use a population of 25 individuals and 1000 iterations. After obtained the 
features weights by means of Differential Evolution, ACID uses a threshold ߝ to 
delete irrelevant attributes. That is, let ݓ௜  be the weight of feature ܣ௜, assigned by 
Differential Evolution. If ݓ௜ ൑  ௜ will be considered as irrelevant and willܣ feature ,ߝ
be deleted. In the experiments, we set ߝ = 0.1.  

3.2.2 Dealing with small disjoints 

To deal with small disjoints, we divide the training set into classes, and then, we 
structure each class. Clustering algorithms aim at obtaining “the natural structure of 
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data” [Jain and Dubes, 88]; thus, they are a useful choice to detect the presence of 
small disjoints in a class. However, medical data is often mixed (that is, described by 
both numeric and categorical attributes) and incomplete (some instances have missing 
attribute values). In addition, we do not know how many disjoints a class may have.  

To deal with this scenario, we need a clustering algorithm able to handle mixed 
and incomplete data, and with no predefined number of clusters. In the Logical 
Combinatorial Approach to Pattern Recognition, there are several clustering 
procedures [Trinidad et al., 00]. One of them is the Compact Sets structuralization. 
Compact Sets are the connected components of a Maximum Similarity Graph (MSG).  

A MSG is a directed graph that connects each instance with its most similar 
instances. Formally, let ܩ = (ܺ,  be a MSG for a set of instances X, where θ is the (ߠ
arcs set. In this graph, two instances ݔ, ݕ ∈ ܺ form an arc (ݔ, (ݕ ∈ θ	 if max௭∈௑{ݔ)݉݅ݏ, {(ݖ = ,ݔ)݉݅ݏ ,ݔ)݉݅ݏ where ,(ݕ ,ݔ)݉݅ݏ is a similarity function. Usually (ݕ (ݕ = 1 − ,ݔ)݀ ,ݔ)݀ and (ݕ  is a dissimilarity function. In case of ties, the (ݕ
MSG establishes a connection between the instance and each of its nearest instances. 
Compact Sets are the connected components of such graph. Formally, a subset ܰ ≠∅	of X is a Compact Set if and only if [Ruiz-Shulcloper and Abidi, 02]: 
 

ݕ∀(ܽ					 ∈ ܺ ൦ݔ ∈ ܰ	 ൮ max୶∈ଡ଼୶౟ஷ୷ ,ݔ)݉݅ݏ} {(ݕ = ,ݔ)݉݅ݏ 	(ݕ
max୶∈ଡ଼୶ஷ୷ ,ݕ)݉݅ݏ} {(ݔ = ,ݕ)݉݅ݏ ൲൪	(ݔ ݕ ∈ ܰ 

,ݔ∀	(ܾ ݕ ∈ ܰ, ⋯,ଵݔ∃ , ௤ݔ ∈ ܰ ێێۏ
ۍێێ ݔ = ݕଵݔ = ⋯,{1	∀p	௤ݔ , q − 1}
ێێۏ
ۍ max௭∈௑௭ஷ௫೛൛sim൫ݔ௣, z൯ൟ = sim൫ݔ௣, ௣ାଵ൯ݔ
	 max௭∈௑௭ஷ௫೛൛sim൫ݔ௣ାଵ, z൯ൟ = sim൫ݔ௣ାଵ, ۑۑے	௣൯ݔ

ې
ۑۑے
 ېۑۑ

ܿ) Every isolated object is a Compact Set, which is degenerated.  
 

Compact Sets have several advantages to data analysis. They do not assume any 
properties of data, and they do not need any parameter for their construction, except 
of the similarity function to compare two instances, and directly handle mixed as well 
as incomplete data. In addition, the instances connect only to their most similar 
instances in the training set, which is valuable information particularly in high Bayes 
risk zones. 

We use Compact Sets [Trinidad et al, 00] for finding small disjoints in the 
classes. Compact Sets directly handles mixed and incomplete data, and need no 
parameter for its obtaining, that is, they do not require the number of clusters to 
obtain. After obtained the clusters of each class, they are stored for further use.  

Summarizing, the training phase of ACID consist of two phases: diminishing the 
curse of dimensionality and detecting subclasses in classes. The process returns two 
kinds of data: feature weights, and the subclasses of each class. Figure 5 illustrates the 
training phase and its returning data in ACID.  
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Figure 5: Training phase of ACID model. 

As shown, ACID computes a set of features weights ܹ = …,ଵݓ}  ௡} associatedݓ,
to the feature set.  For this task, ACID uses Differential Evolution [Storn and Price, 
97]. In addition, in the training phase, ACID obtains a set of small disjoints of each 
class, which will be used later in the classification phase. Noisy and outlier instances 
are in the subclasses; however, they will contribute less to instance classification. 

3.3 ACID: classification phase 

The ACID model deals with imbalanced data and with class overlapping in the 
classification phase. To do so, it uses a similarity computation strategy to guarantee 
being unbiased to any of the classes. In addition, it uses aggregation to diminish the 
influence of class overlapping, as well as the one of noisy or mislabeled instances. 
The following subsections explain those ideas in detail.   

3.3.1 Bias to majority class 

To guarantee an unbiased performance, ACID model uses similarity computation. 
Unlike other classifiers such as Nearest Neighbor [Cover and Hart, 67], ACID 
computes the similarity of the instance to classify with respect to each subclass of 
each class. Then, it stores the most similar subclass of each of the classes. After that, 
ACID compares the similarity values, and labels the instance with the label of the 
class having the greater similarity value.  

By doing so, we guarantee the selection chance to be the same for all classes. 
This makes ACID to be unbiased to any of the classes in the training set. Figure 6 
shows an example of how ACID classifies an instance. In such example, we depicted 
a two-dimensional training data and the disjoints founded in the training phase. We 
also show the instance to classify, and the most similar disjoints for the instance. In 
figure 7 we summarize the classification phase of ACID. 

 
 
 
 
 
 
 

• Training Data

Inputs

• Feature Weights 
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Evolution

Idea 1 • Subclasses of 
each class, by 
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Idea 2

• Feature weights, 
Subclasses

Outputs
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a) b) 

  
c) d) 

Figure 6: Example of the classification phase of ACID model. a) Subclasses (small 
disjoints) obtained in training phase, b) unknown instance (in green) to classify, c) 
most similar subclasses of each class and d) assigned label (the square is now 
orange) according to most similar subclass. 

 

Figure 7: Classification phase of ACID model. 

ACID model allows using any similarity function, or any dissimilarity function. In the 
later, instead of considering the most similar subclass, it considers the less dissimilar 
subclass to be the one containing the correct label.  
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3.3.2 Dealing with class overlapping 

To diminish the influence of class overlapping, the ACID model considers the overall 
dissimilarity of the pattern to classify ݋, to each subclass obtained in the training 
phase.  That is, instead of considering the most similar instance, it uses aggregation 
operators to compare an instance with a set of instances in a subclass. There are 
several measures to compute the dissimilarity between an instance and a set of 
instances; among the most commons are: single linkage, complete linkage, average 
linkage and centroid linkage [Jain, 88]. Figure 8 summarizes those measures. In the 
experiments, we use average linkage to determine the overall dissimilarity of an 
instance to a subclass.  
 

Single-Link ܥ)ܦ௜, (݋ = min௫∈஼೔{݀(ݔ,  {(݋
Complete-Link ܥ)ܦ௜, (݋ = max௫∈஼೔{݀(ݔ,   {(݋
Average-Link ܥ)ܦ௜, (݋ = ෍ ,ݔ)݀ ௫∈஼೔(݋ ௜|ൗܥ|  

Centroid-Link ܥ)ܦ௜, (݋ = ,ݔ̅)݀   (̅݋
Figure 8. Dissimilarity measures between an instance and a cluster.  ̅ݔ	 is the centroid 

of cluster ܥ௜ y ܥ௜ and ݀(ݔ,  .is a dissimilarity function between instances (ݕ

Average linkage allows us to diminish the influence of noisy or outlier data in the 
classification process. In addition, it diminishes the influence of class overlapping. 
This is exemplified in Figure 9. 

Summarizing, ACID is a novel classifier designed to deal with imbalanced data. 
It successfully handles mixed as well as incomplete datasets, and addresses some of 
the most relevant factors influencing imbalanced data classification. It deals with the 
curse of dimensionality and the presence of small disjoints; it is unbiased to any of the 
classes, and handles overlapped as well as noisy or mislabeled data.  

In addition, ACID is an interpretable model; that is, ACID is transparent, due to 
we know exactly why an instance belong to a certain class. This is a clear advantage 
over other classifiers of the state of art.  
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Instance to classify: ݋ = (25,32) 
Instances in subclass: 
X values 27 35 33 31 33 30 27 
Y values 51 64 56 49 26 26 51 ݀(ݔ,  19.10 7.81 10.00 18.03 25.30 33.53 19.10 (݋
Average-link: ܥ)ܦ௜, (݋ = ∑ ,ݔ)݀ ௫∈஼೔(݋ |௜ܥ| = 113.77 6 = 18.96⁄⁄  

Figure 9: Example of Average-link computation in ACID. 

4 Experimental Results and Discussion 

This section presents the experimental results obtained for medical diagnosis, using 
the proposed classification model, as well as other state of art models. Figure 10 
illustrates the schematics of the experiment design.  

 

Figure 10: Schematic of the experimental design 
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Subsection 4.1 explains the datasets used, while subsection 4.2 describes the 
performance measures and statistical tests for algorithm comparisons. Subsection 4.3 
analyzes the numerical results obtained by the algorithms, and subsection 4.4 
discusses the statistical significance of them.  

4.1 Datasets related to medical diseases 

The data sets used in this research come from online information provided by both 
KEEL dataset repository [https://www.keel.es] and UCI dataset repository 
[https://archive.ics.uci.edu/ml/datasets.html]. We used the medical–related standard 
classification datasets. The datasets include information about different diseases, such 
as breast cancer, thyroid diseases, heart diseases, liver disorders, diabetes, and others. 
In the following, we offer a brief description of the used datasets.  

Breast Cancer data set: This is one of three domains provided by the Oncology 
Institute. This dataset appears frequently in the machine learning literature. This data 
set includes 201 instances of one class and 85 instances of another class. Nine 
attributes describe the instances, some of which are linear and some are nominal. 

Liver Disorders (BUPA) data set: This data set analyzes some liver disorders that 
might arise from excessive alcohol consumption (the first 5 variables), and the 
number of half-pint equivalents of alcoholic beverages drunk per day for each 
individual. The task is to select if a given individual suffers from alcoholism.  

Heart Disease (Cleveland) data set: This data set is a part of the Heart Disease 
Data Set (the part obtained from the V.A. Medical Center, Long Beach and Cleveland 
Clinic Foundation), using a subset of 14 attributes. The task is to detect the presence 
of heart disease in the patient. It is integer valued from zero (no presence) to four. 

Haberman's Survival data set: This data set contains cases from a study conducted 
between 1958 and 1970 at the University of Chicago's Billings Hospital on the 
survival of patients who had undergone surgery for breast cancer. The task is to 
determine if the patient survived 5 years or longer (positive) or if the patient died 
within 5 year (negative). 

Statlog (Heart) data set: This dataset is a heart disease database similar to a 
database already present in the KEEL repository (Heart Disease databases) but in a 
slightly different form. The task is to detect the absence or presence of heart disease. 

Hepatitis data set: This data set contains a mixture of integer and real valued 
attributes, with information about patients affected by the Hepatitis disease. The task 
is to predict if these patients will die or survive. 

Mammographic Mass data set: This data set has the task to predict the severity 
(benign or malignant) of a mammographic mass lesion from BI-RADS attributes and 
the patient's age. It contains a BI-RADS assessment, the patient's age and three BI-
RADS attributes together with the ground truth (the severity field, which is the target 
attribute). The Institute of Radiology of the University Erlangen-Nuremberg collected 
the data between 2003 and 2006.  

Thyroid Disease (New Thyroid) data set: This data set is one of the several 
databases about Thyroid available at the UCI repository [https://archive.ics.uci.edu/ 
ml/datasets.html]. The task is to detect if a given patient is normal or suffers from 
hyperthyroidism or hypothyroidism. 

Pima Indians Diabetes data set: From National Institute of Diabetes and Digestive 
and Kidney Diseases. It contains a selection of instances from a larger database. In 
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particular, all patients here are females at least 21 years old of Pima Indian heritage. 
The class label represents if the person has not diabetes (tested_negative) or the 
person has diabetes (tested_positive). 

Post-Operative data set: The classification task of this database is to determine 
where patients in a postoperative recovery area should be sent to next. Because 
hypothermia is a significant concern after surgery, the attributes correspond roughly 
to body temperature measurements. The class label can take one of the following 
values: I (patient sent to Intensive Care Unit), S (patient prepared to go home), A 
(patient sent to general hospital floor).  

South African Hearth data set: A retrospective sample of males in a heart-disease 
high-risk region of the Western Cape, South Africa. These data are from a larger 
dataset, described in Rousseauw et al, 1983, South African Medical Journal. The class 
label indicates if the person has a coronary heart disease: negative or positive. 

SPECTF Heart data set: The dataset describes diagnosing of cardiac Single 
Proton Emission Computed Tomography (SPECT) images. Each of the patients 
belongs to one of two categories: normal or abnormal. 

Thyroid Disease (thyroid0387) data set: The task is to detect is a given patient is 
normal or suffers from hyperthyroidism or hypothyroidism. This data set is one of the 
several databases about Thyroid available at the UCI repository [https:// 
archive.ics.uci.edu/ml/datasets.html].  

Breast Cancer Wisconsin diagnosis (wdbc) data set: This database contains 30 
features computed from a digitized image of a fine needle aspirate (FNA) of a breast 
mass. They describe characteristics of the cell nuclei present in the image. The task is 
to determine if a found tumor is benign or malignant. 

Breast Cancer Wisconsin original (wisconsin) data set: This dataset contains 
cases from a study conducted at the University of Wisconsin Hospitals, Madison, 
about patients who had undergone surgery for breast cancer. The task is to determine 
if the detected tumor is benign or malignant. 

 

No. Datasets 
Attributes Imbalance analysis Missing 

Values 
Classes 

Numeric Categorical Instances IR 
1. breast 0 9 277 2.420 Yes 2 
2. bupa 0 7 345 1.379 No 2 
3. cleveland 13 0 297 12.308 Yes 5 
4. haberman 3 0 306 2.778 No 2 
5. heart 13 0 270 1.250 No 2 
6. hepatitis 19 0 80 5.154 Yes 2 
7. mammographic 6 0 830 1.060 Yes 2 
8. newthyroid 5 0 215 5.000 No 3 
9. pima 8 0 768 1.866 No 2 
10. post-operative 0 8 87 62.000 Yes 3 
11. saheart 8 1 462 1.888 No 2 
12. spectfheart 44 0 267 3.855 No 2 
13. thyroid 21 0 7200 40.157 No 3 
14. wdbc 30 0 569 1.684 No 2 
15. wisconsin 9 0 683 1.858 Yes 2 

Table 1: Description of the datasets used. 
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In table 1, we offer a summary of the description of the datasets. The summary 
includes the amount of numerical and categorical attributes, the number of instances, 
the Imbalance Ratio (IR) among majority and minority classes, the presence or not of 
missing values, and the number of classes. 

For validation purposes, we used the Distributed optimally balanced Stratified 
Cross Validation procedure (Dob-SCV) with five folds [López et al., 14], 
recommended for imbalanced scenarios.  

4.2 Performance measures and statistical tests 

Particularly, when we use imbalanced datasets for classification, the usual 
performance measures —such as the rate of correctly classified instances— become 
inadequate [Fernández et al., 13]. This is because of the bias that such measures have 
towards the majority class, which in turn may yield to misleading conclusions. For 
evaluating the performance over imbalanced datasets with multiple classes, we use 
the average True Positive Rate for each class as in [Fernández et al., 13].  

In fact, in a two classes problem, the true positive rate (TPR) (as well-known as 
recall or sensitivity) considers the total of positive instances correctly classified, 
relative to the total of instances of the positive class, considering True Positives (TP), 
True Negatives (TN), False Positives (FP), and False Negatives (FN). See equation of 
TPR (1). ܴܶܲ = ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = ܴ݈݈݁ܿܽ = ܶܲܶܲ +  (1) ܰܨ

 
Nevertheless, in a problem with k classes, the TPR takes into consideration the 

total of correctly classified instances from class j, relative to the total of instances of 
the j-th class. Therefore, the TPR for class j calculate the probability of correctly 
classifying an instance from class j. For the computation of such measure, let ௝݊ be 
the number of correctly classified instances (in a confusion matrix of k classes), and 
let ݐ௝	be the total of instances belonging to class j. So, for this reason the TPR (also 
recall or sensitivity) of class j, denoted by ܶܲ ௝ܴ , is computed as follows: 

 ܶܲ ௝ܴ = 	ܴ݈݁ܿܽ ௝݈ = ௝ܵ = ௝݊ݐ௝  (2) 

In this research, we use the average TPR per class [Fernández et al., 13], which is 
defined as:  ܴܶܲതതതതതത = 1݇෍ܶܲ ௝ܴ௞

௝ୀଵ (3) 

 
In the previous equation k is the number of classes and ܶܲ ௝ܴ is the TPR for the j-th 
class. This performance measure allows us to evaluate the global performance of 
classification algorithms over all the classes in the problem, not only over the 
minority class. The use of the average TPR per class allows taking into account all the 
classes, without bias towards any particular one. Figure 11 presents an example of 
how to compute average TPR, with k = 3 classes. 
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ܶܲ ஺ܴ = ଵ଼଴ = 0.8, ܴܶܲ஻ = ଷଵ଴ = 0.3, ܴܶܲ஼ = ଺ଵ଴ = 0.6 

 ܴܶܲതതതതതത = 0.8 + 0.3 + 0.63 = 1.73 ൎ 0.567 

Figure 11: An example of computation of performance measures given a confusion 
matrix for three classes taking in consideration the average sensitivity and the 
minimum sensitivity.  

To determine which classification algorithms got the better experimental results 
while diagnostic medical diseases, we use hypothesis testing. Statistical hypothesis 
tests evaluate whether there is a significant difference in the performance given by 
different classification algorithms. Regarding the works of [Demšar, 06; Garcia and 
Herrera, 08; Garcia et al., 10], we choose non-parametric tests for the current 
research. Particularly, we select the Friedman test since it is widely recommended for 
this kind of works. 

The Friedman test [Friedman, 37; Friedman, 40] consists of ordering the samples 
and replacing them by their respective ranks as follows: the best result corresponds to 
rank 1, the second best to rank 2, the third to rank 3 and so on. After that, the 
existence of identical samples is taken into consideration; in that case the test assigns 
an averaged rank. 

If the Friedman test rejected the null hypothesis of performance equality, we need 
to apply a post-hoc test to determine between which algorithms there are differences 
[Demšar, 06; Garcia et al., 10]. Among the different post-hoc tests recommended for 
classification algorithms performance analysis over multiple datasets [Demšar, 06; 
Garcia and Herrera, 08; Garcia et al., 10] we use the Holm test [Holm, 79]. This test 
uses a descending (step-down) procedure to adjust the significance value ߙ. For this, 
the p values are ordered ascendingly (i.e. from the most significant to the least 
significant). If ݌ଵ ൏ ఈ௟ିଵ, the test rejects null hypothesis and the test continues the 

comparison with the next p value, considering whether ݌ଶ ൏ ఈ௟ିଶ. This test continues 

this process until it cannot reject one of the hypothesis, given that ݌௜ ൒ ఈ௟ି௜. At this 

point, the test did not reject the remaining hypotheses either. 
There are many specialized automated tools for the computation of the Friedman 

test, and the post-hoc tests. In this research, we use the KEEL software [Alcalá-Fdez 
et al., 09; Alcalá-Fdez et al., 11]. 
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4.3 Numerical results obtained by the classification algorithms 

Five state-of-the-art classification algorithms were selected. All of them are able to 
deal with mixed and incomplete data. This selection includes Nearest Neighbor (NN) 
[Cover and Hart, 67], Multilayer Perceptron (MLP) [Bourlard and Kamp, 88], C4.5 
[Quinlan, 93], SMO [Platt, 99; Keerthi et al., 01] and Logistic [Le Cessie and van 
Houwelingen, 92]. For MLP, C4.5, Logistics and SMO, we used the default 
parameter values offered in the KEEL software package [Alcalá-Fdez et al., 09; 
Alcalá-Fdez et al., 11]. 

For the Nearest Neighbor and ACID classifiers, we use the HEOM dissimilarity 
[Wilson and Martinez, 97], which handles mixed and incomplete data descriptions. 
HEOM uses two different approach for computing dissimilarity over numeric and 
categorical attributes. Consider that ݔ௔,  ݔ ௔ are the vales of feature ܽ, for instancesݕ
and ݕ, and consider that ݉ܽݔ௔ and ݉݅݊௔ are the maximum and minimum values of 
the feature	ܽ, the HEOM dissimilarity is: 

,ݔ)ܯܱܧܪ  (ݕ = ඨ෍ ݀௔(ݔ௔, ௔)௠௔ୀଵݕ  

݀௔ = ቐ 1				if	ݔ௔	or	ݕ௔	are	unknownݔ)݌݈ܽݎ݁ݒ݋௔, ,௔ݔ)categorical݂݂݀݅	is	a	if	௔)ݕ numeric	is	a	if	௔)ݕ  

,௔ݔ)݌݈ܽݎ݁ݒ݋ (௔ݕ = ቄ0 if ௔ݔ = ௔1ݕ othervise ݂݂݀݅(ݔ௔, (௔ݕ = ௔ݔ| − |௔ݕ ௔ݔܽ݉) −݉݅݊௔)⁄
(4) 

 
Table 2 shows the results obtained by the analyzed classification algorithms, for 

the medical diagnosis problems considered. Best results are highlighted in bold.  The 
worst results were obtained in the cleveland dataset, were the best diagnosis result had 
an average TPR of 0.45. Another difficult to diagnosis datasets are bupa, haberman, 
and saheart, having average TPR results lower than 0.70.   

The proposed algorithm obtained very good results, outperforming other 
classifiers in nine of the 15 datasets. 

ACID obtained remarkable good results for new-thyroid, wdbc and wisconsin 
datasets, with average TPR values over 0.97. In addition, it obtained an increase in 
performance up to 47%, considering the second best classification algorithm. Figure 
12 shows the difference in performance with respect to our proposal and the second 
best algorithm (values greater than zero), and with respect to the best algorithms, in 
the 6 datasets were our algorithm do not obtained the best results (values lower than 
zero).  
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Table 2: Average True Positive Rate obtained by the classification algorithms. 

 

Figure 12: Difference in performance of ACID vs. other algorithms. 

-0,250

-0,150

-0,050

0,050

0,150

0,250

0,350

0,450

Datasets C4.5 kNN Logistic MLP SMO ACID 

breast 0.591 0.605 0.595 0.659 0.632 0.710 

bupa 0.614 0.652 0.659 0.535 0.500 0.654 

cleveland 0.292 0.297 0.319 0.298 0.310 0.405 

haberman 0.578 0.583 0.564 0.649 0.500 0.591 

heart 0.775 0.803 0.835 0.833 0.833 0.847 

hepatitis 0.679 0.732 0.641 0.820 0.693 0.841 

mammographic 0.838 0.818 0.828 0.459 0.824 0.753 

newthyroid 0.894 0.914 0.956 0.695 0.767 0.986 

pima 0.687 0.690 0.730 0.708 0.714 0.700 

post-operative 0.328 0.343 0.326 0.641 0.336 0.539 

saheart 0.618 0.607 0.669 0.643 0.688 0.646 

spectfheart 0.565 0.701 0.606 0.579 0.509 0.762 

thyroid 0.976 0.593 0.724 0.447 0.518 0.756 

wdbc 0.479 0.475 0.487 0.500 0.477 0.970 

wisconsin 0.502 0.511 0.512 0.510 0.503 0.979 

Times Best 2 0 1 2 1 9 
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In order to find out if our proposal is more appropriate for the correct diagnosis of 
diseases, we apply the Friedman test [Friedman, 37; Friedman, 40], giving a value of ݌ = 0.001586, which is largely below the established significance level of ߙ = 0.05 
for a 95% confidence.  

 
No. Algorithm Ranking  

1 ACID 1.867 

2 Logistic 3.000 

3 MLP 3.567 

4 kNN 3.933 

5 SMO 4.100 

6 C4.5 4.533 

Table 3: Algorithms rankings according to the Friedman: the best performer is ACID. 

The algorithms rankings according to the Friedman test are shown in table 3, 
where the best classifier for this task is clearly ACID. Considering the results of the 
Friedman Test, we applied a post hoc test, the Holm test [Holm, 79].  

The test rejects the hypothesis having an adjusted value lower or equal than 0.05. 
That is, it concludes that for a 95% of confidence, there are significant differences in 
the average TPR obtained by our proposal and every other classifier (Table 4). These 
results confirm that ACID classifier is adequate for medical diagnosis, with 
significantly better average TPR results than MLP, C4.5, 3-NN, SMO and Logistic 
classifiers. 

 

i. Algorithm z p 
Adjusted 

Holm 

5 C4.5 3.9036 0.000095 0.01 

4 SMO 3.269265 0.001078 0.0125 

3 kNN 3.02529 0.002484 0.016667 

2 MLP 2.488545 0.012827 0.025 

1 Logistic 1.65903 0.09711 0.05 

Table 4: Post hoc comparison obtained by the Holm test.  

In the analysis of diagnosis of several diseases, the ACID model obtained very 
good results; due to it significantly outperform other classifiers in medical scenarios. 
Such results support the assertion that the proposal is quite useful for medical 
purposes. 
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5 Conclusions and Future Work 

In this paper, we introduced a novel classification model, designed for medical 
diagnosis, named ACID (Assisted Classification for Imbalance Data model), which is 
able to handle imbalanced data, having mixed categorical and numerical attributes, 
and missing values. Our model deals with the presence of small disjoints in 
imbalanced data.  

The main idea of ACID is to structure data, and to find the most similar structure 
to the instance to classify. This peculiar functioning allows handling problems having 
the same class in different decision regions. In addition, by considering the closest 
structure to every class, ACID successfully deals with imbalanced data, due to each 
class has the same representation for classification purposes. On the other hand, by 
structure data, ACID reduces the influence of noisy and outlier data, facilitating the 
correct classification of instances.  

A key aspect of ACID is that it is an interpretable model; that is, ACID is 
transparent, due to we know exactly why an instance belong to a certain class.  

Experimental results illustrate the good performance of ACID, due to it 
outperforms several state of art classifiers, in nine of 15 medical datasets. According 
to the Friedman test, the best classifier in the experiments carried out is ACID; in 
addition, the post hoc Holm test concludes that there are significant differences in the 
average True Positive Rate obtained by our proposal and every other classifier. It 
confirms that ACID classifier is adequate for medical diagnosis, with better results 
than MLP, C4.5, 3-NN, SMO and Logistic classifiers. 

As future work, we intend to apply ACID model over other repository datasets, 
and to carry out comparisons with respect to other supervised classifiers. In addition, 
considering multiclass problems as well as fuzzy versions of ACID are some lines of 
future work.  
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