
Statistical Usage Testing at Different Levels of Testing

Kamaldeep Kaur
(New Delhi Institution of Management, New Delhi, India

kamaldeepkaurkalsi@yahoo.co.in)

Sunil Kumar Khatri
(Amity Institute of Information Technology, Amity University Uttar Pradesh, Noida, India

skkhatri@amity.edu, sunilkkhatri@gmail.com)

Alok Mishra
(Atilim University, Ankara, Turkey

alok.mishra@atilim.edu.tr)

Rattan Datta
(Mohyal Educational and Research Institute of Technology, Delhi, India

Rkdatta_in@yahoo.com)

Abstract: Statistical Usage Testing (SUT) is the testing technique defined in Cleanroom

Software Engineering model [Runeson, 93]. Cleanroom Software Engineering model is a

theory based and team oriented model that is based on development and certification of

software in increments using statistical quality control [Linger 96]. SUT is a black box testing

technique and concentrates on how the software completes its required function from the user’s

perspective [Runeson, 93]. SUT is carried out by developing usage models and assigning

usage probabilities. Testing is carried out on usage models by performing statistical tests which

are random sequences [Trammel 95]. Statistical testing can be viewed as a statistical

experiment where random test cases are selected from all the usage models [Trammel 95].

This paper demonstrates the process and benefits of applying SUT at different levels of

testing. Levels of testing include Unit level, Integration level, System level and Acceptance

level. SUT is generally performed at System level and Unit testing is not the part of SUT. Unit

testing makes it easier to access code and debug human errors. Detecting errors at an early

stage helps reducing cost and effort. The paper proposes to allow Unit testing in Cleanroom

Software Engineering Model, thus making it more flexible and suitable for varied applications.

Unit testing is essentially performed to ensure that the code is working correctly and meets the

user specifications [istqb, 15]. Errors may also exist when modules are integrated because of

interchange of data and control information between various modules. Integration testing is

performed when the modules are combined together to check their behaviour and functionality

after integration. Once the Integration testing phase gets successfully completed, System testing

is performed on the whole system [test-institute, 15]. The paper makes use of Student record

software to demonstrate the process of performing SUT at different levels. In addition to

performing SUT at System level, this paper helps in understanding the advantages of applying

SUT at Unit level and Integration level.

Keywords: Statistical Usage Testing (SUT), Unit Testing, Integration Testing, System Testing,

Markov Chains.

Categories: D.2.5

Journal of Universal Computer Science, vol. 24, no. 12 (2018), 1800-1820
submitted: 25/1/18, accepted: 15/11/18, appeared: 28/12/18  J.UCS

1 Introduction

1.1 Cleanroom Software Engineering

Cleanroom Software Engineering model is a theory – based team-oriented procedure

for the development of high-quality software [Prowell, 99]. The Cleanroom approach

focuses on the development of software that has correct design and high software

quality [Prowell, 99]. Cleanroom Software Engineering has two major goals: a

manageable development process and no failures in use [Prowell, 99]. The combined

usage of conventional software modeling, verification and statistical quality assurance

in this model leads to high-quality software [Pressmen, 00] [leansoftware, 15].

Cleanroom Software Engineering is the practical application of mathematical and

statistical science [Prowell, 99]. The process begins with requirement gathering,

followed by box structure specification and formal design. Once the design is

complete correctness verification and code inspection are performed. In the later

phase Statistical Usage Testing is carried out. SUT works by developing the usage

models and assigning usage probabilities. In the next step statistical tests are

performed on the usage models [Trammel 95].

The paper is divided into different sections. Section 1 gives the introduction of

Cleanroom Software Engineering, Statistical Usage Testing (SUT) and Software

testing levels. Section 2 makes use of Student record software to demonstrate the

process of performing SUT at different levels. Section 3 deals with the findings and

conclusions.

1.2 Statistical Usage Testing (SUT)

Statistical Usage Testing is the reliability certification method explained in the

Cleanroom software development approach [Runeson, 93]. The foremost purpose of

SUT is to certify the software reliability and to locate the faults which have high

impact on the software reliability [Runeson, 93]. SUT provides statistically based

stopping criteria of when to stop testing [Runeson, 93] .The intent of Statistical Usage

Testing is not to eliminate faults like traditional testing, but to certify a definite

predetermined reliability level [Runeson, 93].]. SUT is a black box testing technique.

Black box testing does not consider or test the internal mechanism of a software

[Kaur 14] .Various types of software can be tested using SUT like openoffice writer

[Khatri 14] etc.

When performing Statistical Usage Testing it is essential to remove failures that

are most serious and highly affect the reliability [Runeson 95]. SUT is based on usage

models by producing statistically valid inferences about anticipated operational

performance of a given version of the software [Prowell, 99]. In addition usage

models offer a scientific foundation for model coverage testing, random testing,

partition testing, and other forms of testing [Prowell, 99]. Statistical testing can be

viewed as a statistical experiment where random test cases are selected from usage

model of all uses [Trammel 95].

1801Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

1.3 Software Testing Levels

Software testing levels are fundamentally used to spot the missing areas and avoid

overlap and repetition between the SDLC (Software development life cycle) phases

[istqb, 15]. In the entire SDLC there are many phases with a number of work products

[istqb, 15]. Hence there are various levels of testing to test individual modules,

integrated modules etc. Various levels of testing are Unit testing, Integration testing,

System testing and User Acceptance testing .The overview of various levels is shown

in figure 1.

Figure 1: Overview of Software Testing Levels [test-institute, 15]

1.3.1 Unit Testing

Unit testing is performed on the smallest testable constituent of the entire software so

that the number of test cases and test data are less [test-institute, 15]. It is essentially

carried out by the developers to ensure that their code is working fine and it meets the

user specifications [istqb, 15]. The smallest independent and testable part of the

source code is called a unit [test-institute, 15]. The process of unit testing begins with

testing individual units and collecting test results. If errors are found then the code is

debugged and tested again. This continues till the code is error free.

To carry out integration testing it is essential to perform the unit testing for all the

units. For unit testing one need to have a clearly defined test plan and test cases [test-

institute, 15] .There are many benefits of unit testing. Only once all the units of the

source code are working correctly one can proceed to integration testing. When unit

testing is carried out, the code is refined and defects begin to lessen. So, the base of

the software is strong and in the later stages the software development becomes faster

[test-institute, 15].

1.3.2 Integration Testing

Integration testing is performed when the modules are combined together to check

their behavior and functionality after integration [istqb, 15]. During this the testing

team tests the interaction among different units and their output for various scenarios

1802 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

[test-institute, 15]. Integration testing is performed to verify whether different units

are able to execute as per expectations when combined [test-institute, 15].

Various types of integration testing include Big bang, Top down, Bottom up and

Functional incremental integration testing [istqb, 15].

In big bang form of testing all the modules are integrated together to make up an

entire system and then tested for errors [test-institute, 15].

Top down Integration testing is organized approach where the modules at the top

level are tested first and then the lower modules are added step by step and tested. In

Top down approach dummy modules called stubs can be used if modules are not

available or not ready [test-institute, 15].

The Bottom up Integration testing is the contrary approach of top down. In this

approach the bottom most modules are tested first and one by one the top level

modules are added and tested [test-institute, 15]. In this method if the top level

module is not available then a dummy module called a driver can used as the calling

program [test-institute, 15].

In Functional incremental form of testing integration is done in order to uncover

defects related to functional, requirement and performance levels [test-institute, 15].

1.3.3 System Testing

When the Integration testing is complete the testing team progresses to System testing

where the entire system along with all components is ready for further testing [test-

institute, 15]. In System testing the testers principally check the compatibility of the

application with the system [istqb, 15]. The system is tested in its entirety to see if it is

in conformity with the functional and technical specifications and the quality

standards defined by the organization. It is also imperative that Integration testing is

carried out by a very skilled testing team [test-institute, 15].

System testing is entirely a black box testing. The system is tested as per the

requirement specifications. The testing is carried out from the user’s perspective. It is

performed to test the behavior of the application, design and anticipation of the end

user. This testing authenticates and confirms the architecture of application and the

requirements of the end user [test-institute, 15].

1.3.4 Acceptance Testing

Acceptance testing is essentially performed to ensure that the requirements of the

specification are met [istqb, 15] .Once the system has been scrupulously tested using

Unit, Integration and System testing, and then user acceptance testing is performed.

The Acceptance testing tests the external interfaces as well as the internal functioning

of the system. This testing is very critical as there are legal and contract requirements

associated with the software for it to be accepted by the client [test-institute, 15].

Acceptance testing can be of two types: Alpha testing and Beta testing [test-

institute, 15]. Alpha testing is performed to make sure that the product is of high

quality. Alpha testing is carried out at the end of software development where the

system can be tested completely. It is performed by testing team to test the software

from the point of view of a customer [test-institute, 15]. Alpha testing is done at the

developer’s site [istqb, 15].

1803Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

Once the Alpha testing is complete, Beta testing is performed to improve the

software quality and to check if the software is in conformance to the requirement of

the customer. It is performed in the real world scenario by the end users who actually

use the software [test-institute, 15]. Beta testing is done at the customer’s site. It is

just carried out before the launch of the product [istqb, 15]. Acceptance testing also

includes Contract Acceptance Testing, Regulation Acceptance Testing, and

Operational acceptance testing [usersnap, 15].

2 SUT at Different Levels of Testing

2.1 Proposed Approach

The paper demonstrates the process and benefits of applying SUT at different levels

of testing. Levels of testing include Unit Level, Integration Level, System Level and

Acceptance level testing. SUT is generally performed at System level and Unit testing

is not the part of SUT. The inclusion of Unit testing can improve this aspect of

Cleanroom Software Engineering thus making it easier to access code and debug

human errors. Unit testing is essentially performed to ensure that the code is working

correctly and meets the user specifications. Detecting errors at an early stage helps

reducing cost and effort. The paper proposes to allow Unit testing in CSE, thus

making it more flexible and suitable for varied applications. Thus, allowing Unit

testing would improve the software quality. SUT can also be combined with other

White box and Black box testing techniques at Unit level for code scrutiny and

checking the external interface. Detecting errors at an early stage prevents them from

becoming very grave, thus saving effort, budget and time. After carrying out SUT at

Unit level, SUT is performed at the Integration level. Errors may also exist when

modules are integrated because of interchange of data and control information

between various modules. Integration testing is performed when the modules are

combined together to check their behavior and functionality after integration. After

completing the Integration testing phase successfully, System testing is performed on

the whole system. In System testing the system is tested in its entirety to see if it is in

conformity with the functions, quality standards and requirements of an organization.

The system is tested as whole and it is checked for compliance with requirement

specifications. Once the entire system is tested user verifies the system (approach

illustrated in figure 2).

2.2 Case: Student Record Software

The paper makes use of open source student record software developed in Visual

Basic taken from a repository, for illustrating the proposed approach. The software is

a simple open source student record keeping application taken from a repository, with

3 menus viz. forms (admission form, marks record, exit), edit (add class, edit

structure) and reports (student report, final report, class report) [Kaur, 12]. The

sample screen shot of the software under consideration is shown in figure 3

respectively.

1804 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

Figure 2: SUT at different levels of testing

Figure 3: Add class form of Student Record Software

2.3 SUT at Unit Level

Unit testing is essentially carried out by the developers to ensure that their code is

working fine and meets the user specifications [istqb, 15] .SUT can be performed at

1805Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

Unit level by testing each module separately. SUT works by developing the usage

models and assigning usage probabilities. In the next step statistical tests are

performed on the usage models [Trammel 95]. A usage Markov chain for software

has states that include all inputs and state transitions that are labeled with system

inputs and transition probabilities [Whittaker, 94]. When all the states have been

identified including the start state and a terminate state, a state transition diagram is

drawn by considering the outcome of each input from each of the recognized states.

The preliminary Markov chain for the student record software is shown in figure 4. A

transition matrix is used to illustrate the transitions from various states of a Markov

chain. The entries in the transition matrix are non-negative real numbers representing

a probability.

For the problem under consideration the input domain consists of the up-arrow

key, the down-arrow key, left arrow key and right arrow key which move the cursor

to the desired menu item, and the “Enter” key, which selects the item [Whittaker, 94].

The software has 3 menus viz. forms (admission form marks record, exit), edit (add

class, edit structure) and reports (student report, final report, class report) and the

cursor can be placed on any of the menu item. Pressing “enter” on any of the menu

item leads to the opening of the desired form.

Usage variable included is cursor location abbreviated as CL [Whittaker, 94] and

takes on values “forms”, “admission form”, “marks record” , “exit”, “edit”, “add

class, edit structure” , “reports” ,” student report”, “final report” and “class report” for

each respective menu item.

Figure 4: Initial states of Markov chain

Once the usage Markov chain is complete, the testing Markov chain is constructed.

The test cases are a series of input sequences generated randomly and applied to

software [Whittaker, 92]. Initially, the testing Markov chain has the identical states

and arcs as that of the usage Markov chain, with every arc marked with a count of

zero. The arc frequency counts are updated as the test cases are generated and

executed [Whittaker, 92]. As failures are discovered and the software's internal faults

repaired, the software evolves, becoming more or less reliable, depending on the

success of the fixes [Whittaker, 94].

SUT is performed at Unit level by testing various modules separately. The Markov

chain for module 1 is shown in figure 5 and its transition matrix in table 1. The

Markov chain for module 2 is shown in figure 6 and its transition matrix in table 2

1806 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

and for module 3 Markov chain is shown in figure 7 and its transition matrix in table

3.At this stage, SUT can also be used with other testing techniques [Khatri, 15].

Figure 5: Markov chain for module 1

Figure 6: Markov chain for module 2

1807Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

From state Transition

stimuli

To state Unif.

Prob.

Uninvoked Invoke {CL=forms} 1/3

Uninvoked Invoke {CL=edit} 1/3

Uninvoked Invoke {CL=reports} 1/3

CL=forms menu ↓

→

{CL=Admission

forms}

{CL=Edit menu}

1/ 2

1/ 2

CL=Admission

form
↓

↑

↵

{CL=marks record }

{CL= forms menu}

Open admission form

1/3

1/3

1/3

CL=marks record ↓

↑

↵

{CL=exit }

{CL= admission form}

View marks record

1/3

1/3

1/3

CL=exit ↑

↵

{CL=marks record }

Exit application

1/ 2

1/ 2

Open admission

form

New

Open

First

Last

Next

Delete

Save

Previous

Update

Exit

cancel

Add new student record

Open existing record

Goto first record

Goto last record

Goto next record

Delete record

Save record

View previous record

Update existing record

Exit application

Close admission form

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

Open marks

record form

New

Open

First

Last

Next

Delete

Save

Previous

Update

Exit

Cancel

Add new student record

Open existing record

Goto first record

Goto last record

Goto next record

Delete record

Save record

View previous record

Update existing record

Exit application

Close admission form

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

Table 1: Transition matrix for module 1

1808 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

From state Transition

stimuli

To state Unif. Prob.

Uninvoked Invoke {CL=forms} 1/3

Uninvoked Invoke {CL=edit} 1/3

Uninvoked Invoke {CL=reports} 1/3

CL=edit

menu
↓

→

←

{CL=edit structure }

{CL= reports menu}

{CL=forms menu}

1/3

1/3

1/3

CL=edit

structure
↓

↑

↵

{CL= add class}

{CL=edit menu }

Open edit structure form

1/3

1/3

1/3

CL=add

class
↑

↵

{CL= edit structure}

Open add class form

1/ 2

1/ 2

Open edit

structure

form

Save

Modify

Exit

Cancel

save record

Update existing record

Exit application

Close admission form

1/ 4

1/ 4

1/ 4

1/ 4

Open add

class form

New

Save

Delete

Modify

Exit

Cancel

Add new class

Save new class

Delete class

Update existing record

Exit application

Close admission form

1/6

1/6

1/6

1/6

1/6

1/6

Table 2: Transition matrix for module 2

Figure 7: Markov chain for module 3

1809Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

From state Transition

stimuli

To state Unif.

Prob.

Uninvoked Invoke {CL=forms} 1/3

Uninvoked Invoke {CL=edit} 1/3

Uninvoked Invoke {CL=reports} 1/3

CL=reports

menu
↓

←

{CL= student report}

{CL= edit menu}

1/ 2

1/ 2

CL=student

report
↑

↓

↵

{CL=reports menu}

{CL= final report }

View student report

1/3

1/3

1/3

CL=final

report
↑

↓

↵

{CL=student report}

{CL= class report}

View final report

1/3

1/3

1/3

CL=class

report
↑

↵

{CL= final report}

View class report

1/ 2

1/ 2

Open

student

report

Print

Save

Close

Exit

Print report

Save report

Close report

Exit application

1/ 4

1/ 4

1/ 4

1/ 4

Open final

report

Print

Save

Close

Exit

Print report

Save report

Close report

Exit application

1/ 4

1/ 4

1/ 4

1/ 4

Open

student

report

Print

Save

Close

Exit

Print report

Save report

Close report

Exit application

1/ 4

1/ 4

1/ 4

1/ 4

Table 3: Transition matrix for module 3

The transitions in the usage Markov chain are static and they do not change during

testing. On the contrary, the transitions in the testing Markov chain are dynamic and

the probabilities in testing chain are updated [Whittaker, 94]. The initial testing chain

is same as the usage chain, with all arc probabilities set to 0 [Whittaker, 92]. If there

are no software failures then the next testing chain is attained by incrementing arc

frequencies from “Uninvoked” to “Terminating” state. Thus, the frequency counts on

arcs in testing chain are every time attained from particular sequences applied to

software [Whittaker, 94]. Once the fixes have been applied, the testing chain’s arc

counts are reset [Whittaker, 94].

To include failure into the testing Markov chain, a new state

labeled f, is added into the Markov chain .The arcs to the new state f and from the new

state f have the count of 1. In case the failure is extremely critical, then the execution

of software is stopped, and the arc from f, goes to “Terminating” state [Whittaker,

94]. But on the other hand, if the failure is not so fatal then the arc from f, goes to the

1810 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

next state and the test sequence is permitted to proceed [Whittaker, 94]. For the

student record software under consideration it is seen that if user tries to perform

some operations before entering any data then an error is encountered. Therefore, a

new state labeled f, is placed in Markov chain .The failure state is shown in Figure 8.

The arcs to and from the f, have frequency 1. For example a failure state f’s placed

after CL=forms when the user tries to perform any operations before entering the

data. Also another condition RP i.e. Records Present is added to all the states.

Similarly figure 6 and 7 were modified to implement failure states.

Figure 8: Markov chain with failure state for module 1

When no failures take place in the test history, convergence is eventually attained.

The comparison of the actual development of Testing chain (including failures) with

its expected evolution (without failures) assists statistical estimation of the software

characteristics based on the software’s actual performance. Any time in the testing

process, the most recent test history is available for analysis [Whittaker, 94]. Stopping

criteria for SUT is choosing some target reliability [Whittaker, 94].

2.4 SUT at Integration Level

Integration testing is performed when the modules are combined together to check

their behavior and functionality after integration [istqb, 15]. Once the integration

testing phase gets successfully completed, system testing is performed on the whole

system [test-institute, 15]. This form of testing is carried out by a software testing

engineer [test-institute, 15]. SUT can be performed at integration level by integrating

various modules and then testing them. Figure 9 shows the SUT performed by

integrating module 1 and 2, and table 4 shows the transition matrix for the same.

Similarly module 2 and 3 & 1 and 3 are integrated and then tested.

1811Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

Table 4: Transition from one state to another

2.5 SUT at System Level

In System testing the testing team is primarily concerned with testing the

compatibility of the application with the system [istqb, 15]. After completing

Integration testing, the entire system needs to checked as whole to uncover any

further defects [test-institute, 15]. Figure 10 shows the entire system being tested

together and table 5 shows the complete transition matrix.

The usage Markov chain in Figure 10 describes all the feasible input sequences

for the software in a succinct model. The path from the initial “Uninvoked” state to

the final “Terminating” state represents a single execution of the software [Whittaker,

94]. Test cases for the chain are such random sequences from the initial state to the

terminating state. Since there are loops and cycles in the model it is possible to

generate an infinite number of sequences [Whittaker, 94]. Sequences are produced

from the model by stepping through state transitions and recording the sequence of

inputs on the path traversed [Whittaker, 94]. Table 5 lists each transition with

From state Transition

stimuli

To state Unif.

Prob

Uninvoked Invoke {CL=forms} 1/3

Uninvoked Invoke {CL=edit} 1/3

Uninvoked Invoke {CL=reports} 1/3

CL=forms

menu
↓

→

{CL=Admission

forms}

{CL=Edit menu}

1/ 2

1/ 2

CL=Admission

form
↓

↑

↵

{CL=marks record }

{CL= forms menu}

Open admission

form

1/3

1/3

1/3

CL=marks

record
↓

↑

↵

{CL=exit }

{CL= admission

form}

View marks record

1/3

1/3

1/3

CL=exit ↑

↵

{CL=marks record }

Exit application

1/ 2

1/ 2

CL=edit menu ↓

→

←

{CL=edit structure }

{CL= reports menu}

{CL=forms menu}

1/3

1/3

1/3

CL=edit

structure
↓

↑

↵

{CL= add class}

{CL=edit menu }

Open edit structure

form

1/3

1/3

1/3

CL=add class ↑

↵

{CL= edit structure}

Open add class form

1/ 2

1/ 2

1812 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

probabilities assigned by uniform distributions. For example when CL (Cursor

Location) is forms menu, the transition stimuli of down arrow ↓ positions the cursor

on admission form with the uniform probability of ½ (since total number of states is 2

i.e. Admission forms and Edit menu). Similarly, the transition stimulus of right arrow

→ positions the cursor (CL) on edit menu with the uniform probability of ½.

Figure 9: Integration Testing

The problem is also represented using the state chart diagram. State chart diagram

is one of the UML diagrams used to present dynamic nature of a system. The diagram

helps in illustrating various states an object during its lifetime where these states are

altered by events [tutorials point, 15]. Figure 11 shows the state chart diagram for the

problem under consideration.

State chart diagram depict the flow of control from one state to another state.

States are nothing but conditions in which an object exists and the state changes

whenever any event occurs [tutorials point, 15] .The process begins from the first

state which is the idle state. For the problem under consideration the next states

include events like open forms menu, open edit menu, and open report menu. These

events are responsible for state changes of order object [tutorials point, 15] .Various

events and states are shown in Figure 11.

1813Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

Figure 10: Usage Chain for entire Student Record Software

Figure 11: State chart diagram for Student Record Software

1814 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

From state Stimuli To state Unif

Prob

Rel.

prob

Uninvoked Invoke {CL=forms}

{CL=edit}

{CL=reports}

1/3

1/3

1/3

1/3

1/3

1/3

CL=forms menu ↓

→

{CL=Admission forms}

{CL=Edit menu}

1/ 2

1/ 2

1/ 8

1/2

CL=Admission

form
↓

↑

↵

{CL=marks record }

{CL= forms menu}

Open admission form

1/3

1/3

1/3

1/8

1/8

6/8

CL=marks

record
↓

↑

↵

{CL=exit }

{CL= admission form}

View marks record

1/3

1/3

1/3

1/8

1/8

6/8

CL=exit ↑

↵

{CL=marks record }

Exit application

1/ 2

1/ 2

1/8

7/8

CL=edit menu ↓

→

←

{CL=edit structure }

{CL= reports menu}

{CL=forms menu}

1/3

1/3

1/3

1/8

1/2

1/2

CL=edit

structure
↓

↑

↵

{CL= add class}

{CL=edit menu }

Open edit structure

form

1/3

1/3

1/3

1/8

1/8

6/8

CL=add class ↑

↵

{CL= edit structure}

Open add class form

1/ 2

1/ 2

1/8

7/8

CL=reports

menu
↓

←

{CL= student report}

{CL= edit menu}

1/ 2

1/ 2

1/8

1/2

CL=student

report
↑

↓

↵

{CL=reports menu}

{CL= final report }

View student report

1/3

1/3

1/3

1/8

1/8

6/8

CL=final report ↑

↓

↵

{CL=student report}

{CL= class report}

View final report

1/3

1/3

1/3

1/8

1/8

6/8

CL=class report ↑

↵

{CL= final report}

View class report

1/ 2

1/ 2

1/8

7/8

Open admission

form

New

Open

First

Last

Next

Delete

Save

Previous

Update

Exit

Cancel

Add new student record

Open existing record

Goto first record

Goto last record

Goto next record

Delete record

Save record

View previous record

Update existing record

Exit application

Close admission form

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1815Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

Open marks

record form

New

Open

First

Last

Next

Delete

Save

Previous

Update

Exit

Cancel

Add new student record

Open existing record

Goto first record

Goto last record

Goto next record

Delete record

Save record

View previous record

Update existing record

Exit application

Close admission form

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

Open edit

structure form

Save

Modify

Exit

Cancel

save record

Update existing record

Exit application

Close admission form

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

Open add class

form

New

Save

Delete

Modify

Exit

Cancel

Add new class

Save new class

Delete class

Update existing record

Exit application

Close admission form

1/6

1/6

1/6

1/6

1/6

1/6

1/6

1/6

1/6

1/6

1/6

1/6

Open student

report

Print

Save

Close

Exit

Print report

Save report

Close report

Exit application

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

Open final report Print

Save

Close

Exit

Print report

Save report

Close report

Exit application

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

Open student

report

Print

Save

Close

Exit

Print report

Save report

Close report

Exit application

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

1/ 4

Table 5: Transition probabilities for usage model

The sequence below shows the updation of probabilities when some actions are

performed

Uninvoked

 Invoke transition change:

 {CL=forms} from 0 to 1

{CL=edit} from 0 to 1

{CL=reports} from 0 to 1

CL=forms menu transition change:

 Down arrow key {CL=Admission forms} from 0 to 1

1816 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

CL=Admission form transition change:

Down arrow key {CL=marks record} from 0 to 1

Enter View marks record

View marks record transition change:

 {CL=Close} from 0 to 1

CL=forms menu transition change:

 Down arrow key {CL=Admission forms} from 1 to 2

CL=Admission form transition change:

Down arrow key {CL=marks record} from 1 to 2

CL=marks record transition change:

 Down arrow key {CL=exit} from 0 to 1

CL=exit transition change:

 Up arrow key CL=marks record from 0 to 1

CL=marks record transition change:

 Down arrow key {CL=exit} from 1 to 2

Terminated transition change:

 Exit application from 0 to 1

The sequence below shows the same execution of sequence when a failure state is

encountered while viewing the records of the students [Whittaker, 94].

Uninvoked

 Invoke transition change:

 {CL=forms} from 0 to 1

{CL=edit} from 0 to 1

{CL=reports} from 0 to 1

CL=forms menu transition change:

 Down arrow key {CL=Admission forms} from 0 to 1

CL=Admission form transition change:

Down arrow key {CL=marks record} from 0 to 1

Enter View marks record

View marks record add failure state

 Transition change (View marks record)

From 0 to 1

Failure state i transition change: (Failure State, Terminated) from 0 to 1

CL=forms menu transition change:

 Down arrow key {CL=Admission forms} from 1 to 2

1817Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

CL=Admission form transition change:

Down arrow key {CL=marks record} from 1 to 2

CL=marks record transition change:

 Down arrow key {CL=exit} from 0 to 1

CL=exit transition change:

 Up arrow key CL=marks record from 0 to 1

CL=marks record transition change:

 Down arrow key {CL=exit} from 1 to 2

Terminated transition change:

 Exit application from 0 to 1

2.6 SUT at Acceptance Level Testing

Acceptance testing is principally carried out to make sure that the requirements of the

specification are met [istqb, 15]. Once the entire system is tested using SUT at all the

previous levels (unit, integration and system testing), user acceptance testing can be

performed. If user has knowledge of SUT, only then it can be used for user

acceptance testing .Otherwise other techniques can be used for user acceptance

testing.

3 Findings & Conclusion

In this paper SUT is used at different Levels. This improvement demonstrated the

process and benefits of applying SUT at different levels of testing. SUT is generally

performed at System level and Unit testing is not the part of SUT. The inclusion of

Unit testing can improve this aspect of Cleanroom Software Engineering thus making

it easier to access code and debug human errors. Detecting errors at an early stage

helps reducing cost and effort. The study proposed to allow Unit testing in CSE, thus

making it more flexible and suitable for varied applications. Thus, allowing Unit

testing would improve the software quality. SUT can also be combined with other

White box and Black box testing techniques at Unit level for code scrutiny and

checking the external interface.

After carrying out SUT at Unit level, SUT is performed at the Integration level.

Errors may also exist when modules are integrated because of interchange of data and

control information between various modules. Integration testing is performed when

the modules are combined together to check their behavior and functionality after

integration.

After completing the Integration testing phase successfully, System testing is

performed on the whole system. When SUT was applied at Unit level, errors were

detected at an early stage. Errors were also uncovered at Integration stage. But very

few errors were detected at the System level, as errors were already detected in the

previous levels of testing. Detecting errors at an early stage prevents them from

becoming very grave, thus saving effort, budget and time. Finally, in System testing

1818 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

the system is tested in its entirety to see if it is in conformity with the functions,

quality standards and requirements of an organization. The system is tested as whole

and it is checked for compliance with requirement specifications.
The findings of the proposed approach are enumerated below:

• Statistical usage testing can be used to test smallest testable modules at Unit

level. When individual modules were tested using SUT errors were

uncovered (figure 8). Detecting errors at an early stage helps reducing cost

and effort. SUT can also be combined with other white box and black box

testing techniques at unit level for code scrutiny and checking the external

interface [Khatri, 15].

• More errors were uncovered at integration stage when module 1 and 2 was

integrated and module 2 and 3 was integrated and tested.

• Only 2 errors were found during System testing as errors were already

uncovered during Unit testing and Integration testing.

• Once the entire system is tested using SUT, User Acceptance testing can be

performed. If user has knowledge of SUT, only then it can be used for User

Acceptance testing .Otherwise other techniques can be used for User

Acceptance testing.

SUT can efficiently be employed at unit level and integration level to uncover more

errors which help in reducing time, cost and testing effort.

4 Limitations & Future Work

The paper has used one software for testing. For more general results, the proposed

approach can be applied to various other software’s also.

Acknowledgment

Authors express their deep sense of gratitude to the founder president of Amity

University Dr Ashok K. Chauhan for his keen interest in promoting research in Amity

University and have always been an inspiration for achieving great heights.

References

[Kaur, 12] Kaur K., Khatri S. K., Datta R.: Analysis of Statistical Usage Testing Technique

with Markov Chain Model, Proceedings 2nd International Conference on Reliability, Infocom

Technologies and Optimization, December 2012

[Kaur 14] Kaur K., Khatri S. K., Datta R.: Analysis of Various Testing Techniques, published

at International Journal of System Assurance Engineering and Management, Springer, Volume

5, Issue 3, 276–290, September 2014.

[Khatri, 15] Khatri S. K., Kaur K., Datta R.: Using Statistical Usage Testing in Conjunction

with other black Box Testing Techniques, International Journal of Reliability, Quality and

Safety Engineering, World Scientific Publishing Company Vol . 22, Number 1, World

Scientific Publishing Company, DOI: 10.1142/S0218539315500047, 2015.

1819Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

[Khatri 14] Khatri S. K., Kaur K., Datta R.: Testing Apache Open office Writer Using

Statistical Usage Testing Technique, published in International Journal of System Assurance

Engineering and Management, Springer, Vol. 6, Number 1, 3-17, DOI 10.1007/s13198-014-

0237-2, Feb 2014.

[Linger 96] Linger R. C., Trammell C. J.: Cleanroom Software Engineering Reference Model”,

http://www.sei.cmu.edu/reports/96tr022.pdf, November 1996.

[Pressmen, 00] Pressmen R. S.: A Practitioner’s approach to software engineering, TMH, 5th

ed., ISBN-13: 978-0073655789, 2000.

[Prowell, 99] Prowell S. J., Trammell C. J., Linger R. C., Poore J. H.: Clean room Software

Engineering Technology and Process, Addison-Wesley, An imprint of Addison Wesley

Longman , Inc, 1999

[Runeson, 93] Runeson P., Wohlin C.: Statistical Usage Testing for Software Reliability

Certification and Control, Proceedings 1st European International Conference on Software

Testing, Analysis and Review, 309-323, London, UK, 1993.

[Runeson 95] Runeson P., Wohlin C.: Statistical Usage Testing for Software Reliability

Control, Informatica, Vol. 19, Number 2, 195-207, 1995

[Trammel 95] Trammel C.: Quantifying the reliability of software: statistical usage testing

based on usage models, Software Engineering Standards Symposium, 1995. (ISESS'95)

'Experience and Practice', Proceedings Second IEEE International, DOI:

10.1109/SESS.1995.525966, 208 – 218, 1995.

[Whittaker, 92] Whittaker J. A., Poore J. H.: Statistical Testing for Cleanroom Software

Engineering, Proceedings 25th Annual Hawaii International Conference on System Sciences,

pp. 428-436, Hawaii, USA, 1992

[Whittaker, 94] Whittaker J. A., Michael G. T.: “A Markov Chain Model for Statistical

Software Testing”, IEEE Transactions on Software Engineering. Vol. 20, No. 10, October 1994

[istqb, 15] http://istqbexamcertification.com/what-are-software-testing-levels/, 2015

[leansoftware, 15] http://leansoftwareengineering.com/2009/02/04/leanroom/, 2015

[usersnap, 15] http://usersnap.com/blog/types-user-acceptance-tests-frameworks/, 2015

[test-institute, 15] http://www.test-institute.org/Software_Testing_Levels.php, 2015

[tutorials point, 15] http://www.tutorialspoint.com/uml/uml_statechart_diagram.htm, 2015

1820 Kaur K., Khatri S.K., Mishra A., Datta R.: Statistical Usage Testing ...

