
Learning Concept Embeddings from Temporal Data

Francois Meyer

(Computer Science Division

Stellenbosch University, South Africa

francoisrmeyer@gmail.com)

Brink van der Merwe

(Computer Science Division

Stellenbosch University, South Africa

abvdm@cs.sun.ac.za)

Dirko Coetsee

(Praelexis, Stellenbosch, South Africa

dirko@praelexis.com)

Abstract: Word embedding techniques can be used to learn vector representations
of concepts from temporal datasets. Previous attempts to do this amounted to apply-
ing word embedding techniques to event sequences. We propose a concept embedding
model that extends existing word embedding techniques to take time into account by
explicitly modelling the time between concept occurrences. The model is implemented
and evaluated using medical temporal data. It is found that incorporating time into the
learning algorithm can improve the quality of the resulting embeddings, as measured
by an existing methodological framework for evaluating medical concept embeddings.

Key Words: Deep Learning, Natural Language Processing, Word Embeddings, Tem-
poral Data, Skip-Gram

Category: I.2.6, I.2.7, I.5.1

1 Introduction

Recent advances in deep learning have produced compelling results in the field of

artificial intelligence. Natural language processing is one of the contexts in which

deep learning techniques have had success, achieving state-of-the-art results in

numerous standard tasks such as part-of-speech tagging, named-entity recog-

nition, sentiment analysis and machine translation [Young et al. 2017]. Word

embeddings or vector representations of words have played an important role in

these developments.

Word embeddings refer to the distributed representations of words in a vector

space. These vectors are usually learned from a large text corpus. Word embed-

ding techniques aim to retain the essential characteristics of words by observing

how they co-occur with other words in the language. This strategy is based on

the distributional hypothesis in linguistics, which states that words that occur

Journal of Universal Computer Science, vol. 24, no. 10 (2018), 1378-1402
submitted: 18/4/18, accepted: 5/10/18, appeared: 28/10/18 © J.UCS

in similar contexts tend to have similar meanings [Firth 1957]. Words with sim-

ilar meanings or functions often have embeddings that are close to each other

and the linguistic relationships between words are often reflected in the relative

positions of word embeddings in the vector space [Mikolov et al. 2013b].

Using word embeddings to represent words improves performance in various

tasks in natural language processing [Young et al. 2017]. The alternative is to use

one-hot encoding to obtain vector representations for words. This entails repre-

senting each word as a vector of length V (the size of the vocabulary) with zeroes

at all its indices except for a 1 at the index assigned to the word being repre-

sented. This reduces words to atomic symbols. It leads to high-dimensional rep-

resentations for words (the dimensionality is equal to the size of the vocabulary)

and fails to capture any useful information about the words. Word embedding

techniques produce dense, low-dimensional representations (usually 50 to 300

dimensions) for words that capture relationships between words. The informa-

tion encoded in these representations can be used by algorithms for downstream

tasks, leading to improved performance.

In 2013 Mikolov et al. proposed Word2Vec [Mikolov et al. 2013a, Mikolov et

al. 2013b], two architectural variants (skip-gram and continuous bag-of-words)

of a model capable of efficiently learning word embeddings from much larger

text corpora than previous techniques [Deerwester et al. 1990, Bengio et al.

2003, Collobert and Weston 2008, Collobert et al. 2011]. Word2Vec achieved

remarkable results in capturing the syntactic and semantic properties of words

(as measured by evaluation methods that test how well the embeddings capture

specific properties of words such as relatedness and analogous relationships).

The idea of learning low-dimensional representations has been extended to

concepts in other domains besides natural language processing such as medicine

[Choi et al. 2016a, De Vine et al. 2014, Choi et al. 2016b], microbiology [Asgari

and Mofrad 2015], and recommender systems [Barkan and Koenigstein 2016, Kr-

ishnamurthy et al. 2016]. In these settings the goal is to learn vector repre-

sentations for the concepts in the domain (concept embeddings) that capture

properties that are relevant and meaningful within the specific domain. Instead

of learning linguistic properties by observing the co-occurrences of words in a

text corpus, the idea is to learn domain-specific properties by observing the co-

occurrences of concepts in some other setting. We are interested in the case of

temporal sequences of events, where every event corresponds to the occurrence

of a certain concept at a specific point in time. In the temporal setting the term

co-occurrence refers to events that occur close to each other in time.

The medical domain will be used as an example throughout this paper to

demonstrate the techniques related to concept embeddings. The concepts for

which embeddings are learned in the medical domain are medical phenomena

such as symptoms, diseases, treatments and procedures. The setting in which

1379Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

1380 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

The rest of the paper is structured as follows. Section 2 discusses the al-

gorithms underlying existing word embedding techniques, how they have been

used to learn concept embeddings and their shortcomings in this regard. Section

3 describes the method proposed by this paper to learn concept embeddings

from temporal data and details the implementation of it. Section 4 presents the

results obtained by applying this method to a medical data set and how it com-

pares to existing approaches. Lastly, Section 5 discusses the conclusions reached

by this investigation and proposes a few possible directions for future research.

2 Background

Word embeddings were brought to the forefront of natural language processing

research by Mikolov et al. [Mikolov et al. 2013a]. They presented Word2Vec,

two methods for learning word embeddings: skip-gram and continuous bag-of-

words (CBOW). We will focus on the skip-gram model, since it performs better

on most tasks [Mikolov et al. 2013a] and is the method usually used to learn

concept embeddings [Choi et al. 2016a, Barkan and Koenigstein 2016, Asgari

and Mofrad 2015].

2.1 Skip-gram

The objective of the skip-gram training algorithm is to learn word embeddings

that can be used to predict a word’s surrounding words in a sentence. Two vector

representations, an input embedding and an output embedding, are learned for

each word. The input embedding represents a word when it is used to predict

surrounding words, while the output embedding represents a word when it is the

target word being predicted. The final embeddings produced by the model use

the input embeddings to represent the words. The algorithm moves through the

entire training corpus, using the centre word of each training window (a specified

number of consecutive words) to predict the other words in the window. The word

embeddings are learned to improve the word prediction accuracy, maximising the

log-likelihood

J(θ) =
1

T

T∑
t=1

∑
−k≤j≤k,j �=0

log p(wt+j |wt; θ), (1)

where w1, w2, ... is the sequence of words in the training corpus, T is the length

of the sequence, k specifies the training window size, and p(wt+j |wt; θ) is the

probability of the word wt+j occurring in the training window of the centre

word wt as predicted by the model. The log-likelihood is a function of the model

able at https://github.com/francois-meyer/time2vec.

1381Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

parameters θ (the set of word embeddings) given the training corpus. Maximising

it is equivalent to minimising the cost function

C(θ) =
1

T

T∑
t=1

∑
−k≤j≤k,j �=0

L(wt, wt+j ; θ), (2)

where L(wt, wt+j) is the loss resulting from trying to predict the surrounding

word wt+j from the centre word wt.

The skip-gram model trades complexity for computational efficiency, aban-

doning the non-linear hidden layers present in other neural language models.

The model consists of an input layer encoding the input word, a hidden layer

selecting the word’s embedding, and a softmax classifier as the output layer:

p(wt+j |wt) =
exp

(
v′wt+j

�
vwt

)
∑V

i=1 exp
(
v′i

�
vwt

) (3)

where vw and v′w are the input and output vector representations for w, v� is

the transpose of vector v, and V is the number of words in the vocabulary.

The cost of computing the softmax function is proportional to V , which

makes it impractical for language modelling, since the vocabulary being modelled

consists of hundreds of thousands of words. Mikolov et al. proposed a number of

strategies that reduced the computational complexity of the training algorithm,

allowing the model to be trained on text corpora consisting of billions of words in

less than a day [Mikolov et al. 2013b]. The most important of these strategies are

computationally efficient alternatives to the expensive softmax function, many

of which are sampling-based approaches that approximate the softmax function.

Noise contrastive estimation (NCE) is one such strategy that reduces the training

algorithm to a binary classification task [Dyer 2014]. The model is trained to

distinguish a positive sample from a certain number of negative samples. The

training complexity of the model is proportional to

O = E × T × C ×D ×N, (4)

where E is the number of training epochs (iterations of the training corpus),

T is the number of words in the training corpus, C is the size of the training

window, D is the dimensionality of the learned embeddings and N is the number

of negative samples drawn per positive training sample.

2.2 Concept embeddings

Vector space representations for concepts have been learned from temporal data

sets [Choi et al. 2016a, Choi et al. 2016b, Krishnamurthy et al. 2016]. Such efforts

have mainly consisted of the following strategy:

1382 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

1383Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

We expect that events occurring close to each other provide stronger ev-

idence for causality than events occurring far apart. The nature of this tem-

poral relationship is defined differently in different domains. In some domains,

concepts that occur within an hour of each other might be the only relevant

co-occurrences, while in others co-occurrences that span years might still be im-

portant to consider. The way temporal relationship strength changes over time,

weakening as events are further apart, also varies from domain to domain. Al-

though we do not investigate it in this paper, we expect that in some domains

the weakening would be gradual, while in others it would be rapid.

3 METHODS

The technique proposed by this paper is based on the skip-gram model of

Word2Vec, incorporating the factor of time into the learning algorithm. Section

3.1 discusses the theory underlying the proposed concept embedding technique

and Section 3.2 describes the implementation that accompanies this paper.

3.1 Time2Vec

The strategies to learn concept embeddings from temporal data described so

far incorporate the factor of time at a rudimentary level. They treat all con-

cept co-occurrences that are close in time the same, while ignoring concept co-

occurrences that are far apart. These strategies rely largely on word embedding

techniques and make use of existing implementations [Mikolov et al. 2013b, Pen-

nington et al. 2014].

This paper proposes Time2Vec, a time-based concept embedding technique.

We propose the following modifications to standard word embedding models:

– The model defines the sliding training window to include all concepts occur-

ring within a specific time interval, instead of a certain number of concepts.

– The importance assigned to concept co-occurrences in the learning algo-

rithm depends on the length of the time interval between the occurrences,

decreasing as more time passes.

Our method is an attempt to reformulate skip-gram, a natural language

processing model, as a temporal sequence model. Time2Vec retains many of the

characteristics of skip-gram that make it effective and efficient.

3.1.1 Temporal training window

The objective of the Time2Vec training algorithm is to learn concept embeddings

that can be used to predict the concepts that occur close to a concept in time.

The algorithm moves through each temporal sequence in a data set, using each

1384 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

1385Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

We then weight the cost function of the learning algorithm with these im-

portance scores. This ensures that losses from more important co-occurrences

contribute more to the resulting cost function than losses from less important

co-occurrences (concepts that occur further apart in time).

Weighting the cost function is a strategy in machine learning that is employed

to handle the problem of unbalanced classes (one class of training samples being

much more prevalent than others). The losses from less common classes are

weighted more heavily to penalise misclassifications more severely in the training

algorithm. However, in Time2Vec the goal of weighting the cost function is to

penalise the learning algorithm more for incorrectly predicting important co-

occurrences and less for incorrectly predicting unimportant co-occurrences.

Maximising the objective function of Time2Vec is equivalent to minimising

the cost function

C(θ) =
1

T

T∑
t=1

∑
cj∈St

α(ct, cj)L(ct, cj), (7)

where L(ct, cj) is the loss resulting from trying to predict cj from ct and α(ct, cj)

is a numerical measure of the importance assigned to the co-occurrence (ct, cj).

The importance assigned to co-occurrences is controlled by α, which is a function

of the length of time between ct and cj . This is a modification of the cost function

of the skip-gram model (Equation 2) that incorporates the weights assigned to

the co-occurrences. The main intention of the modification is to assign more

importance to concepts that occur close to each other and less importance to

concepts that occur further apart. Therefore we choose α to be a function that

decreases as the amount of time between two concept occurrences increases. We

evaluate the following two decay functions:

α(ct, cj) =

{
r − λdt,j dt,j ≤ l

0 dt,j > l,
(8) α(ct, cj) =

{
re−λdt,j dt,j ≤ l

0 dt,j > l,
(9)

where r is a constant, λ is a positive rate of decay and l is a hard limit after

which concept occurrences are disregarded, as defined in the formulation of the

temporal training window. These values are hyperparameters of the model that

determine the nature of the temporal decay used by the learning algorithm.

It should be noted that the decay functions above can never take on negative

values. The value of l can be specified to force the decay function to zero for

all values of dt,j greater than l or it is naturally the value of dt,j for which the

decay function is equal to zero.

The type of decay function and the value of its parameters should depend

on the domain being modelled, since the strength of temporal connections de-

pends on the domain. In the linear decay of Equation 8 the importance of co-

occurrences decreases gradually as concepts occur further apart, while in the

1386 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

exponential decay of Equation 9 the importance of co-occurrences decreases

rapidly over time. These decay functions ensure that losses corresponding to

concepts with strong temporal connections contribute more to the cost function

than the losses corresponding to concepts with weaker temporal connections.

The intended effect of this is that the extent to which the embeddings are ad-

justed to improve predictions depends on how close the predicted concepts occur

to each other.

3.2 Implementation

We avoid a reliance on existing implementations of word embedding techniques.

We therefore implemented the technique in Python in the form of a package

named time2vec. Since the model is based on the skip-gram model of Word2Vec

the implementation is structured similarly. It also incorporates many of the

strategies proposed by Mikolov et al. [Mikolov et al. 2013b] to reduce com-

putational complexity and improve the quality of embeddings, such as approxi-

mating the softmax with noise contrastive estimation and subsampling frequent

concepts. The new computational challenges that do not arise in the implemen-

tation of word embedding techniques are discussed in Section 3.2.3.

The system is organised in a pipeline architecture with the following com-

ponent functionalities: initialising a model, building the vocabulary, generating

training data, learning embeddings, and exploring embeddings. These steps have

to be executed in the order in which they are presented here, because each step

relies on the steps before it. However, since some of the steps can take consider-

able time to execute (generating training data and learning embeddings can take

several hours if the data set contains millions of records), the implementation

makes it possible to keep the progress of previous steps if some of the later steps

are executed again, but with different hyperparameters. This ensures that the

effect of different model hyperparameters can be tested efficiently at different

stages of the modelling process.

The model is implemented as a Python class with methods that execute the

different stages of the system pipeline. The parameters and functions mentioned

in the following discussions are of the Time2Vec class, unless indicated otherwise.

A constraint in implementing embedding models is that the large data sets

used to train the models do not fit into memory. The implementation is designed

to handle data sets larger than the memory capabilities of the computer on which

it is executed. This is achieved by operating on smaller, manageable chunks of

the data set during all stages of the training process. The number of records

read into memory at any time is specified by the chunk size variable. All the

operations on the data set are performed in this way to ensure memory efficiency.

1387Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

id datetime concept

patient1 2017-06-01 flu

patient1 2017-06-03 blood test

patient1 2017-06-04 antibiotics

patient2 2015-01-01 lung cancer

patient2 2016-02-03 chemotherapy

patient3 2015-12-04 blood test

patient3 2015-12-07 malaria

patient3 2015-12-07 antiparasite

Table 1: An example of training data for Time2Vec.

3.2.1 Model initialisation

The model is initialised by creating an instance of the Time2Vec class. This

requires specifying a data set from which to learn the embeddings with the

data file name parameter. The data set must be stored in a CSV file with the

following fields:

– id: identifies a specific temporal sequence (e.g. the medical records for a

specific patient).

– datetime: time stamp of the concept occurrence (in the Python date format

%Y-%m-%d %H-%M-%S).

– concept: name of the concept that occurred.

The data set is also required to be grouped by id and ordered temporally

within these groups (see Table 1 for an example). This requirement on the for-

mat of the data is convenient for computational reasons. The Time2Vec class

also requires a number of parameters during initialisation that specify the hy-

perparameters of the model. The roles of these hyperparameters are detailed

during the discussions of how they are incorporated into the implementation.

The hyperparameters are:

Temporal parameters

The modifications we propose rely on a number of parameters. The type of decay

(none, linear or exponential) and the unit of time used to calculate the decay

(days, months or years) have to be specified, as well as the numerical parameters

of Equations 8 and 9.

Embedding parameters

The dimensionality of the embeddings have to be specified, as well as the strate-

gies from word embedding techniques (e.g. noise contrastive estimation) that are

employed to speed up training and improve the embeddings.

1388 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Data: Temporal data set (see Table 1)

Result: Model vocabulary

for each concept ct in the data set do

if ct in raw vocab then

count[ct]++

else
add ct to raw vocab

count[ct] = 1

end

end

for each concept cj in raw vocab do

if count[cj] ≥ min count then
add cj to vocab

end

end

Algorithm 1: The procedure implemented in build vocab constructs the

vocabulary of the model.

Training parameters

Training is subject to standard hyperparameters in machine learning models.

They are the learning rate, batch size, the number of training epochs, and the

percentage of training data set aside for validation.

3.2.2 Building the vocabulary (see Algorithm 1)

The vocabulary is the set of concepts for which embeddings are learned. Creating

the vocabulary requires gathering and storing information about the concepts

that occur in the data set. This functionality is implemented in the build vocab

method that iterates through the entire data set, accumulating the following

information:

– The set of distinct concepts that occur in the data set.

– The number of times each concept occurs in the data set.

– The total size of the data set (number of records).

This information enables the creation of a model vocabulary in the form of

a lookup table that maps all the concepts in the vocabulary to unique indices.

These indices are used to encode the concepts numerically during training (using

a 1-of-V encoding, where V is the size of the model vocabulary).

In addition to creating the vocabulary, build vocab also includes implemen-

tations of minimum count omissions and subsampling, strategies developed for

speeding up training and improving the quality of the resulting embeddings.

1389Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Minimum count

During construction of the lookup table, concepts that occur less than min count

times (typically around 5 in Word2Vec) are omitted from the vocabulary. This

ensures that they are ignored during training and that no embeddings are learned

for them. The motivation for this is that certain concepts could occur so few times

that the model would not be able to capture the properties of the concepts in

their embeddings. The only concepts considered by the model are those that

occur often enough that high quality embeddings can be learned for them.

Subsampling

The problem of some concepts occurring too often is handled by subsampling.

The subsampling parameter specifies the relative frequency threshold for deter-

mining how certain concept occurrences are randomly removed. The probability

of keeping a concept occurrence is determined by:

p =

(√
f

t
+ 1

)
×

t

f
, (10)

where t is the value of the subsampling parameter and f is the relative frequency

of the concept in the data set (the proportion of records in the data set corre-

sponding to occurrences of the concept). Concepts that occur more frequently

than others are more likely to be removed from the data set. This ensures that

the disproportionate influence of very frequent concepts is diminished by dilut-

ing their presence in the data set. Smaller values of t correspond to the removal

of more concept occurrences.

3.2.3 Generating training data (see Algorithm 2)

The modifications proposed by this paper introduce new computational chal-

lenges that do not appear in the context of word embedding techniques. Word2Vec

learns from a text corpus, moving through it word by word and predicting the

words before and after a word. The algorithm keeps track of its position in the

training corpus and finds the words that it has to predict by looking at a specific

number of words before and after of a word.

Time2Vec cannot learn as directly from temporal data, since it requires ad-

ditional computation to generate training data. For each concept occurrence the

training window has to be determined. This entails finding all the concepts that

occur within the specified time interval around the concept occurrence. Only

then are the concepts that have to be predicted known. Secondly, the addition

of temporal decay requires the loss from each prediction within the training

window to be weighted in order to specify the importance assigned to it. This

1390 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Data: Temporal data set (see Table 1)

Result: Training data for Time2Vec

for each id do

for each record ct of id do

for each record cj of id after ct do

if cj is within time interval l from ct then

calculate weight = α(ct, cj)

add ct → cj with weight to training data

add cj → ct with weight to training data

else
break

end

end

end

end

Algorithm 2: The training data generation takes advantage of the require-

ments on the format of the data set and the symmetry of the samples in the

eventual training data. Instead of looking forward and backward in time from

each concept occurrence, it only looks forward and adds the corresponding

backward prediction when adding a forward prediction, only calculating the

common weight once, since α(ct, cj) = α(cj , ct).

requires calculating a weight for each of the co-occurrences within a training win-

dow using a decay function, as described in Section 3.1.2. This leads to expensive

additional computation, since there are as many training windows as there are

concept occurrences, each requiring a number of weights to be calculated. The

training complexity of the model is proportional to:

O = E × T ×Q× C ×D ×N (11)

where E is the number of training epochs (iterations of the temporal data set),

T is the size of the data set, Q is the computational complexity of determining

the training window for a concept occurrence and computing the weights of all

the samples in the training window, C is the average number of concepts in a

training window, D is the dimensionality of the learned embeddings and N is

the number of negative samples drawn per true training sample.

TheQ term in the expression above is what leads to the additional complexity

of Time2Vec compared to Word2Vec. For each concept occurrence the concepts

that occur in its temporal training window have to be determined and a weight

has to be calculated for each of these concepts. It means that besides training the

model, generating training data for the model proves a challenge. We therefore

structure generating training data as a separate step in the training process,

unlike with word embedding techniques.

1391Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

The method gen train data generates the training data by transforming

the temporal data set to the format required by the learning algorithm (a set of

weighted training samples). The algorithm that is used to perform this transfor-

mation is described in Algorithm 2. The training data is then stored in the CSV

file specified by the train file name parameter. This allows other models to

use the training data by loading it with the function load train data, instead

of having to generate their own training data.

Parallelisation

The training data generation is parallelised in the implementation of gen_train_

data by concurrently applying Algorithm 1 to separate chunks of the data set in

order to speed up the execution. This is implemented with the multiprocessing

module in Python. The processes parameter determines how many processes

the training data is distributed to. The generated training data is safely written

to the training data file from the separate processes by protecting write access

to the file with a lock.

3.2.4 Learning embeddings

Training is implemented in the method learn embeddings. The method con-

structs the model proposed by this paper, trains it on the generated training

data, and produces concept embeddings for the concepts in the vocabulary. The

machine learning aspects of the model were implemented with TensorFlow2, an

open-source software library for machine learning. The choice to use TensorFlow

was motivated by the fact that it supports the operations required by word

embedding techniques as part of its API. TensorFlow programs consist of a con-

struction phase, in which the model is specified, and the execution phase, in

which the model is trained.

Construction phase

The structure of the model resembles that of the skip-gram model of Word2Vec,

but the losses are weighted as described in Section 3.1. The softmax is approx-

imated with noise contrastive estimation (NCE), using the nce loss function

provided by TensorFlow. The num samples parameter specifies the number of

negative samples used per training sample for the objective function.

Execution phase

The optimisation of the objective function is done through mini-batch gradi-

ent descent, the standard optimisation technique for deep learning, using the

2 https://www.tensorflow.org/

1392 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

GradientDescentOptimizer class provided by TensorFlow. The learning rate

of the optimiser (how quickly the model learns) can be specified by the lr pa-

rameter. If the value of the min lr parameter is less than the lr parameter, the

learning rate decays linearly over the training epochs, starting at lr and ending

at min lr. The size of training batches (the number of training samples given to

the learning algorithm at a time) is specified by the batch size parameter. The

learning algorithm iterates the entire temporal data set as many times as speci-

fied by the epochs parameter. The valid parameter specifies the proportion of

the training data to be removed during training and used to obtain a validation

loss that is reported after each epoch. The validation loss is the loss resulting

from applying the model to the previously unseen data. It provides a measure

of the current performance of the model. The hyperparameters of the model can

be tuned by observing the behaviour of the validation loss.

3.2.5 Exploring embeddings

The embeddings learned by the model can be viewed and stored for later use

by calling the save method. The vector representations of specific concepts can

be obtained with the get vector function. The concepts that are most similar

to a specific concept in terms of the cosine similarities of their embeddings (a

measure of similarity used in the context of word embeddings) can be found using

the most similar function. This can be used to investigate how the concept

embeddings cluster together.

4 Results

The embeddings presented here were obtained by applying the implementation

discussed in Section 3.2 to a medical data set. The medical domain is well suited

for time2vec and provides an existing evaluation framework with which to eval-

uate medical concept embeddings. The results obtained with the strategies pro-

posed by this paper are compared to the results obtained by applying the ap-

proach proposed by Choi et al. to the medical data set [Choi et al. 2016a].

The evaluation and comparison of medical concept embeddings provide differ-

ent challenges to that of word embeddings. However, some of the ideas underlying

the standard evaluation methods for word embeddings [Mikolov et al. 2013b] can

be extended to evaluation methods for medical concept embeddings. Evaluation

methods for word embeddings measure to what extent embeddings capture the

syntactic and semantic properties of words. Evaluation methods for medical con-

cept embeddings should measure to what extent embeddings capture the medical

properties of the concepts. This can be done by comparing the structure of a

set of medical concept embeddings to existing medical ontologies. This approach

tests whether the embeddings capture the information represented by specific

1393Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

medical ontologies, such as the categories of medical concepts, their properties,

and the relationships between them.

The evaluation framework used to evaluate embeddings in this section is

based on the methodological framework proposed by Choi et al. [Choi et al.

2016a]. It provides a quantitative methodology that can be used to investigate

the characteristics of medical concept embeddings. The framework consists of

two approaches to evaluation (described in Sections 4.3 and 4.4), each testing a

different property of the medical concept embeddings.

4.1 Data set

The type of medical data required by Time2Vec is referred to as patient-level

data. A data set of this type consists of patient records that provide the medical

history of each patient as a sequence of medical events. Each event should consist

of the time-stamped occurrence of a medical concept associated with a specific

patient. However, patient-level data such as this is not publicly available. This is

because of restrictions on the distribution of such data intended to protect the

privacy and confidentiality of patients.

An alternative that has emerged out of the need for patient-level data for re-

search is simulated medical data. This refers to data containing virtual patients

with simulated medical histories. The Observational Medical Outcomes Partner-

ship (OMOP) designed and developed the Observational Medical Dataset Simu-

lator (OSIM) that simulates patient-level medical data [Murray et al. 2011]. The

second version of this simulator (OSIM2) generates simulated medical data with

a model that is based on the characteristics of real healthcare data. The model

generates data sets that contain hypothetical patients with simulated medical

histories. The medical histories consist of records of diseases and treatments that

represent the relationships that exist in real medical data.

Observational Health Data Sciences and Informatics (OHDSI) have made

medical data sets generated with OSIM2 avaible online3. One of their data sets

is used to evaluate Time2Vec in this paper. It is a data set that contains 1 million

simulated patients. The data set required some preprocessing in order to get it

to the format required by Time2Vec. The original data set stores the patient

records in two separate tables. The first table contains records related to patient

conditions and the second table contains records related to prescribed drugs.

Both of these tables contain columns not used by Time2Vec. The only columns

that are required are the ones that store the patient ID, the date of the occurrence

and concept that occurred. The concepts are represented by concept IDs, which

are unique identifiers for all the concepts modelled by OSIM2. The concept IDs

are mapped to the concepts that they represent by a set of vocabularies made

3 ftp://ftp.ohdsi.org/osim2/

1394 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

available online by OHDSI4. These vocabularies contain descriptive information

about the medical concepts such as their names and their types. The following

steps of preprocessing were performed:

1. The unnecessary columns were removed from the original two tables.

2. The two tables were combined into a single table with all patient records.

3. The concept IDs were replaced with concept names by mapping the IDs to

names with the vocabularies.

The original OSIM2 data set contains 42,197,301 patient records, each de-

scribing the occurrence of a medical concept for one of the 1,216,554 patients.

The vocabularies did not provide a mapping from concept ID to concept name

for all the concepts in the data set. The reason for the presence of these un-

mappable concept IDs could not be determined. The patient records containing

concepts that could not be mapped with the vocabularies were removed from

the data set. The result is a data set in the format required by Time2Vec that

contains 1,211,863 patients with 38,199,509 medical records.

4.2 Embeddings

Choi et al. learned medical concept embeddings by applying the skip-gram model

of Word2Vec to the medical insurance claims data of 4 million patients [Choi et

al. 2016a]. They proposed the following strategy:

1. Partition the medical history of a patient into time intervals of a certain size.

2. Remove duplicate concept occurrences within each partition and randomly

shuffle the remaining concepts.

3. Treat the concept occurrences of each partition as a sentence and apply the

skip-gram model to these sentences.

This method was applied to the OSIM2 data set by setting up a Time2Vec

model that partitions the medical records of patients into months. Since the

temporal training window is effectively removed by this setup, it is equivalent to

applying the skip-gram model to the partitioned data. The second step of their

approach was omitted, since it is aimed at removing the many duplicate codes

that appear in medical claims data and is not necessary for the OSIM2 data.

In addition to the concept embeddings obtained by applying the above method,

two groups of Time2Vec medical concept embeddings were learned from the

OSIM2 data set. The first group defines the temporal training window as 30

days. Three sets of such embeddings were obtained, each using a different type

of temporal decay (no decay, linear and exponential) within the 30-day training

window. The second group of embeddings define the temporal training window

as 14 days. This group also contains three sets of embeddings, each using a differ-

ent type of temporal decay. These embeddings are compared to the embeddings

4 http://ftp.ohdsi.org/

1395Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

obtained with the baseline approach and to each other. This makes it possible to

observe the effect of different temporal training windows and different temporal

decay strategies on the resulting embeddings.

The parameters of the linear decay functions were chosen such that the func-

tions become zero at the endpoints of the training window. The parameters of

the exponential decay functions were chosen to produce relatively high rates of

decay, truncating to zero at the endpoints of the temporal training windows, in

order to contrast it against the gradual decay of the linear decay functions.

The training hyperparameters of all the models were tuned by observing the

behaviour of the validation loss for different values of the hyperparameters. The

learning rates that produced smoothly decreasing validation losses for each of the

models were used to obtain the final embeddings. The following hyperparameters

were used for all of the models:

– The embeddings are 100-dimensional (dimen = 100).

– A minimum count of 5 was required (min count = 5).

– No subsampling was employed (subsampling = 0).

– The models were trained for 20 epochs (epochs = 20).

– The batch size during training was 32 (batch size = 32).

Generating training data for the models was the most computationally de-

manding step, taking between 5 and 10 hours when distributed over 10 2GHz

Intel Xeon E5-2640 v2 processors. Learning the embeddings from the training

data took between 2 and 5 hours when automatically distributed by TensorFlow

over the machine’s available CPU cores.

4.3 Conceptual similarity

The first evaluation strategy tests whether the property of conceptual similar-

ity is captured by the medical concept embeddings. The approach determines

whether the embeddings of conceptually similar concepts (i.e. concepts of the

same type) are grouped together. The conceptual type of each medical concept

in the data set is obtained with the OHDSI vocabularies, which maps each med-

ical concept to a clinical category known as its domain. The data set contains

concepts from four domains: conditions, drugs, procedures and observations.

Choi et al. proposed the Medical Concept Similarity Measure (MCSM) to

quantitatively evaluate this characteristic for a set of medical concept embed-

dings [Choi et al. 2016a]. The MCSM of a set of medical concepts V with respect

to a medical concept type T (e.g. conditions), parameterised by a neighbourhood

size k is defined as

MCSM(V, T, k) =
1

|V (T)|

∑
v∈V (T)

k∑
i=1

1T (v(i))

log2(i+ 1)
, (12)

1396 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Closest neighbours of Diabetes mellitus screening (Procedure)

Thyroid disorder screening (Procedure) 0.995805

Viral screening (Procedure) 0.992821

Endocrine/metabolic screening (Procedure) 0.991196

Hyperlipidemia screening (Procedure) 0.989067

History of clinical finding in subject (Observation) 0.988393

High risk sexual behavior (Condition) 0.987506

Genitourinary disease screening (Procedure) 0.987456

Nephropathy screening (Procedure) 0.986403

Screening for disorder (Procedure) 0.985877

Contact - infectious disease (Condition) 0.984437

Table 2: The medical concept types and cosine similarities of the 10 closest

neighbours of Diabetes mellitus screening in the embedding space.

where V (T) ⊂ V is the set of medical concepts of type T , v(i) denotes the

ith closest neighbour of the medical concept v in the embeddings and 1T is an

indicator function which is 1 if the concept v(i) is of type T and 0 otherwise.

The MCSM tests whether the embeddings close to the embedding for a concept

tend to be for concepts of the same type. The MCSM of a set of medical concept

embeddings with respect to a medical concept type is defined as the average of

this measure over all the concepts of the specific type. A higher MCSM for a

medical concept type indicates that embeddings for concepts of the type tend

to cluster together and that conceptual similarity is learned by the embeddings.

Table 2 demonstrates how the measure is computed. The medical concept

Diabetes mellitus screening is of the type Procedure. The closest neighbours

of the concept in the embedding space are used to compute the MCSM, with

the neighbours of the same type contributing to the measure. The MCSMs of

different sets of embeddings are compared in Table 3.

Table 3 compares embeddings obtained with the strategies proposed by this

paper to embeddings obtained with the baseline approach described in Section

4.2 (using monthly partitions). The models with a 30-day temporal training

window achieve the highest MCSMs for all of the concept types. The model with

linear decay in the 30-day temporal training window achieves the highest MCSM

for three of the four concept types. The model with exponential decay in the 30-

day temporal training window achieves the highest MCSM for one of the concept

types. Somewhat surprisingly, the models with no temporal decay do not perform

better than the baseline approach with regard to the MCSM. This shows that the

temporal training window alone does not improve the model’s ability to capture

the medical similarity property. However, the addition of temporal decay within

the temporal training window leads to improved performance with regard to the

1397Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Decay Conditions Drugs Procedures Observations

Baseline 14.00 9.48 1.66 1.35

30-day temporal training window

None 13.97 9.43 1.72 1.33

Linear 14.41 9.59 3.17 3.14

Exp 13.88 7.57 3.22 3.13

14-day temporal training window

None 13.47 7.31 1.9 1.34

Linear 14.12 8.61 2.91 2.33

Exp 13.85 7.05 2.91 2.32

Table 3: Comparison of the MCSMs of embeddings learned with the baseline

approach to those of embeddings learned with with Time2Vec using different

temporal training windows and temporal decay strategies.

MCSM. The models with linear temporal decay achieve higher MCSMs than

the models with the same temporal training window without temporal decay.

In particular, the MCSMs of the linear decay models for the concept types

Procedures and Observations are higher than those of models with the same

temporal training window without decay. These concept types are the rarest in

the OSIM2 data set and therefore the most challenging to cluster together.

Concepts of more prevalent types are more likely to seem to cluster together,

since they occur in the neighbourhood of concepts simply because they make

up a high proportion of the concepts. The models with exponential temporal

decay achieve lower MCSMs than any of the other models for the concept types

Conditions and Drugs, but achieve results close to those of the linear models for

the two less prevalent concept types. The models with temporal decay are able

to capture the conceptual similarity of rare concept types particularly well.

4.4 Medical relatedness

The second evaluation strategy tests whether the property of medical related-

ness is captured by the medical concept embeddings. The approach determines

whether the embeddings of medically related concepts (i.e. concepts that be-

long to the same branch or discipline of medicine) are grouped together. The

diseases in the data set are mapped to their equivalent codes in the SNOMED-

1398 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Closest neighbours of Asthma (Asthma)

IgE-mediated allergic asthma (Lung disease due to external agents) 0.96091

Exacerbation of asthma (Asthma) 0.959216

Cough (Miscellaneous mental health disorders) 0.955143

Asthma with status asthmaticus (Asthma) 0.95311

Montelukast (None) 0.950272

Bronchospasm (Other upper respiratory disease) 0.949745

Disorder of respiratory system (Other lower respiratory disease) 0.948517

Intrinsic asthma without status asthmaticus (None) 0.948444

Budesonide (None) 0.947301

Extrinsic asthma with status asthmaticus (None) 0.947129

Table 4: The single-level CCS categories and cosine similarities of the 10 closest

neighbours of Asthma in the embedding space.

CT5 terminology with the OHDSI vocabularies. The SMONED-CT codes are

then mapped to their equivalent ICD-9-CM codes using the mapping provided

by the U.S. National Library of Medicine6. The ICD-9-CM codes are grouped

into categories by the CCS7 classification system, which provides single-level

and multi-level groupings of all the ICD-9-CM diseases. The medical relatedness

property is evaluated by taking advantage of three of these groupings: the single-

level grouping and the first two levels of the multi-level grouping. The single-level

grouping classifies the ICD-9-CM codes of diseases into 285 mutually exclusive

categories, while the multi-level grouping classifies the codes into a hierarchical

classification system in which each level further subdivides the preceding levels

into more specific categories of diseases.

Choi et al. proposed the Medical Relatedness Measure (MRM) to quantita-

tively evaluate this characteristic for a set of medical concept embeddings [Choi

et al. 2016a]. The structure of the MRM is the same as that of the MCSM, but

the MRM uses a classification of medical relatedness instead of a classification

of medical concept types. The MRM of a set of medical concepts V with respect

to a disease grouping G, parameterised by a neighbourhood size k is defined as

MRM(V,G, k) =
1

|V (G)|

∑
v∈V (G)

k∑
i=1

1G(v(i))

log2(i+ 1)
, (13)

where V (G) ⊂ V is the set of medical concepts which can be mapped to ICD-

9-CM codes, v(i) denotes the ith closest neighbour of the medical concept v in

5 http://www.snomed.org/snomed-ct
6 https://www.nlm.nih.gov/research/umls/mapping projects/snomedct to icd9cm
reimburse.html

7 https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp

1399Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

Decay Single-level Multi-level 1 Multi-level 2

Baseline 0.88 2.78 1.58

30-day temporal training window

None 0.90 2.82 1.62

Linear 1.78 3.91 2.82

Exponential 1.63 3.79 2.7

14-day temporal training window

None 0.85 2.76 1.56

Linear 1.48 3.69 2.53

Exponential 1.4 3.55 2.42

Table 5: Comparison of the MRMs of embeddings learned with the baseline

approach to those of embeddings learned with with Time2Vec using different

temporal training windows and temporal decay strategies.

the embeddings and 1T is an indicator function which is 1 if the concept v(i) is

in the same group as v according to G and 0 otherwise.

The MRM tests whether the embeddings close to the embedding for a dis-

ease tend to be for diseases that are medically related. The MRM of a set of

medical concept embeddings with respect to a disease grouping G is defined as

the average of this measure over all the diseases. A higher MRM for a grouping

indicates that embeddings for medically related diseases tend to cluster together

and that medical relatedness is learned by the embeddings.

Table 4 demonstrates how the measure is computed. The medical concept

Asthma is in the more general Asthma category according to the CCS single-

level disease grouping. The closest neighbours of the concept in the embedding

space are used to compute the MRM, with the neighbours in the same category

contributing to the measure. The MRMs of different sets of embeddings are

compared in Table 5.

Table 5 compares the same embeddings as Table 3. The model with linear

decay in the 30-day temporal training window achieves the highest MRM for

all three of the groupings under consideration. Interestingly, the results almost

mirror the conceptual similarity results. The models with no temporal decay do

not perform better than the baseline approach with regard to the MRM, but

the addition of temporal decay does lead to increasing MRMs. The models with

temporal decay, both linear and exponential, achieve significantly higher MRMs

than the models with no temporal decay for all of the groupings. The linear

1400 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

decay models narrowly outperform the exponential decay models with the same

temporal training windows for each of the groupings. The models with temporal

decay are better able to capture the medical relatedness of concepts.

5 Conclusion and Future Work

This paper investigated the use of word embedding techniques to learn concept

embeddings in domains other than natural language processing. We proposed

Time2Vec, a model designed specifically to learn concept embeddings from tem-

poral data. The model modifies the skip-gram architecture of Word2Vec to incor-

porate the factor of time by defining the training window on the time between

events and having the importance assigned to co-occurrences decay according to

the time between events.

The model was applied to a synthetic medical data set to obtain medical

concept embeddings. The learned embeddings were evaluated using an existing

methodological framework that evaluates how effectively a set of embeddings

capture the medical properties of concepts. The results showed that just intro-

ducing a temporal training window did not improve the quality of the medical

concept embeddings. However, the addition of temporal decay within the tem-

poral training window, particularly linear decay, improved the model’s ability

to capture the medical properties in the embeddings. The results reveal the

underlying temporal characteristics of the data.

The models using a 30-day temporal training window with temporal decay

achieve the best performance among all the sets of embeddings. This shows that

the events occurring within 15 days of each other are relevant, but that that the

importance of these co-occurrences decrease as the events occur further apart.

This is a property of the medical data and the way that the strength of the

temporal relationship between medical events decays over time.

In the future, the proposed model should be applied to real medical data

and other types of temporal data to further evaluate the modifications proposed

by this paper. Other domains in which Time2Vec can be tested include enter-

tainment media (using viewing histories) and personal finance (using payment

histories). The ideal temporal training window size and temporal decay type

should also be investigated for new domains. There are also other ways to in-

corporate the factor of time into the learning algorithm that might improve

performance: The training window can be further modified (e.g. predicting only

in one direction) and the temporal decay can be incorporated into other word

embedding architectures (e.g. the continuous bag-of-words model of Word2Vec).

Finally, the implementation of Time2Vec revealed new computational challenges

and the usability of the package would benefit from improvements to the run-

time complexity of the feature extraction algorithm.

1401Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

References

[Asgari and Mofrad 2015] Asgari, E., Mofrad, M.: “Continuous Distributed Represen-
tation of Biological Sequences for Deep Proteomics and Genomics”; PLoS ONE
10(11): e0141287, 2015.

[Barkan and Koenigstein 2016] Barkan, O., Koenigstein, N.: “Item2Vec: Neural Item
Embedding for Collaborative Filtering”; arXiv preprint arXiv:1603.04259, 2016.

[Bengio et al. 2003] Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: “A Neural
Probabilistic Language Model”; The Journal of Machine Learning Research, 3, pp.
1137-1155, 2003.

[Choi et al. 2016a] Choi, Y., Chiu, C., Sontag, D.: “Learning low-dimensional repre-
sentations of medical concepts”; AMIA, pp. 41-50, 2016.

[Choi et al. 2016b] Choi, E., Bahadori, M., Searles, E., Coffey, C., Sun, J.: “Multi-
layer Representation Learning for Medical Concepts”; Proceedings of the 22nd ACM
SIGKDD International Conference on KDD, pp. 1495-1504, 2016.

[Collobert and Weston 2008] Collobert, R., Weston, J.: “A unified architecture for nat-
ural language processing”; Proceedings of the 25th International Conference on Ma-
chine Learning 08, 20(1), pp. 160-167, 2008.

[Collobert et al. 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., Kuksa, P.: “Natural Language Processing (Almost) from Scratch”; Journal of
Machine Learning Research, 2011.

[Deerwester et al. 1990] Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harsh-
man, R.: “Indexing by latent semantic analysis”; Journal of the American Society
for Information Science, pp. 391-407, 1990.

[De Vine et al. 2014] De Vine, L., Zuccon, G., Koopman, B., Sitbon, L., Bruza, P.:
“Medical Semantic Similarity with a Neural Language Model”; Proceedings of the
23rd ACM International CIKM, pp. 1819-1822, 2014.

[Dyer 2014] Dyer, C.: “Notes on Noise Contrastive Estimation and Negative Sam-
pling”; arXiv preprint arXiv:1410.8251, 2014.

[Fedak et al. 2015] Fedak, K., Bernal, A., Capshaw, Z., Gross, S.: “Applying the Brad-
ford Hill criteria in the 21st century: how data integration has changed causal in-
ference in molecular epidemiology”; DOI: 10.1186/s12982-015-0037-4, 2015.

[Firth 1957] Firth, J.: “A synopsis of linguistic theory 1930-1955”; Studies in linguistic
analysis, pp. 1-32. Oxford: Blackwell, 1957.

[Krishnamurthy et al. 2016] Krishnamurthy, B., Puri, N., Goel, R.: “Learning Vector-
Space Representations of Items for Recommendations using Word Embedding Mod-
els”; Procedia Computer Science Volume 80 Issue C, pp. 2205-2210, 2016.

[Cai et al. 2018] Cai, X., Gao, J., Ngiam, K. Y., Ooi, B. C., Zhang, Y., Yuan, X.:
“Medical Concept Embedding with Time-Aware Attention”; Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018.

[Mikolov et al. 2013a] Mikolov, T., Chen, K., Corrado, G., Dean, J.: “Efficient estima-
tion of word representations in vector space”; ICLR Workshop, 2013.

[Mikolov et al. 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.:
“Distributed representations of words and phrases and their compositionality”;
NIPS, pp. 3111-3119, 2013.

[Murray et al. 2011] Murray, R., Ryan, P., Reisinger, S.: “Design and Validation of a
Data Simulation Model for Longitudinal Healthcare Data”; AMIA Annual Sympo-
sium Proceedings, pp. 1176-1185, 2011.

[Pennington et al. 2014] Pennington, J., Socher, R., Manning, C.: “GloVe: Global vec-
tors for word representation”; EMNLP, pp. 1532-1543, 2014.

[Young et al. 2017] Young, T., Hazarika, D., Poria, S., Cambria, E.: “Recent
Trends in Deep Learning Based Natural Language Processing”; arXiv preprint
arXiv:1708.02709v4, 2017.

1402 Meyer F., van der Merwe B., Coetsee D.: Learning Cocept Embeddings ...

