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Abstract: Gelatinases proteases with the ability to cleave the extracellular matrix (ECM). Two 
types of gelatinases exist: Gelatinase A, also referred to as matrix metalloproteinase-2 (MMP-2), 
and gelatinase B, also referred to as matrix metalloproteinase-9 (MMP-9). MMP-2 and MMP-9 
degrade ECM, which is highly expressed during tumor metastasis. The poor therapeutic effects 
of inhibitors can be attributed to the high structural homology shared by members of the matrix 
metalloproteinase family. The highly similar structures of these proteases preclude the specific 
binding of inhibitor drugs. Moreover, the regulatory pathways of MMP-2 and MMP-9 remain 
poorly understood. An accurate model for the prediction of substrates and the cleavage sites of 
gelatinases should be developed to enable screening and exploring the physiological and 
pathological mechanisms of these enzymes. Prediction is based on various types of information 
on binary integration, physical–chemical properties, protein stability, solvent accessibility, and 
protein secondary structure. In this study, the first level of the prediction model was constructed 
on the basis of intergroup differences and support vector machine. Predictive probability was 
then taken as the characteristic of the second level of the prediction model, which was 
constructed using different machine-learning methods. The Mathews correlation coefficients of 
the MMP-2 and MMP-9 prediction models were 89.4% and 64.4%, respectively. The physical–
chemical properties of the active sites of MMP-2 and MMP-4 were selected for analysis. The 
completion of this prediction system will aid the discovery of regulatory paths and novel 
applications of MMP-2 and MMP-9, as well as provide references for drug design. 
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1 Introduction 

After undergoing translation, proteins modify and regulate various cellular metabolic 
processes. Modification through translation is reversible. By contrast, hydrolysis, in 
which the peptide bond that connects an amino acid with an amide is cleaved by a 
protease, is irreversible. Proteases have extensive and important influences on various 
proteins. Approximately 2% of the human genome encode for proteases, and 
approximately 5%–10% of proteases have known drug targets [Puente et al. 2003, 
Overall and Blobel 2007]. Cleavage studies are performed to identify the specific 
function and regulatory pathway of a given protease in a specific organism. In 
addition, the specificity of the positive substrate site is used as a reference for drug 
design. However, proteins are highly complex and dynamic. Proteins have unique 
compositions and undergo different modification processes in different tissues and 
cells, as well as in different diseases and disease stages. Therefore, proteases have 
different cleavage sites [Doucet et al. 2008, López-Otín and Overall 2002] in every 
single protein. 

Extracellular matrix (EM) degradation by matrix metalloproteinases (MMPs) is 
highly associated with tumorigenesis [Kessenbrock et al. 2010]. Immunosuppressant 
drugs were first investigated twenty years ago and are currently undergoing human 
clinical trials. However, clinical trials have shown that immunosuppressants have 
poor therapeutic effects. Although they can suppress tumor metastasis, 
immunosuppressants have failed to improve the survival rate of patients with cancer 
and have instead caused several side effects, such as muscle pain and joint disease. 
The poor therapeutic effects of immunosuppresants may be attributed to the following 
two points: 1) All 23 MMPs are structurally similar and contain a zinc peptide 
restriction enzyme. Immunosuppressants cannot suppress specific MMPs and may 
suppress nontargeted MMPs. Nonspecific targeting by immunosuppressants may thus 
affect other physical functions. 2) In addition to the EM, MMPs act on cytohormones, 
cell membrane receptors, and growth factors. Thus, MMPs affect cell growth, 
differentiation, movement, and other mechanisms. Furthermore, knowledge of the 
regulatory pathways and substrates of MMPs remains incomplete; therefore, the 
complete scope of immunosuppressant influence cannot be predicted [Coussens et al. 
2002, Turk 2006, Drag and Salvesen 2010]. 

Two types of gelatainases exist: Gelatinase A, also referred to as matrix 
metalloproteinase-2 (MMP-2) and gelatinase B, also referred to as matrix 
metalloproteinase-9 (MMP-9). MMP-2 and MMP-9 are potential targets and 
biomarkers in cancer treatment. These proteinases can be distinguished from other 
MMPs by the presence of three fiber chain protein domains in their catalytic regions. 
MMP-2 and MMP-9 have similar structures and can be differentiated from each other 
on the basis of the length of the zone connecting their catalytic regions and 
heme-binding domains [Zou et al 2016]. Although they share common substrates, 
they independently catalyze different substrates and affect different messaging 
pathways [Bauvois 2012]. In contrast to other proteases, like caspase, with specific 
positive amino acid sites and that cleave the peptide bond after aspartate [Timmer et 
al. 2009], MMP-9 and MMP-2 lack fixed positive amino acid sites and instead have 
different amino acids in their positive sites [Prudova et al. 2010]. Hence, predicting 
the positive sites and substrates of these MMPs is challenging. The substrate cleavage 

712 Zou Q., Chen C.-W., Chang H.-C., Chu Y.-W.: Identifying Cleavage Sites ...



 
 

site can be identified through mass spectrometry analysis. Nevertheless, protein 
expression and translation vary across different types of cells at different stages of the 
cell cycle, thus complicating the prediction of positive sites and substrates. 
Comprehensive substrate identification through experiments is expensive and time 
consuming. Therefore, the in silico prediction of MMP-2 and MMP-9 positive sites 
has been proposed for the mass annotation of substrate cleavage sites. In silico 
prediction methods can be applied in biotic experiments to identify candidates with 
high accuracy rate [Wang et al. 2017]. 

Numerous systems for the prediction of protease-substrate positions exist [Song 
et al. 2011] and commonly adopt fractional calculation or machine learning [Wei et al. 
2017]. Systems that are based on fractional calculation include GPS-CCD, 
CaSPreditor, PoPS, and SitePrediction. GPS-CCD makes use of BLOSUM 62 to 
transfer amino acids through an algorithm to predict the substrate positive site of 
Calpain. CaSPreditor uses BLOSUM 62 for transfer and adds a PEST-like sequence 
to calculate fractions [Liu et al. 2011]. PoPS allows users to define the physical–
chemical fraction and weight of a specific substrate to calculate fractions [Boyd et al. 
2004]. SitePrediction applies the appearance rate of each kind of amino acid and 
calculates the fraction of amino acid substitution matrix on every position to predict 
the substrate positive site [Verspurten et al. 2009]. PoPS and SitePrediction can 
provide substrate positive site predictions, secondary structure prediction, and other 
extra information for all currently known proteases. Methods based on machine 
learning include Pripper, Cascleave, and PCSS. Pripper has been used to predict the 
substrate positive site of caspase through the adoption of binary code in support 
vector machine (SVM), random forest and J48 [Piippo et al. 2010]. Cascleave, 
another system for the prediction of the caspase substrate positive site, added structure 
information and Bi-profile Bayesian signature code [Jia et al. 2017], but not binary 
code, to support vector regression and provide predictions [Song et al. 2010]. PCSS 
make the users input training data sets themselves and takes advantage of sequence 
and structure information to support the vector machine in constructing prediction 
system. Given that the users input training data sets themselves, the substrates of all 
kinds of protease can be predicted [Barkan et al. 2010]. 

This research built a high-precision positive-site prediction system for MMP-2 
and MMP-9. This prediction system has two levels. The first level is constructed on 
the basis of binary information, physical–chemical properties, and structural 
information. Protein characteristics, such as the fold-change of amino acid number, 
were adopted to illustrate positive and negative sites in databases and to coordinate 
with SVM to build a model with four characteristics. The secondary level of this 
system integrates the prediction confidence index of every feature model and 
compares various machine learning methods to build models. The feature models on 
the first level all test seven different groups of negative sites to identify the most 
suitable dataset that can represent the characteristic of feature codes with high 
accuracy. Consequently, this whole prediction system can learn additional negative 
site information. To identify the reason for the failure of MMP-2 and MMP-9 as 
cancer-targeting drugs, physical–chemical property selection was performed in further 
steps. The accuracy rate of the prediction system was improved by exploiting fold 
change and amino acid composition information 
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2 Research methods 

2.1 Data Collection 

MEROPS [Rawlings et al. 2016] was used to screen out human MMP-2 and MMP-9 
substrates, remove duplicates, and redundant data. CD-HIT removed 70% of similar 
proteins [Li and Godzik 2006]. The experimental data for MMP-2 included 1269 
substrates and cleavage sites in 630 proteins, whereas those for MMP-9 data included 
269 cleavage sites in 42 proteins. Cleavage sites that were not annotated as MMP-2 or 
MMP-9 cleavage sites were defined as negative sites. The number of negative sites 
was high (330457 and 30558) because MMP-2 and MMP-9 do not possess specific 
amino acids at their cleavage sites. In this experiment, seven negative sets (N1–N7) 
were randomly selected with a positive set number of 1:1, and each negative set with 
a positive set formed seven training sets trained in different coding methods. 
Thereafter, a negative set (N8) other than N1 to N7 was randomly selected as the 
training set for the second layer. 

2.2 Construction of the Prediction System 

In this study, binary, physical–chemical property, structural information, and 
fold-change features were encoded. The second-layer model was constructed to 
improve prediction accuracy. To build the second layer, four feature models of the 
first layer were constructed by using SVM, and the probability confidence scores of 
prediction results from four feature models were merged. To find the optimal method 
for building the two-layer prediction system, the prediction model of the second layer 
was built with LibSVM, J48, Random Forest, and IBK classifiers [Frank et al. 2004]. 
The performance of each classifier was tested through 10-fold cross-validation. 

2.3 Feature Model of the First Level 

The first layer has four feature models: binary, physical-chemical property, structural 
information and fold change. The window size indicates that the first amino acid at 
the N-terminus of the cleaved peptide bond is P1, and the first amino acid at the 
C-terminus is P1 '. The largest window size is the twentieth amino acid P20, P19, 
P18 ... P1, P1 '... P18', P19', P20'. 
 
Binary: Amino acid fragments of various lengths from P20 to P20' are encoding in 
vector format. The 20 amino acids including Gap are encoded in a vector of 21 
dimensions, with the amino acid occupying a dimension of one. E.g: 

Alanine(A) 000000000000000000001 
Cysteine(C) 000000000000000000010 

 
Fold change: P20-P20 'fragments of the positive and negative sites of MMP-2 and 
MMP-9 in training set were calculated by Icelogo software [Colaert et al. 2009]. The 
frequency of occurrence of each amino acid on each of the positions is calculated 
according to the following formula and divided to give the value of the fold change. 
The difference in frequency of occurrence of each amino acid between the positive 
site and the negative site to show the differential nature of positive and negative data 
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for different dataset. For example, if P+N1 is used to build the model, the positive set 
will be divided into 10 parts for the 10-fold cross-validation, and the Fold Change 
substitution table will be calculated respectively with the negative set of the sum 
N2-N7. 

=	+ݕܿ݊݁ݑݍ݁ݎܨ  ଵ		 	in	positive	set                           (1) 

=	−ݕܿ݊݁ݑݍ݁ݎܨ  	 ଵ	 	in	negative	set                          (2) 

 Fold	chang = 	 ி௨௬ାி௨௬ି                                       (3) 

 
Structural information: The protein sequence was sent to DISOPRED [Ward et al. 
2004] and NetSurfP [Petersen et al. 2009] for prediction and encoding with P20-P20 
'fragment. The encoded information contained the probability of disorder; relative 
surface accessibility; absolute surface accessibility; z-fit score; and probability of 
alpha-helix, beta-strand, and coil formation. 
 
Physical–chemical property: The physical–chemical properties of amino acids were 
retrieved from the AAindex [Kawashima et al. 2008] database. 544 data to remove 
null values and Pearson correlation coefficient greater than 0.8 with 371 data. 
Venkatarajanet al. incorporated 237 physical–chemical properties of amino acids into 
a five-vector feature [Venkatarajan and Braun 2001]. The gap value was defined as 
the average of 20 amino acid attribute values. Therefore, 376 physical–chemical 
features were used. The cleavage sites and noncleavage site sequences of P20–P20, 
with positive (+1) and negative (′1), were encoded with 376 physical–chemical 
properties, each of which will be tested through Pearson correlation. When the 
correlation coefficient |R| exceeded 0.05–0.3 and the P-value was less than 0.001, the 
relative features of this site were selected, and the remaining features were removed. 
Therefore, not every site was encoded, and different numbers of sites were encoded. 

2.4 Integration Model for the Secondary Level 

The predictive model was built with the training set with the best predictive 
performance in each feature encoding. The negative site of the seven negative sets 
that do not contain the first layer was randomly selected, and the ratio of the positive 
site to the negative site was 1:1, which becomes the eighth negative set (N8). Then, 
the subset was input in the four feature models of first layer to predict the output of 
the four models and the probability of positive sites and negative sites. This 
probability was used as the feature of the second layer. LibSVM, Multilayer 
Perceptron, J48, Random Forest, and IBK were tested to find the best classifiers for 
the second layer. 

2.5 Similarity Analysis of Data Sets 

BLOSUM62 Matrix was used to calculate the similarity between two amino acids on 
the basis of the positive set and seven negative sites (N1–N7). The alignment scores 
for each amino acid in each of the positions to the other amino acids in the same 
position were averaged. For example, in 100 pieces of data, the first site of the first 
amino acid will be the other 99 amino acids as inferred from BLOSUM62 matrix 
conversion scores. The alignment scores, specifically, the first sites of the similarity 
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score, were then averaged. P20–P20' would have an average score.  

2.6 Evaluation of Model Prediction Ability 
Accuracy (Acc), sensitivity (Sn), specificity (Sp), and the Matthews correlation 
coefficient (MCC) were used to evaluate the predictive ability of each system. Four 
measures were defined: 

   
     FNTNFPTPFPTNFNTP

FPFNTNTP
MCC




)(

                                (4) 

FNTNFPTP

TNTP
Acc




                                               (5) 

FPTN

TN
Sp


                                                      (6) 

FNTP

TP
Sn


                                                      (7) 

 
where TP, FP, FN and TN are true positives, false positives, false negatives, and true 
negatives, respectively. Sn and Sp represent the rate of true positives and true 
negatives respectively. Acc is the overall accuracy of prediction. Additionally, MCC is 
a measure of the quality of the classifications, and the value may range between -1 (an 
inverse prediction) and +1 (a perfect prediction), with 0 denoting a random prediction. 

3 Results 

3.1 Prediction Efficiency of the First Level 

Binary model (B)- We used binary code to obtain the primary protein structure. We 
screened different window sizes which are from the cleavage site to the 
amino-terminal (N) end to the carboxyl-terminal (C) end for each 20 amino acids to 
optimize the accuracy. As fig.1 shows, both MMP-2 and MMP-9 model were 
significantly increased in MCC when the fragment from the beginning of P3. In 
MMP-2 model, the fragments from P3-15 of N-terminal to P3'-20' of C-terminal have 
above 0.5 in MCC. The best performance is obtained in   P3-13' fragment. The 
fragment length of MMP-9 from P3-15 with C-terminal P2 'to P20' have more than 
0.4 of MCC, the best MCC convergence is at P3 to P9'.  The convergence region 
shows the determined length of amino acid specificity around the cleavage site. In 
MMP-2 model, the Sn of every training set was more than 0.9, Sp was more than 0.85, 
and ACC was up to 0.9. The 7th training set (P4-P5') has the highest MCC, which is 
0.808. The diversity of MCC in MMP-2 model training sets is 0.034 (table 1). In 
MMP-9 model, every training set got more than 0.7 in Sn, 0.75 in Sp, and around 0.75 
in ACC. The 7th training set (P3-P5') has the best MCC at 0.570. The difference 
between the best and the worst training set is 0.108 (Table 2). 
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MMP-2 first layer 
models 

Acc (model) Highest MCC 
(model) 

Lowest MCC 
(model) 

Binary 0.903 (7) 0.808 (7) 0.774 (2) 
Fold change 0.897 (3) 0.796 (3) 0.687 (2) 
Structure 0.824 (7) 0.649(7) 0.609 (2) 
Physical-chemical 
property ( |R| > 0.05) 

0.907 (1) 0.814 (1) 0.778 (6) 

Table 1: Acc, Highest and lowest MCC of training sets for the MPP-2 first-layer 
model 
 

MMP-9 first layer 
models 

Acc (model) Highest MCC 
(model) 

Lowest MCC 
(model) 

Binary 0.782 (7) 0.570 (7) 0.462 (5) 
Fold change 0.690 (2) 0.386 (2) 0.305 (4) 
Structure 0.699 (2) 0.400 (2) 0.309 (1) 
Physical-chemical 
property (|R| > 0.2) 

0.805 (7) 0.613 (7) 0.446 (5) 

Table 2: Acc, Highest and lowest MCC of training sets for the MPP-9 first-layer 
model 

 

Figure 1: MCC of various window sizes obtained through binary coding (note: X and 
Y axis represent the length of amino acid from the N to C terminals) (a) Heat map of 

MMP-2 (b) Heat map of MMP-9 
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Fold-change model- Icelogo provided the fold change value of P20–P20' for 40 
amino acids. The value provided the fold difference in the ratio of amino acid type on 
every position in the positive and negative sets. The Sn and Sp of the MMP-2 model 
exceeded 0.83, and ACC was approximately 0.85. The optimal training set for the 
MMP-2 model was the third set, which had a MCC of 0.796. In this coding, the 
diversity of MCC in training sets is 0.796. The Sn and Sp of the MMP-9 model 
exceeded 0.65, and ACC was approximately 0.65. The best training set for this model 
was the second set, which had a MCC of 0.4. The diversity of MMP-9 training sets is 
0.081 in MCC. 
 
Structure model- The output of the structure prediction system was used as a feature. 
The output included relative surface accessibility, absolute surface accessibility, z-fit 
score, probability for alpha-helix, probability for beta-strand, and probability for coil 
information. Each training set for the MMP-2 model yielded Sn and Sp values of 
more than 0.8 and ACC values of approximately 0.8. The seventh set was the best 
predictor training set and exhibited an MCC of 0.649. Each training set for the 
MMP-9 model yielded Sn and Sp values of more than 0.65 and ACC of 
approximately 0.65. The best predictor training set was the second set, which had an 
MCC of 0.4. The difference between the best and the worst MCC in the training sets 
of MMP-2 and 9 is 0.04 and 0.091. 
 
Physical–chemical property model- The physical–chemical properties of the amino 
acid sequences of P20 to P20' were encoded and then subjected to the correlation 
coefficient test to perform feature selection. It would present the importance of 
specific position in sequence then the final coding was a discontinuity fragment. 
Different features for encoding were obtained after 0 to 0.3 threshold selection. In 
MMP-2 data, the MCC of the selected feature-built set was approximately 0.8 at |R|> 
0.05. As |R| increased, the MCC gradually decreased to approximately 0.6 (Figure 2 
(a)). The first training set had the highest MCC of 0.814 with |R|> 0.05. At the same 
|R|> 0.05, the worst MCC was 0.778 for the sixth training set. The MCC of each 
dataset for MMP-9 fluctuated with increasing |R| (Fig.2(B)). The seventh training set 
of MMP-9 had the best MCC of 0.613 as |R| increased to 0.2. At the same |R|> 0.2, 
the fifth training set had the the worst MCC of 0.446. 

The addition of five-dimensional amino acid properties (Venkatarajan et al., 
2001) improved accuracy. The correlation coefficient increased as the number of 
selected features decreased. The five-dimensional amino acid profile accounted for 
approximately 1% of the overall profile, with AAindex accounting for a large number 
of features. The five-dimensional feature of MMP-2 increased the MCC by 0.01 when 
|R|> 0.1 (Fig.2 (a)). In the MMP-9 model when |R|> 0.1 to 0.2, the addition of the 
five-dimensional protein features caused MCC to increase. In particular, when R = 0.2, 
MCC increased by 0.04 (Fig. 2 (b)). 
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Figure 2: Variation in MCC after the selection of physical–chemical property models 
based on correlation coefficient 

3.2 Prediction Efficiency of the Second Level 

The secondary level integrated the outputs of every coding model in the primary level. 
The MMP-2 model combined the best performance of the seventh set for binary 
coding, the third set for fold change, the seventh set for structural information, and the 
first set for physical–chemical property. The MMP-9 model also combined the best 
performance of the seventh set for binary coding, the second set for fold change, the 
second set for structural information, and the seventh set for physical–chemical 
property (Table 2). We compared the prediction performance of the binary, physical–
chemical, structural, and fold change feature models with LibSVM, J48, Random 
Forest, and IBK. The prediction results for the second layer of MMP-2 are as follows: 
The MCC of three or four feature models exceeded 0.8. The best result was obtained 

(a) 

(b) 
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by a prediction system constructed by LibSVM with four feature models. This system 
had an MCC of 0.894. The second layer of MMP-9 with the optimal MCC of 0.644 
was constructed using four feature models and IBK (K = 23). Prediction performance 
decreased in the absence of the FG feature model. The addition of the FG model to 
the MMP-2 and MMP-9 models increased prediction performance by 5.52% and 
10.62%, respectively (Table 3). The final complete prediction system was built on the 
first layer of the best MCC of each feature model and the second layer of the 
machine-learning method.  
 

MMP-2 second layer J48 Random Forest IBK LibSVM 

3 models 0.825 0.821 0.829 0.834 
4 models 0.883 0.888 0.893 0.894 
Increase 5.8% 6.7% 6.4% 6% 

Table 3: Comparison of the MCC of the MPP-2 first-layer model based on different 
machine learning methods and with or without FG 

 
MMP-9 second layer J48 Random Forest IBK LibSVM 
3 models 0.522 0.447 0.503 0.512 
4 models 0.566 0.600 0.644 0.625 
Increase 4.4% 15.3% 14.1% 11.3% 

Table 4: Comparison of the MCC of the MPP-9 first-layer model based on different 
machine learning methods and with or without FG 

4 Discussion 

The gap between the highest and lowest MCC in the four codes of MMP-2 was 
approximately 0.03 and was different by approximately 0.1 from the code of MMP-9. 
This result can be attributed to the five-fold difference between the sizes of MMP-2 
and MMP-9 data. In every kind of code, the difference between the MCC of MMP-2 
and that of MMP-9 exceeded 0.2 because massive amounts of data were available for 
MMP-2 (1269 positive sites) and could facilitate the construction of a prediction 
system on the basis of negative sites. By contrast, less material was available for 
MMP-9 and concentrated negative sites were preferentially selected, thus introducing 
prediction efficiency bias and influencing the accuracy of the prediction system. The 
difference in groups with the highest and lowest MCC can be attributed to the random 
selection of negative sites with diverse compositions. Calculating the similarity of 
positive and negative sites with BLOSU62 revealed that the trends of every negative 
set were not in complete accordance with those of negative sets. (Table 3) The 
difference between each negative set and positive set resulted in the difference in 
prediction system training. Hence, the accuracy rate changed in accordance with the 
negative set. Notably, the similarity curve of positive and negative sites in amino 
acids were distinct if MMP-2 was at the period from P4 to P4′ (Table 6(a) and 
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MMP-9 was at P13, P3, P1–P3′, P12′, P15′, or P18′ (Table 6(b)). These positions 
corresponded to the code positions selected from physical–chemical property codes 
on the basis of correlation coefficients. The application of the relevant coefficient to 
select characteristics not improved MCC but also conformed to the relationship of 
sequence similarity. 

 

 
 

 

Figure 3: Similarity ratio of positive- and negative-site amino acid sequence. P is a 
positive site base. N1 is the negative site base of the first group, and so on. (a) 
Similarity tendency graph of MMP-2 data. (b) Similarity tendency graph of MMP-9 
data. 

(a) 

(b) 
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The flow design of this experiment is to allow machine learning to obtain 
additional negative sets and allow every code to identify the suitable training set. 
Then, the code integration of different meanings on the secondary level yields high 
numbers of negative messages that solve the problem of overly large negative site and 
provide references for future prediction system frameworks. This experiment is the 
first to adopt the fold-change value provided by Icelog to identify multiplier 
difference between positive and negative sets. Integrating this characteristic in the 
secondary level helped improve the prediction efficiency. This code can resolve the 
problem of excessive negative data as well. If a suitable negative site group can be 
selected to delegate the whole negative site materials, the appropriate fold-change 
value can be achieved and used to describe the difference in comprehensiveness. 

This system is more user-friendly and precise than current prediction systems. 
Furthermore, this system is the only full-time prediction system that predicts the 
tangent point of MMP-2 and MMP-9 and is designed to accept massive inputs of 
protein sequences at a time. MMP-2 and MMP-9 are closely related with tumor 
metastasis. In this study, a cleavage point prediction system for MMP-2 and MMP-9 
was constructed to predict new possible substrates and then estimate other regulatory 
pathways for these metalloproteinases. This system will aid provide references for 
drug design. 
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