
RESTful Services and Web-OS Middleware: a Formal

Specification Approach

Mario Bravetti

(University of Bologna, Italy & FOCUS, INRIA, France

mario.bravetti@unibo.it)

Abstract: Web Operating Systems can be seen as an extension of traditional Oper-
ating Systems where the addresses used to manage files and execute programs (via
the basic load/execution mechanism) are extended from local filesystem path-names
to URLs. A first consequence is that, similarly as for traditional web technologies, ex-
ecuting a program at a given URL can be done in two modalities: either the execution
is performed client-side at the invoking machine (and relative URL addressing in the
executed program set to refer to the invoked URL) or it is performed server-side at
the machine addressed by the invoked URL (as, e.g., for a web service). Moreover in
this context, user identification for access to programs and files and workflow-based
composition of service programs is naturally based on token/session-like mechanisms.
We propose a middleware based on client-server protocols and on a set primitives for
managing files/resources and executing programs (in the form of client-side/server-side
components) in Web Operating Systems. The middleware is based on an extension of
the REST architecture. In order to provide an unambiguous specification, we formally
define the semantics of the proposed middleware by first introducing a process algebra
for standard REST and then extending it to the whole middleware.

Key Words: Web Services, Web Operating Systems, Process Algebra

Category: D.3.1, D.3.3, F.3.1

1 Introduction

The widespread use of more and more powerful mobile devices, like tablets and

smartphones, in addition to laptops, workstations, etc., has led to the need of

exploiting the Internet as a repository for storing personal information and ap-

plications. The purpose is to be able to use them from any of these devices, not

to lose them in the case one of these devices is destroyed or stolen and not have

to re-install/re-configure them when such personal devices are changed: smart-

phones tend, e.g., to be changed much more frequently than laptops. These needs

have led to the development of cloud computing which shifts all resource man-

aging from local machines to a remote (set of) server(s) located somewhere in

the Internet. Such a trend is, however, influencing much more deeply the way in

which people use personal computers: browsers are, by far, the most used com-

puter application and play, more and more, the role of operating systems, which

allow the user to use applications and retrieve/store information. Another reason

of this trend is related to the capability of (web) applications and information

deployed in the Internet to be shared among several users, thus allowing for co-

Journal of Universal Computer Science, vol. 23, no. 9 (2017), 808-844
submitted: 3/5/17, accepted: 26/9/17, appeared: 28/9/17 © J.UCS

operation and enhanced communication. Examples are Google web applications

and social networks like Facebook.

Being the computing experience and the evolution of computer languages/

technology more and more related to just the browser, this naturally leads to

the idea of: from the one hand making its functionalities to become part of

the operating system, from the other hand getting free from the more tradi-

tional (and heavy) way of installing and configuring applications. In essence, the

shift from traditional operating systems to so-called Web Operating Systems

(as e.g. [Google Chromium]) consists in changing from usage of local filesystem

path-names to manage files and execute programs (via the basic load/execution

mechanism) to usage of URLs. A first consequence is that, similarly as in tra-

ditional web technologies, executing a program at a given URL, can be done

in two modalities: either the execution is performed client-side at the invoking

machine (and relative URL addressing in the executed program set to refer to

the invoked URL) or it is performed server-side at the machine addressed by the

invoked URL (as, e.g., for a web service). From the viewpoint of application de-

velopment and execution, Web-OS allows applications to be deployed anywhere

in the Internet and used from any machine by exploiting a front-end/back-end

philosophy typical of web applications. In Web-OSes a typical application will

have a front-end consisting of several front-end components, i.e. a (graphical) user

interface, which is executed client-side and a back-end which consists of several

back-end components (services) remotely executed on the machine where the ap-

plication is deployed (such a back-end may in turn exploit other resources like

databases leading to the typical multi-tier architecture of classical web technolo-

gies). Notice that, thanks to the usage of relative URLs in front-end components,

which are resolved relatively to the remote directory URL from which the com-

ponent has been downloaded, they can access remote resources/services in their

deployment environment independently from the location of their execution en-

vironment. For example a typical Web-OS application has two basic forms of

file reading/saving: relative to the machine where it is deployed (default way of

resolving relative addresses) or absolute/relative to the user machine.

In this paper we define the basic architecture and functionality of a mid-

dleware for a Web-OS which uses the mechanisms above as the “normal” way

for executing and deploying programs (to be used by the local machine or by

other machines over the Internet). Concerning the principles that guided the

design of the Web-OS middleware, we have worked on detecting the basic mech-

anisms involved in the current technologies for front-end and back-end internet

application development and on integrating them in a coherent set of primitives.

In particular: (i) we implemented file/resource management with RESTful ser-

vices [Fielding 2000] (the kind of services which is mostly used currently, for

example in services exposed by Twitter and Facebook), (ii) we extended them

809Bravetti M.: RESTful Services and Web-OS Middleware ...

with remote service execution by encompassing in a clean way (without breaking

the REST philosophy) interface-based stateful services, that is services invoked

by specifying an operation name and a parameter, similarly as for SOAP ser-

vices [SOAP], and which make use of session and application data, (iii) we added

a primitive for local execution based on downloading a front-end component and

executing it at client-side (mechanism included in current Rich Internet Appli-

cation technologies and client-side web technologies), and (iv) we endowed the

middleware with mechanisms for managing tables of client sessions, similarly as

done in a browser, and for storing session and application data, as done in a web

server.

In order to unambiguously present the behavior/semantics of such a middle-

ware and of applications it executes, we use a process algebraic [Milner 1999]

approach to formally define the semantics of the middleware primitives and

component deployment/execution. We do this in two steps. We first formalize

standard RESTful services via process algebra: to the best of our knowledge the

formalization that we present is the first one expressing in full the behavior of

such services, in particular their service invocation mechanism based on URL

pattern matching. We then extend such a process algebra to also include all

the primitives and the mechanisms of the Web-OS middleware described above.

The purpose of such a formal machinery is to define precisely and sistematically

what has been explained and informally described in words in the paper. In

particular, the formalization is detailed and realistic in expressing pattern based

URL matching mechanisms (as, e.g., for Servlet invocation in a Tomcat server)

and functioning of HTTP sessions. It can, thus, be exploited as an unambiguous

reference for Web-OS middleware implementations. Moreover, it represents, to

the best of our knowledge, the first attempt to formalize the execution model of

an operating system with process algebra.

The paper is structured as follows. In Sect. 2 we introduce RESTful services

and we present the syntax and semantics of the REST process algebra. In Sect. 3

we describe in detail the Web-OS middleware architecture and functionalities.

In Sect. 4 we propose a realization of the Web-OS middleware that is based on

an extension of RESTful services. In Sect. 5 we present a process algebra which

extends the REST one by also including all such functionalities and we provide

a modeling example. In Sect. 6 we make concluding remarks. This paper is an

extended and revised version of [Bravetti 2014].

2 A Process Algebra for RESTful Services

The RESTful extension that we propose aims at adopting a uniform mechanism

for managing both file/resources and interface-based services.

The needed mechanisms for dealing with files/resources are provided by

so-called RESTful Web Services [Fielding 2000]. In RESTful Web Services the

810 Bravetti M.: RESTful Services and Web-OS Middleware ...

HTTP protocol and HTTP request methods like GET, PUT and DELETE are

used to manage the resource identified by the URL address of the request. In the

simplest case the URL corresponds to a local directory/file in the destination

machine (e.g. according to a mapping from the context part of the URL to a

directory in the machine filesystem) and the invoked HTTP server performs the

operation corresponding to the request method: read, write (create or modify)

and delete.

However, in RESTful Web Services, URL addresses can be used to repre-

sent resources different from directory/files, e.g. to directly manage records of a

database table. The idea is to manage addressed resources via a service which is

associated to a pattern in the form “\pathname\∗”: all requests to URLs whose

pathname matches the pattern (where “∗” stands for any possible suffix) cause

an execution of the associated service which possesses an operation for each re-

quest method.1 The operation receives the “suffix”, that in the invoked URL

replaces “∗”, as a parameter and uses it as an identifier for the resource (e.g.

a database record) on which it actually operates by executing resource specific

access code. Notice that resource URLs managed by a service can be of two kind:

the resource collection kind, in the case the URL ends with “\”, and the single

resource kind, in the opposite case. On an URL of the former kind it is possible

to also use the POST HTTP request method with the following intended behav-

ior: a subresource (a resource whose address is “URL id” or “URL id\” for some

“id”) is created whose content is passed as the body of the request (as for PUT)

and where id is a fresh string identifier generated by the server [Fielding 2000].2

Example 1. The (relative) URL “\persons\”, denoting a resource collection, may

represent a database of persons managed by a service (which internally accesess

a real database) associated with pattern “\persons\∗”. A POST call at URL

“\persons\” is used to create a new person. An URL is associated to the created

person in the form “\persons\id”, with ”id” being a fresh identifier (not yet

created for the URL “\persons\”) that is returned to the caller. PUT, GET and

DELETE calls are then used on URLs of kind “\persons\id” (for some “id”),

representing single resources, to modify, read or delete such a resource.

2.1 Matching-based Invocation

Before presenting the REST process algebra, we describe in more details the

functioning of matching based invocation.

1 For denotational convenience, in this paper we use backslashes in URLs instead of
slashes, because we use slashes to represent replacements.

2 Notice that, in RESTful Web Services, it is not mandatory for services to manage
several resources: the pattern “\pathname\name” (or just “\name”), not including
“∗”, can alternatively be used, which matches just a single resource.

811Bravetti M.: RESTful Services and Web-OS Middleware ...

From the HTTP server side, when a request is received, the destination URL

is checked for matching with patterns of deployed services and, in case of success-

ful matching, the longest matching pattern is selected (deployment of multiple

services with the same pattern is not allowed) and the requested operation (that

corresponding to the HTTP request method) of the associated back-end compo-

nent executed.3

In the case the request in not matched by any pattern a default behaviour is

performed: for PUT, GET and DELETE HTTP requests the default behaviour

is to perform the corresponding action on the local filesystem at the path corre-

sponding to the resource URL (that is a direct creation/modification, read and

deletion, respectively, of the file or directory at that path); for a POST HTTP

request to the resource collection URL, the default behaviour is to generate a

file (or directory) with a fresh name in the local filesystem directory correspond-

ing to the destination URL containing the body of the request and responding

with the generated name. Notice that, the default behavior of a PUT at a URL

requires, in case that no resource exists at URL, that the resource at the par-

ent URL exists; similarly, the default behavior of a DELETE at the URL of an

existing resource requires that there are no resources existing at any child URL.

2.2 Syntax

We will now present the process algebra for REST, which is devised as an exten-

sion of pi-calculus [Milner et al. 1992, Milner 1999]. We use x, y, . . . to denote

generic names over a set N . Names are used both to represent channal based

communication as in the pi-calculus and to build pathnames and URLs, e.g.

names like persons and id of Example 1 that are also assumed to be in N .

Moreover, we use l, l′ to denote locations over a set L, representing applica-

tion contexts, i.e. a location l identifies both a server (IP+port) and one of its

application contexts (the initial part of a url).

Names of N are used to build (relative) pathnames as follows. A directory

relative path, ranged over by drpath, is taken to be:

drpath ::= x\drpath | ε

where “ε” is the empty string. For example “persons\db\” is a drpath. Also “ε”

is a drpath (being drpath a relative path, it is of course relative to a directory).

Then, a generic relative path, ranged over by rpath, representing both collection

and single resources, is given by:

rpath ::= drpath | drpath x .

For example both “persons\db\” and “persons\db\id” are a rpath. Finally, a

URL, ranged over by url, is a context location l followed by a pathname. We

consider contexts to have a special directory called exec that we will use to

3 This is analogous to the mechanism for determining the servlet to be executed in a
Tomcat server.

812 Bravetti M.: RESTful Services and Web-OS Middleware ...

deploy services, i.e. their code and their associated info, as the pattern they

manage (see Example 1). Formally, URLs are defined as:

url ::= l\[exec\]rpath

where we use

[exec\] ::= exec\ | ε

to denote the optional usage of the special exec context directory (we assume

exec /∈ N). For example both “l\persons\db\” and “l\exec\n\” are a url.

The process algebra represents the Internet as a network N of resources R

deployed at some URL url: “[R]url”. Formally, we have:

N ::= [R]url | N ‖ N | (νx)N

R ::= v | P

Resources R can be either values v (representing typed files) or programs under

execution P (representing processes/threads in memory). Running programs P

are only present during execution and they need to be considered only when

presenting the process algebra semantics (see following Section 2.3). The “‖ ”

and “(νx)” parallel and restriction operator have the same meaning as in pi-

calculus. In particular, (νx) is used to define the scope of a name, i.e. it encloses

the (deployed) resources R that have access to it.

For a network to be well-defined the following condition must be satisfied: if

it includes [R]burl\x or [R]burl\x\ for some name x and string burl that is not

simply in the form “l” or “l\exec”, then it must also include some resource R′

at the parent URL “burl\”, i.e. the collection resource [R′]burl\. The constraints

about PUT and DELETE HTTP methods, discussed at the end of Section 2.1

(existence of a parent resource and non-existance of a child resource, respectively)

and enforced in the process algebra semantics, guarantee that well-definedness

of networks is preserved during execution. In the following we will consider well-

defined networks only.

A system is a (well-defined) network not including process/thread resources

P . A system represents a network where resources have been deployed but there

is no service in execution. Making an analogy with object oriented programming

(with services being like classes): a system is an object oriented program; a

generic network is the snapshot of a program in execution.

Part of a system specification is also a predicate, denoted by cond(url), over

directory URLs, i.e. the argument url is assumed to be in the form burl\ for

some string burl. Such a predicate establishes whether the default behaviour of

a POST at a given directory URL creates subresources in the form of single

or collection resources (i.e. directories ending with “\”). For a given directory

URL burl\, if cond(burl\) is false then, whenever a POST on burl\ is called, a

single resource at URL burl\id is created, with id being a fresh name; if, instead,

cond(burl\) is true then a collection resource at URL burl\id\ is created, with id

fresh. cond(url) is assumed to be any predicate over directory URLs such that,

813Bravetti M.: RESTful Services and Web-OS Middleware ...

for all contexts l: cond(l\) = true and cond(l\exec\) = true. This because:

obviously we cannot see context locations as collections of single items; and

we represent services deployed under the special exec directory as collection

resources (as we will see, at run time we represent threads executed by services

as their subresources).

2.2.1 Values

Values v are abstract representations of data/code: in a real system they can ac-

tually be contained (serialized) in typed files in the format corresponding to their

type, e.g. XML or “class” java bytecode. We consider: the empty string ε, used,

e.g., to represent resources that exist but do not contain any significant informa-

tion (as for a collection resource []l\persons\db\, whose members [R]l\persons\db\id

are allowed to be in a network N only if the collection resource itself is also in

N , due to the network well-definedness condition above); primitive values pval,

which should at least allow us to represent successful and erroneous response

from a command request and numbers; names x; deployed services 〈D〉pat, with

D being a declaration of the code of their operations, and pat being the associ-

ated pattern they manage (see Example 1); and references ref (defined formally

in the next Section 2.2.2) to URLs, e.g. by direct use of a url or by means of a

relative path. Formally, we have:

v ::= ε | pval | x | ref | < v, . . . , v > | 〈D〉pat

pval ::= ok | err | num | . . .

We now formally define deployed services 〈D〉pat.

A service pattern, ranged over by pat, is taken to be:

pat ::= \drpath x | \drpath x\∗

For example both “\person” and “\persons\∗” are a pat (remember that drpath

can be ε).

Declaration D contains the code of service operations associated to REST

commands. Services are guaranteed to possess a behaviour for all REST meth-

ods by assuming that, in the case a command is not explicitly defined in the

declaration D, the default behaviour (described in Section 2.1 for the case of

unmatched commands) is performed. A REST command, ranged over by com,

is:

com ::= put | get | delete | post

We use Com to denote the set of REST commands com. Formally, D is a partial

function from Com to pairs composed by a formal parameter variable x and a

term E representing the code of the operation. Definitions in D are represented

as com(x)
Δ
= E.

Moreover, we assume D to be such that, if com(x)
Δ
= E ∈ D, for com ∈

{get,delete}, then parameter x is a dummy one and it is not used by the code

E: this because, as we will see, when get and delete commands are invoked

814 Bravetti M.: RESTful Services and Web-OS Middleware ...

no actual parameter is passed (due to their intended meaning). In general, in

the following, we will just use com
Δ
= E, to stand for a definition com(x)

Δ
= E

where parameter x is not used by the code E.

2.2.2 Code of Operations

We now present the syntax of code E we use to define service operations. The

basic elements used in code are REST command calls, which are composed by

standard operators such as sequencing, choice and looping. Before detailing the

syntax of terms E we need some preliminary definitions.

In service operation code we use relative paths that include the special key-

word <ipath> to stand for the internal path, i.e. the URL suffix identifying the

resource on which a service is called (replacing the “*” in the matching pattern).

References ref represent the possible ways of expressing resource addresses in

a REST command call: absolute, i.e. a URL; root-relative, i.e. starting with a

backslash and referring to the application context location l (the root); or rela-

tive. Formally, we have:

ref ::= url | \[exec\]rpath | rpaths

where rpaths is defined by:

rpaths ::= rpath | drpath <ipath> rpath

We also need to introduce expressions. An expression e includes values v

possibly combined with functional operators (that we will not explictly detail

here) and returns a value v. Similarly, a boolean expression be includes values

v possibly combined with functional operators and returns a boolean (true or

false). In the semantics we will denote evaluation of expressions e/be, such that

all variables (unbound names) have been already instantiated, with E(e)/E(be).

Every REST command call has a flag, called “in” that denotes whether it

should just work internally, in = I, or not, in = ε (in this case the flag is just

omitted when writing the command). Internal commands are used to explicitly

invoke the default command behaviour (the behaviour it has when it is not

matched, see Section 2.1), thus modeling a direct local resource access. In this

case the command call refers to the resource with a relative address.

The syntax of terms E representing operation code is as follows.

E ::= x = putinref e.E | x = getinref .E | x = delete
in
ref .E | x = postinref e.E |

x = e.E | x e.E | x(y).E | (νx)E | spawn E .E | if be thenE elseE |

recX.E | X | 0 | return e

where, for command calls x = comin
refe.E (with e being omitted in the case of

com being get or delete), we have that in = I implies ∃ rpaths : ref = rpaths.

Besides command calls x = comin
refe.E, with (freshly created) variable x

being instanciated with the value returned by the command, we consider the

following operators. x = e.E denotes a (freshly created) variable x that is in-

815Bravetti M.: RESTful Services and Web-OS Middleware ...

stanciated with the value computed by expression e. x e.E and x(y).E are the

pi-calculus x channel based output and input: they are used to represent block-

ing communication between threads, e.g., to model blocking behaviours based

on locking mechanisms within the same server. (νx)E is the pi-calculus (freshly

created) name x binder that is used, e.g., for the generation of new channels.

spawn E1 .E2 represents spawning of E1, i.e. generation of another thread (rep-

resented, as we will se, as a subresource of the thread in execution) dedicated

to executing E1, and immediate continuation with E2 in the current thread.

if be thenE1 elseE2 represents a choice based on a boolean condition. recX.E

and X are used to express recursion, i.e. looping behaviours (where recX.E

is repeated whenever X is reached inside E). 0 represents, as usual, a com-

pleted (empty) behaviour: it is used, e.g., to terminate a spawned thread. Fi-

nally, return e completes the execution by returning a value to the caller. We

assume that in a term E recursion variables X always occur in the scope of a

recX operator binding them.

Example 2. By using spawn and a dedicated, freshly generated, pi-calculus

channel we can model an asynchronous command invocation inside a term E

as follows:

(νx) (spawn (y=geturl . xy . 0) . E
′)

where E′ performs some computation (which happens in parallel w.r.t. the get

command execution) and then reads the value returned by get with a x(z).E′′

operator.

Notice that operators x= comin
refe.E, x= e.E, y(x).E, (νx)E and declara-

tions com(x)
Δ
= E (that may occur inside values 〈D〉pat used by an expression

e), they all act as binders for the name x of N . We define the set of free N

names of E, denoted by fr(E), as the set of names x that occur in E and are

not bound by one of such operators. Therefore, if E is the code of an opera-

tion with a formal parameter x, i.e. com(x)
Δ
= E, then E uses the parameter x

whenever x ∈ fr(E).

Example 3. Let us consider the REST interface to a database of persons pre-

sented in Example 1. The formal specification of such example is the system N

defined by

N = [〈Dinit〉
\init]linit\exec\n\ ‖ [〈D〉\persons\∗]l\exec\n\ ‖ []l\persons\ ‖ []l\deleted\

where the database manager is represented by the declaration D associated, at

location l, to the pattern \persons\∗, while the declaration Dinit associated, at

location linit, to the pattern \init is meant to include, in the definition of the

put command, the code executed when the system is started: as we will see in

the following Section 2.3 about semantics, the system is started by creating a re-

source at a given url with a put command. Here we take this url to be linit\init

816 Bravetti M.: RESTful Services and Web-OS Middleware ...

and Dinit (the declaration of the service code which matches the linit\init URL)

to just include the following definition of put:

put
Δ
= putl\persons\ . x1 = postl\persons\ <John, Smith> .

x2 = postl\persons\ <Mark, Johnson> . m = getl\persons\x1
.

deletel\persons\x1
. postl\deleted\m. return

That is, we create the database of persons, we add two persons to the database,

we then get back the data (value <John, Smith>) of the first person we added,

we delete it from the database and we add the data of the deleted person in

the collection resource l\deleted\ meant to collect deleted items. Notice that,

when writing commands (e.g., for the first putl\persons\ command call above)

we omit explicitly writing “ε” arguments (expressions composed of an “ε” value

only) and “ε” superscripts (flag “in” being “ε”). Finally, the declaration D, con-

taining the code of the person database manager is defined as follows. For each

com∈Com, D includes the following definition of com(x):

com(x)
Δ
= comI

db\<ipath>
x.return

where x is omitted in the case of com being get or delete. This means that we

abstractly represent database operations by commands on the internal collection

URL l\persons\db\.

Finally, we assume function cond (which is part of the system specifica-

tion, see end of Section 2.2) to be such that cond(l\persons\db\) = false and

cond(l\deleted\) = false, i.e. unmatched post commands at l\persons\db\ and

l\deleted\ generate subresources which are single items and not collections (i.e.

their URL does not terminate with “\”). This is as expected since we are man-

aging single persons.

According to the above system specification, at run time, the following net-

work behavior occurs. When the database of persons is initially created by

“putl\persons\”, the command is matched by the person database manager de-

clared by D, which correspondingly creates resource “[]l\persons\db\” in the net-

work: in this case the value of “< ipath>”, i.e. the URL l\persons\ suffix

replacing the “*” in the matching pattern, is “ε”. Similarly the two subse-

quent “post” commands are matched, with “< ipath>” being “ε” for both

such matchings. Thus, according to the code in “D”: two (sub)resources “[<

John, Smith >]l\persons\db\id1” and “[<Mark, Johnson >]l\persons\db\id2”, for

some fresh names “id1” and “id2” (which are stored in variables x1 and x2,

respectively), are created. The subsequent “get” and “delete” commands are

again matched by the service declared by D, but this time with “<ipath>” be-

ing “id1” for both of them. They, thus, read the content of the resource at URL

l\persons\db\id1 (storing it in variable m that gets value “<John, Smith>”)

and, then, delete such a resource (which is removed from the network). Finally,

the (unmatched) command “postl\deleted\m” creates a resource “[<John, Smith

>]l\deleted\id”, for some fresh name “id”: being it unmatched it just performs its

817Bravetti M.: RESTful Services and Web-OS Middleware ...

default beaviour, i.e. it acts directly on the network (without causing code of a

matching service to be executed).

The above described network behaviour will be defined formally in the fol-

lowing section about semantics.

2.3 Semantics

In order to present the semantics we need to preliminary define terms P repre-

senting programs (service operations) in execution. Syntax of terms P is defined

as that of terms E with two restrictions: command subscripts ref are just url

subscripts (due to syntactical relative URL resolution when operations are in-

voked) and the command return is not present (because return is encoded as

communication on a private channel). Moreover we assume function fr() over

terms P (expressions e), yielding the set of free names ofN in P (e, respectively),

to have the same definition as for terms E (recall that an expression e can be

simply a value v). Similarly, fr() is also defined over networks N : it is defined

as for terms E, where in addition we consider (νx) operators in the syntax of N

as binders for names x∈N . Consistently we assume fr() over strings (e.g. part

of URLs or patterns) to simply yield all the names of N included in the string.

Implicitly based on the above notion of free names, we will use the standard

notation P{v/x} to denote syntactical replacement of all free occurences of name

x in term P with value v. As standard, we assume replacements to be performed

in such a way that new names introduced by replacing elements are not “cap-

tured” by binders (by applying renaming to bound names if necessary). We also

assume the replacement to yield 0 in the case it is not possible to perform it: this

happens in case variable x is expected to contain a certain type of value, e.g. a

name to be used as a pi-calculus channel (with an operator x e.P or x(y).P), but

it is replaced by a value that is not of that type (in real programming languages

this could be avoided by requiring code E of services to type check before putting

them in execution). Finally, we also use the similar standard notation P{P ′/X}

to denote replacement of all free occurrences of recursion variables X in P (i.e.

variables X that are not in the scope of a recX operator) with term P ′.

Before presenting the semantics, we need to introduce some notation con-

cerning parts of URLs that is convenient for expressing semantic rules. We use

path to denote the path information that can occur in an url after a context

l, i.e. path ::= \[exec\]rpath, and burl (basic URL) to denote the part of a

directory URLs obtained by omitting the final “\”: that is a burl is a string such

that burl\ is an url.

The semantics is defined in reduction style along the lines of that, for the

pi-calculus, in [Milner 1999]. As in [Milner 1999] the semantics is based on a

structural congruence relation over process algebra terms, i.e. networks N . Such

a relation is defined by the set of laws presented in Table 1. Then, assumed

818 Bravetti M.: RESTful Services and Web-OS Middleware ...

R (resource sets) to denote terms N that do not include (νn)N subterms and

[R]url ∈ R to mean that R includes [R]url among its parallel terms, reduction

transitions −→ are defined by the rules in Tables 2, 3, 4, with the help of auxil-

iary transitions for commands, denoted by −→c . In the laws and rules we often

need to put conditions concerning the set of free names of N used by a list of

their elements (e.g. networks, URLs, terms E or P , . . .): in order to not burden

the notation we simply assume f(el1, . . . , eln) to stand for f(el1) ∪ · · · ∪ f(eln).

In the following we present each table and we define the auxiliary functions it

uses.

Table 2 includes the semantic rules defining transitions −→ for all the pro-

cess algebra operators: those for commands are defined in terms of transitions

−→c that are defined by the other two tables. We just comment the non stan-

dard ones. Rules for command calls establish, based on −→c transitions, if the

command can be called and in the negative case (non existance of a −→c tran-

sition, denoted by
−→c) return the special value err. Rule for spawn P.Q starts

the execution of P in parallel and continues immediately by executing Q.

Tables 3 and 4 include the semantic rules defining transitions −→c in the

case of: unmatched and internal commands (i.e. commands whose reference url

does not match any pattern and commands with subscript in = I); and matched

ones, respectively.

Table 3 defines the behavior of put, get, delete, post as the standard one

(see previous sections) unless in = I or url is matched by a pattern pat of some

declaration 〈D〉pat (residing at the special exec directory of the context l of

url) that redefines its behavior. The latter condition is checked by means of the

auxiliary function patsurl(R) that evaluates the set of patterns pat matching url

that occur in service declarations 〈D〉pat contained in R, i.e. it is defined by

patsl path(R) =
⋃

[〈D〉pat]l\exec\m\∈R ∧ path∈pat

{pat}

where path ∈ pat stands for ∃ rpath : pat{rpath/∗} = path. Such a function is

considered together with function max that evaluates the pattern pat obtained

as the maximum of a set of patterns according to the ordering ≤ on patterns

defined by: pat ≤ pat′ if pat{s/∗} = pat′ for some string s. Finally the condition

makes use of function coms(R) that yields: the set of commands com defined

in D, if R = 〈D〉pat for some pat; ∅ otherwise. In the rules for put, get, delete

and post the following auxiliary functions are also used. urls(R) yields the

set of URLs of R resources, i.e. urls(R) = {url | [R]url ∈ R}. Function d(url)

returns the url′ of the resource collection (directory) directly including the given

resource, that is, such that for some n, url is url′n or url′n\ (it returns ε if url

is in the form l\). Function id(url) returns the string obtained by removing the

final “\” from url, in case it is present; it is also extended to set of url addresses,

returning the set of strings obtained by applying id(url) to every url. In the rule

819Bravetti M.: RESTful Services and Web-OS Middleware ...

for delete, we make use of relation url < url′ that holds if url is strictly a

prefix of url′; and, in the rule for post, of the notation {\}cond, with cond being

a boolean value, that is assumed: to yield “\” if cond is true; to yield “ε”, i.e.

an empty string, otherwise. Finally, we define sets of initial locations in which

it is allowed to directly generate new subitems via post (Ing) and to create a

subitem via put (Inp): Ing = {l\, l\exec\ | l ∈ L}, Inp = {ε, l\ | l ∈ L}. In

particular, the presence of ε in Inp allows for resources at new locations (URL

l\) to be created during execution.

Table 4 defines, instead, the behavior of a command com when its url is

matched by a pattern pat of some declaration 〈D〉pat (residing at the exec

directory of the context l of url) that redefines its behavior. Such a condi-

tion is checked, in the rule in Table 4, with the help of the auxiliary predicate

match(url, pat,R) that holds if url matches pat and there is no other service

declaration in R associated with a strictly longer matching pattern, i.e. it is

defined by

match(l path, pat,R) = path ∈ pat ∧ pat ≥ max patsl path(R)

In the case the above matching condition holds, the rule in Table 4 performs the

invocation of the service operation corresponding to the called command (the

command parameter e is assumed to be ε in the case of get and delete): its code

E contained in D is executed in a new, freshly generated, thread t. The operation

call and its response are managed by two freshly generated pi-calculus channels

and the needed replacements inside E are performed, i.e. relative addressing is

resolved and the keyword “<ipath>” is substituted with the part of the URL

invoked by the caller that matches ∗ in the pat pattern. In the rule we assume

replacement E{z/return} to mean that all occurrences of “return e” terms in

E (occurring inside any binder) are replaced by “z e. 0”. Similarly replacements

θ1 and θ2 syntactically replace all occurrences of elements to the right of “/”

(inside any binder) with the corresponding elements to the left. Moreover the

rule also uses the following auxiliary functions. Similarly as for function d(url)

previously defined, when a pattern pat is considered d(pat) returns the path such

that pat is path ∗ or path n for some n. Function url(l path\, ref) performs the

expected evaluation of an (absolute) URL url starting from the (absolute) URL

l path\ of a collection resource and the, possibly, relative URL expressed by ref ,

that is: either url = ref , if ref starts with some location l; or url = l ref , if ref

starts with “\”; or url = l path\ref , otherwise. Finally, the expression path−pat

computes the path suffix rpath matching ∗ of pat (yields ε if there is no ∗) in

the expected way, that is such that path = pat{rpath/∗}.

Notice that the negative premise in Table 2 does not cause bad definedness

of the operational semantics. This is because, in the rule for matched commands,

the capability of a term of performing some auxiliary transition depends only

820 Bravetti M.: RESTful Services and Web-OS Middleware ...

N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

((νx)N1) ‖ N2 ≡ (νx)(N1 ‖ N2) x /∈ fr(N2)

[(νx)P]url ≡ (νx)[P]url x /∈ fr(url)

Table 1: Congruence rules.

on the matchnig condition to be satisfied and not on the existence of some

reduction transition −→ (which could in turn depend on auxiliary transitions).

This is because the term N ‖ R considered in the premise can always perform

a reduction transition (i.e. the synchronization between z and z). Therefore,

formally, operational semantics is well-defined in that the inference of transitions

can be stratified (see, e.g., [Groote 1993]).

Definition 1. Let N be a well-defined system. We use [[N]]url to denote the

semantics of N when executed by creating, with a put command, an empty (ε)

resource at url. [[N]]url is defined as the −→ transition system where the initial

network is taken to be N ‖ [P]l with P = puturl and l being any location not

occurring in N .

The definition above can be understood by considering again the analogy

with object oriented programming: the code for put, declared by the service of

N that (according to its associated pattern) matches url, acts as the body of

the main method. For instance, system N of Example 3 is meant to be executed

by taking url to be linit\init: it contains the deployed service [〈Dinit〉
\init]linit

that matches such an url and whose declaration Dinit includes the code for put

that is meant to act as the main method. Such an execution is therefore formally

represented by [[N]]linit\init.

Example 4. We now show how we formally represent the execution of system N

of Example 3, that is its semantics [[N]]linit\init. According to Definition 1 the

initial network is N ‖ [P]l, with P = putlinit\init, where l is any location not

occurring in N .

An initial reduction is performed, according to the rule for matched com-

mands in Table 4, representing the execution of the put command. Such a re-

duction leads to network N ‖ N ′, where N ′ includes terms: [P ′]l, where P
′ is just

waiting for the called put to return on a private channel; and [P ′′]linit\exec\n\t\

with t fresh, where P ′′ is the code of the put command as defined inside

Dinit (where relative and internal addressing has been resolved and the return

command has been replaced by communication on the private channel above).

821Bravetti M.: RESTful Services and Web-OS Middleware ...

N1 ≡ N ∧N −→ N ′

N1 −→ N ′

N −→ N ′

(νx)N −→ N ′

[x = comin
urlê.P]url′ ‖ R −→c R′

[x = comin
urlê.P]url′ ‖ R −→ R′

[x = comin
urlê.P]url′ ‖ R
−→c

[x = comin
urlê.P]url′ ‖ R −→ [P{err/x}]url′ ‖ R

[spawnP.Q]burl\ ‖ R −→ [Q]burl\ ‖ ((νt)[P]burl\t\) ‖ R t /∈ fr(P, burl)

[if be thenP elseQ]url ‖ R −→ [P]url ‖ R E(be) = true

[if be thenP elseQ]url ‖ R −→ [Q]url ‖ R E(be) = false

[recX.P]url ‖ R −→ [P{recX.P/X}]url ‖ R

[x e.P]url ‖ [x(y).Q]url′ ‖ R −→ [P]url ‖ [Q{E(e)/y}]url′ ‖ R

Table 2: Basic rules.

[P ′′]linit\exec\n\t\ is thus a new thread dedicated to the execution of such code,

which now is the only thread in execution.

In a subsequent reduction the command putl\persons\ is executed, which is

matched by 〈D〉\persons\∗ and, similarly as for the execution of the previous put

command above, it causes the creation of a new resource that starts executing

the code of the put command as defined inside D. Being now the latter the only

active thread, it causes the following two reductions: the creation of the new

resource []l\persons\db\ and the return via communication on a private channel

that reactivates the code of the put of Dinit.

With a similar matching scheme, resource [<John, Smith>]l\persons\db\n1
,

with “n1” being a fresh name, is then added and replacement n1/x1 is per-

formed inside the code of the put of Dinit. The last sequence is then repeated

similarly with the creation of [< Mark, Johnson >]l\persons\db\n2
and the re-

placement n2/x2. Subsequently, we have that get (apart from thread creation)

just performs replacement < John, Smith >/m and delete removes the re-

source [< John, Smith >]l\persons\db\n1
. Finally the last command of the code

of the put of Dinit, before the final return, causes the creation of resource

[< John, Smith >]l\deleted\n for some fresh name n. The last network reduc-

tion is the execution of the mentioned return command which consists in a

communication to the caller via a private channel.

822 Bravetti M.: RESTful Services and Web-OS Middleware ...

[x = putinurle.P]url′ ‖ [v
′]url ‖ R

−→c [P{ok/x}]url′ ‖ [E(e)]url ‖ R

[x = putinurle.P]url′ ‖ R d(url) ∈ urls(R) ∪ Inp ∧

−→c [P{ok/x}]url′ ‖ [E(e)]url ‖ R id(url)
∈ id(urls(R))

[x = getinurl.P]url′ ‖ [v]url ‖ R

−→c [P{v/x}]url′ ‖ [v]url ‖ R

[x = delete
in
url.P]url′ ‖ [v]url ‖ R
 ∃url′′ ∈ urls(R) : url′′ > url

−→c [P{ok/x}]url′ ‖ R

[x = postinburl\e.P]url′ ‖ R burl\ ∈ urls(R) ∪ Ing ∧

−→c (νn)([P{n/x}]url′ ‖ n /∈ fr(P, e, burl, url′)

[E(e)]burl\n{\}cond(burl\)) ‖ R

additional condition for each rule:

in = I ∨
 ∃ [R]url′′ ∈R : patsurl([R]url′′)={max patsurl(R)} ∧ com∈coms(R)

where com is the rule command and url = burl\ for the post rule

Table 3: Rule for auxiliary transitions of unmatched and internal commands.

3 Web-OS Middleware

We present, in Figure 1, the proposed Web-OS architecture. The upper part

of the figure shows front-end and back-end components in execution, i.e. with

operations actually under execution or waiting for operation calls. As explained

in the introduction, each front-end component is associated to a “base URL” for

relative addressing with respect to the URL it was downloaded from.

Concerning the lower part, the language/technology independent middle-

ware receives (via language dependent APIs) request to execute commands from

front-end and back-end components. Such commands are all invoked specifying

a URL (relative or absolute) on which they must act and follow the request-

response schema (as in HTTP), sending and receiving typed files, where, e.g.,

standard mime-types can be used. Such files can represent both transmission of

parameters/data in a programming language independent manner (via e.g. XML

or JSON) or transmission of actual files, as e.g. for file reading and writing via

PUT and GET commands. Relative addresses are resolved differently depending

on the invoking component: If it is a front-end component then the address is

resolved against the code-base URL, i.e. the URL of the directory the front-end

823Bravetti M.: RESTful Services and Web-OS Middleware ...

N ‖ R −→ R′ ∧ com(y)
Δ
= E ∈ D ∧match(l path, pat,R)

[x = coml path e.P]url ‖ [〈D〉pat]l\exec\m\ ‖ R −→c R′

N = ((νz)([z e.z(x).P]url ‖

(νt)[z(y).E θ1θ2{z̄/return}]l\exec\m\t\)) ‖ [〈D〉pat]l\exec\m\

z /∈{t, y} ∧ {z, t, y} ∩ fr(e, P, url, E, pat, path,m) = ∅

θ1 = {path− pat / < ipath >}

θ2 = {x = comI
url(l d(pat),rpath)e / x = comI

rpathe | com ∈ Com}

{x = comurl(l d(pat),ref)e / x = comrefe | com ∈ Com}

Table 4: Rules for auxiliary transitions of matched commands.

component was downloaded from (just denoted by “base URL” in Figure 1 and

in the following, whenever clear from the context) that is stored together with

the front-end component when it is locally deployed. If, instead, it is a back-end

component then the address is resolved against the physical-base URL, i.e. the

URL of the directory at which the back-end component is executable.

The basic middleware commands are:

– Manage a file/resource at a specified URL: creating, modifying, reading

or deleting; realized, e.g., by REST HTTP methods.

– Remotely execute an operation of a (back-end) component at the specified

URL. It takes as parameter the operation name and the set of operation

parameters and it returns the operation result. It is realized, e.g., by an

extension of RESTful services (we will present in the following) that makes

use of the POST HTTP method.

– Locally execute a front-end component by reading (downloading) its code

from the specified URL and locally deploying it. It takes as parameter the set

of parameters to be passed to the component execution/initialization and,

if needed, local deployment infos and it returns the local reference (URL)

to the deployed component. It is realized, e.g., as a GET HTTP method

combined with mechanisms to locally deploy and execute the component.

Component deployment and undeployment are also basic mechanisms of

the middleware. They are invoked directly, as commands, to deploy/undeploy

back-end components or, internally, e.g. as part of the local execution command

to locally deploy front-end components. They are realized, e.g., by performing

POST/PUT and GET/DELETE of component code at special reserved URLs;

824 Bravetti M.: RESTful Services and Web-OS Middleware ...

•
•

Figure 1: Basic Web-OS architecture

that is, in the case of RESTful, those (we denoted with prefix “l\exec\” in the

REST process algebra) at which URL pattern-based matching mechanism takes

place. In this way they are treated as special cases of file managing commands.

3.1 Application Contexts and Session Managing

As shown in the upper part of Figure 1, we assume back-end components and

resources to be organized in application contexts each including a (web) appli-

cation: in particular back-end components that are deployed/in execution and

passive front-end components ready to be downloaded and deployed/executed.

As standard, we will consider a context URL as the root of all application con-

text resources, which are included in some subdirectory of the context URL. A

related important notion that we will use is that of application and session data.

We assume that each application context uses sessions (session identifiers) to

maintain data associated with client sessions via a technology dependent data

structure (e.g. for Java based technologies, session attributes containing objects).

825Bravetti M.: RESTful Services and Web-OS Middleware ...

As quite usual, we consider each application context to independently manage

sessions, which, hence, have application scope. From the client side, therefore,

session information is collected as set of pairs composed of a session id and the

context URL the id refers to. The middleware maintains such a set of client

sessions when executing a (front-end or back-end) component operation.4

We also consider session delegation: all commands allow a session delega-

tion set to be specified, i.e. the set of context URLs whose client sessions (if

possessed by the component operation calling the command) are to be passed.

When a command causes a component operation to be invoked, the latter will

receive (if possessed by the caller) the client session id for its own context URL

(standard HTTP session managing) and, possibly, delegated sessions (a set of

pairs session id and associated context URL) that are added to the operation

client sessions. The operation response will then, symmetrically, include a new

status (created/removed session id) of the client session related to its own con-

text URL (as standard) and of the delegated client sessions (which are delegated

“back” at the response). Such information is then used to update the status of

the set of client sessions possessed by the operation that invoked the command.

3.2 Middleware Behavior

We now describe in detail how middleware behaves when executing commands

we previosly described. Concerning the left-hand side of Figure 1, command ex-

ecution is based on using, as a client, the protocol specified in the URL address.

Notice that, the technology/language dependent API, which invokes middleware

commands, does not need to wait to receive the return value from the middleware

before continuing with the execution of code: this asynchronous behaviour was,

e.g., modeled by using the spawn primitive in the REST process algebra, see

Example 2. Technically it can install an event listener (as done e.g. in AJAX) and

interface with the middleware in such a way that the listener is executed upon

completion of the command. Independently of the synchronous or asynchronous

realization of the API for a particular technology, the middleware must be im-

plemented so to be able to manage command requests in parallel in that: the

client technology may use multithreading and, anyway, middleware command

requests may come from operation executions of (different) components, which

are run in parallel.

Concerning the right-hand side of Figure 1, the Web-OS middleware employs

server(s) for protocols of URL addresses of files/resources and back-end compo-

nents it exposes to the Internet. According to the client invocations we described

4 Client sessions are therefore not shared between components or between different
execution of operations in the same component, differently from what happens, e.g.,
in a browser.

826 Bravetti M.: RESTful Services and Web-OS Middleware ...

above, such servers receive requests to read, write, delete files/resources, to de-

ploy/undeploy back-end components and to remotely execute an operation of a

back-end component. Regarding files/resources, we just assume that such servers

perform the required operation by exploiting standard OS functionalities (e.g. of

the underlying local filesystem manager), and, whenever a new file/resource is

created the server records its URL and its type. The client session passed with

the request can be exploited to check the identity of the client and its right to

manage the file/resources. Back-end component (un)deployment is based on the

type of the component to be (un)deployed (indicating the technology/language

of the component): in the case of deployment, if the back-end component tech-

nology is still not supported by the Web-OS running on the local machine, a

remote repository of plug-ins is queried to find a plug-in to install in the system

so to support the back-end component technology. For supported technologies it

uses the corresponding plug-in to perform the (un)deployment and it associates

the deployment URL (in the configuration of the server of the protocol specified

in such URL) and the type with the component. Concerning remote execution

of an operation of a (back-end) component, the server exploits the middleware

functionalities to execute the required operation via the plug-in corresponding

to the component type. Before actual operation execution, the middleware asso-

ciates a set of possessed client sessions to such an execution (which is initialized

with delegated client sessions received with the request) and maintains it until

the end of the execution.

Functionalities in the right-hand side of Figure 1 are invoked directly by

the left-hand side in case middleware commands are executed that refer to local

URLs (there is no need to actually perform a protocol client invocation and then

receive the request from the corresponding local server) or in the case of the local

execution command. In the latter case front-end component local execution is

performed by doing, first, a deployment of the front-end component based on

the type of the component to be deployed: as for back-end components, if the

front-end component technology is still not supported by the Web-OS running

on the local machine, a remote repository of plug-ins is queried to find a plug-

in to install. Once the front-end component is deployed by using the plug-in

corresponding to its type, the component is executed/initialized by exploiting

the same plug-in.

Finally, concerning the interface of the middleware with the technology de-

pendent part of the Web-OS, which is realized by an extensible set of back-

end or front-end technology plug-ins, we have: (i) The (front-end or back-end)

component code invokes the middleware commands via a technology/language

dependent API which also performs data marshalling/unmarshalling; (ii) The

middleware executes (called operations of) back-end or front-end components

by performing technology/language dependent required mechanisms and also

827Bravetti M.: RESTful Services and Web-OS Middleware ...

performing data marshalling/unmarshalling. The type of file used for data mar-

shalling/unmarshlling (e.g. XML or JSON) depends on the plug-in associated

with the component type and on its configuration.

4 Web-OS Middleware as an Extension of RESTful Services

We propose a realization of the Web-OS Middleware that is based on an exten-

sion of RESTful services. As we already explained in the introduction, such an ex-

tension aims at adopting a uniform mechanism for managing both file/resources

and interface-based stateful services, i.e. services invoked by specifying an oper-

ation name and a parameter, similarly as for SOAP services, and which make

use of session and application data.

In RESTful services only resource related commands, i.e. PUT, GET, POST,

DELETE, can be used, with the pre-defined intended semantics described in

Section 2, and their behaviour must be stateless (i.e. their behaviour is deter-

mined merely by the input data they receive) [Fielding 2000]. Deviating from

this schema, for obtaining also stateful operations with a user-defined meaning,

is commonly considered to be a needed practice (widely used, e.g., by Twitter

and Facebook). In the following, we will show that it is possible to encompass

in a clean way (without breaking the REST philosophy) interface-based state-

ful services. Moreover, we will present a realization of the Web-OS Middleware

based on such an extension.

4.1 Encompassing Interface-based Services

In order to show that a conceptual extension of RESTful Services to encompass

interface-based services can be done in a “clean” way we make a parallel with

object oriented programming.

Resource “\persons\” of Example 1 could be seen as representing a class of

person objects, and “id” in “\persons\id” as a reference to one of its objects.

POST would then correspond to the constructor (which is a static method, i.e.

called just referring to the class, and returns the reference “id” to a freshly

allocated object), while PUT, GET and DELETE, respectively to putter, getter

and destructor methods, which are non-static, i.e. called on a specific object of

the class (determined by the reference “id”) to act on it. Notice that, by using

a service associated to the “\persons\∗” pattern, its PUT, GET and DELETE

operations would receive the suffix “id” exactly as non-static methods of a class

receive the reference of object in the variable “this”.

However, in object oriented programming, besides methods above dedicated

to managing resources (object memory) with the given intended meaning, we

can have also user-defined standard methods with no predefined meaning, that

are naturally stateful. Similarly, such methods can be smoothly added also to the

828 Bravetti M.: RESTful Services and Web-OS Middleware ...

schema of RESTful services of [Fielding 2000] by using POST requests on single

resources (which do not have a definition in the REST schema), e.g. a POST

request at “\persons\id”. Such a request would include, besides the URL of

the resource on which the operation is expected to work (similarly as for “this”

yielding the object on which the method was called, the POST operation of

a service associated, e.g., to the “\persons\∗” pattern would receive the suffix

“id”) the operation (method) name and the parameter data; while the response,

the data returned by the operation. Therefore, for such operations, differently

from those originally in the RESTful schema of [Fielding 2000], it makes sense

to manage application and session (client) data in a stateful manner. For this

reason we will also consider the client session and delegated sessions to be passed

with operation requests.

4.2 Middleware Commands

Middleware commands, realizing those described in Section 3, are: put, get and

delete, which work in the same way as for REST commands with the same

name; and rexec and lexec that are described below.

The remote execution command rexec is realized as an extension of the func-

tionalities of the post command of REST. As already explained, the idea is to

make use of a smooth extension to the schema of RESTful services [Fielding 2000]

by using POST requests on single resources, e.g., considering Example 1, a POST

request at “\persons\id”. Technically, such a request indicates the URL of the

resource on which the operation is expected to work (the POST command def-

inition of a service associated, e.g., to the “\persons\∗” pattern receives, as

usual, the suffix “id” in the < ipath> variable) and includes the operation

name/parameter data in some interoperable format like XML or JSON, which is

also used for the data returned by the operation in the response. Therefore, on

single resources rexec allows for remote execution of an operation with a user

defined name and meaning as for interface-based (e.g. SOAP) services: service

declarations D are extended to include the code of such operations. On collection

resources rexec preserves the same behaviour of subresource creation as in the

REST post command.

The local execution command lexec is realized as follows. lexec at a url

retrieves a passive front-end component, i.e. its code declaration 〈D〉type which

also specifies the type/language of the code, via a get at url. Then it locally de-

ploys it by creating, via rexec, a subresource at the location “l” corresponding

to a plug-in which is able to execute such a code type: the precise deployment

URL being a subresource of “l\exec\”. In particular, it associates the deployed

component code 〈D〉type with a single resource (not including “∗”) local execu-

tion pattern pat and with its code-base URL baseurl (the URL of the directory

829Bravetti M.: RESTful Services and Web-OS Middleware ...

the component was downloaded from, i.e. such that url = baseurl n for some n),

denoted by 〈D〉baseurl→pat
type . Finally it runs it by performing a put at pat.

5 A Process Algebra for WebOS Middleware

5.1 Syntax

The definition of (well-defined) networks and systems is the same as for the

process algebra for REST presented in Section 2. Here, though, we consider an

extended syntax for terms [R]url, that is, supposed R ::= v | P , for URLs url,

values v and programs in execution P .

Concerning URLs, in a system they have the same syntax as for the REST

process algebra. In the following section about semantics we will consider addi-

tional special URLs (that represent, for example, session managing with special

resources) that can be present in a network during execution only. Since pro-

cess/threads P are not present in a system (as for the REST process algebra they

can only occur in a network during execution) they will also be detailed in the

following section about semantics. Here we will, thus, focus just on describing

values.

As for the REST process algebra, part of a system specification is also pred-

icate cond(url) that specifies, for directory URLs, whether the the default sub-

resource creation behavior of the rexec command (post in the REST process

algebra) creates single (false case) or collection (true case) resources. Predicate

cond(url) is assumed to be such that cond(l\exec\) = cond(l\) = true as in

the case of REST. Moreover, here we additionally consider, as part of a system

specification, partial function locl,type. A pair (l, type) belonging to the domain

of function loc means that an lexec performed by code running at context lo-

cation l is capable of executing the client-side technology of type type (e.g. a

plug-in for executing that kind of technology is available in the machine where

context location l is deployed): in this case locl,type yields the context l
′ at which

the technology type is executable (in the same machine where l is deployed).

5.1.1 Values

Concerning values v, we consider in addition to those considered for the REST

process algebra: locations l, so to make it possible for expressions to compute a

location (e.g. the location where to execute front-end components downloaded by

lexec); pairs x<v> used to represent combination of operation name x and pa-

rameter value v passed to a rexec; deployed front-end components 〈D〉url
⊥→pat

type ;

passive typed (where the type denotes their technology) front-end components

〈D〉type to be downloaded by lexec. The overall syntax of values v thus becomes

v ::= ε | pval | x | l | ref | x<v> |< v, . . . , v > | 〈D〉url
⊥→pat

type | 〈D〉type

830 Bravetti M.: RESTful Services and Web-OS Middleware ...

pval ::= ok | err | num | . . .

where url⊥ stands for either url or ⊥. The two cases arise depending whether

the deployed component is a front-end component (in this case the url repre-

sents the code-base url) or not (in this case we will omit writing “⊥ →” in the

following, thus getting the representation for deployed services used in the REST

process algebra apart from the added type information). Notice that deployed

front-end components should only be present during system execution, in that

generated by the semantics of an lexec command.

Declarations D contain the code of component operations op: those that

are user-defined and those associated to (resource related) commands as in the

REST process algebra. Operations op are, thus, defined by:

op ::= com | x com ::= put | get | delete | rexec

Notice that com cannot be lexec, which is executed locally by running code and

not by performing an invocation to a component. Formally, D is a partial func-

tion from operations op to pairs composed by a formal parameter variable x and

a term E representing the code of the operation. Definitions in D are represented

as op(x)
Δ
= E (op

Δ
= E if x /∈ fr(E) as it must be for op ∈ {get,delete}).

5.1.2 Code of Operations

We now present the syntax of terms E, i.e. code defining operations. We prelim-

inary need some definitions.

Concerning references ref , used for expressing addresses in a middleware

command calls, we introduce, with respect to the REST process algebra, the

possibility of using symbolic addresses. In particular, we consider reference URLs

ref starting with <session>, <application> and <phbase>. A ref starting

with <session> is used in back-end components to manage session attributes

of the current application context, e.g. <session>\username can be used to

manage the username of the invoker of the operation (identified by its session

identifier that is automatically passed when the operation is invoked, as it hap-

pens, e.g., with HTTP sessions). Similarly, a ref starting with <application>

is used in back-end components to manage application context attributes, e.g.

<application>\accounts\ can be used to manage the accounts of the cur-

rent context users. Finally, a ref starting with <phbase> is used in front-end

components to explicitly access the physical-base (given that for such compo-

nents relative addressing is otherwise automatically resolved with respect to

their code-base). The syntax of references ref is, thus, defined as for the REST

process algebra with the additional production:

ref ::= · · · | sym\rpath

sym ::= <session> | <application> | <phbase>

Moreover, we need to introduce session delegation sets “rs”, which, attached

(as a superscript) to middleware command calls, specify a set of contexts for

831Bravetti M.: RESTful Services and Web-OS Middleware ...

which we want the client session to be delegated (and delegated back with any

update when the command returns):

rs ::= {rlist} | {} | I rlist ::= l, rlist | l | ε

ε included in the list is a relative reference to the context of the base URL (code-

base for front-end components, physical-base for back-end components). rs = {}

just denotes the absence of session delegation (in this case the “rs” superscript

is just omitted when writing the command). Finally, the special case I of “rs”,

as for command flag “in” of the REST process algebra, denotes an internal

command, i.e. the explicit invocation of the default command behaviour, thus

modeling a direct local resource access.

The syntax of terms E representing operation code is as follows.

E ::= x = putrsref e.E | x = getrsref .E | x = delete
rs
ref .E | x = rexecrsref e.E |

x = lexec
rs
ref e.E | x = e.E | x rs e.E | x(y).E | (νx)E | spawn E .E |

if be thenE elseE | ν<session>.E | ¬<session>.E | recX.E | X |

0 | return e

where: for commands x = comrs
refe.E (with e omitted in the case of com being

get or delete), we have that rs = I implies ∃ rpaths : ref = rpaths; while for

command x = lexec
rs
refe.E and for outputs x rs e.E we have that rs
=I (rs in

outputs means that client sessions of specified contexts are simply transmitted).

Besides command calls and the operators we already considered for the REST

process algebra, we here introduce ν< session>.E and ¬< session>.E that

perform session creation and destruction, respectively. ν<session> generates, in

the current context (the context l that executes it), a fresh session id that is to be

assigned to the invoker of the operation executing ν <session>: the operation

(automatically) transmits such a session id when it returns (the invoker will

then hold it as a client session for l and automatically send it back whenever

invoking again some operation of l). Once created, the session is accessible by

operation code via the symbolic URL < session>: as we already explained

session attributes can be created/written or read by putting or getting values

at URLs whose initial part is in the form <session>\attribute. Simmetrically,

¬<session> destroys the client session for the current context l possessed by

the invoker of the operation executing it: the invoker and, if applicable, who

delegated its client session for l to it, and so on . . . in a chain, they all get

their client session destroyed (an analogous chain effect happens also in the

previous case of session creation). ¬<session> requires all existing attributes

of <session> to be preliminarily deleted in order to work.

5.2 Online Editor Application Example

We will now present an example of a system specified with the process algebra

we presented above. We consider a server which has a user authentication mech-

anism (based on registration, login and logout) and a small editor application.

832 Bravetti M.: RESTful Services and Web-OS Middleware ...

The latter has: a front-end component with capabilities for (i) creating a doc-

ument at a user specified relative address frp (file relative path) on the local

machine where it is executed, i.e. at its physical-base, and (ii) saving it on the

server it was downloaded from, i.e. at its code-base; and a back-end component

that receives the document to be saved on the server and saves it on a user-

dependent directory, i.e. the directory l\editor\userfiles\user\frp, where user

is the name of the logged user that is determined from session information.

The system specification is N defined by (unused type subscripts are omit-

ted):

[〈Dinit〉
\init]linit\exec\n\ ‖ [〈D〉\users]l\exec\n\ ‖ []l\pwdDB\ ‖

[〈D′〉\editor\userfiles\∗]l\exec\n′\ ‖ []l\editor\userfiles\ ‖ [〈D
′′〉edtype]l\editor\editorapp

with “[]” denoting a contained ε (empty) resource.

As for Example 3, the system is meant to be executed by creating, with a put

command, an empty resource at linit\init: the code of put declared inside Dinit

acts as the “main” method. Thus, we take Dinit to just include the following

definition of “put”:

put
Δ
=

rexecl\usersregister <username, pwd>.rexecl\userslogin <username, pwd>.

x = lexecl\editor\editorapp frp . rexec
{l}
l′\x\editorapp save <frp> .

rexecl\userslogout <> . return

The code above could represent the actions of a user or a workflow (executed

by context linit) on the server (context l) exposing the editor application (under

the directory l\editor): we take “username”, “pwd” and “frp” to be any example

string constants, with “frp” representing a file relative path and being an rpath

that does not end with “\”. The technology/language of the editor front-end

component editorapp is edtype and we assume partial function loc to be such that

loclinit,edtype = l′, i.e. in the machine running context linit we assume there is a

plug-in at context l′ running components whose technology is edtype. Concerning

predicate cond(url), which is also part of the system specification, we do not need

to make any assumpion about it in that in this example we never use command

rexec to create subresources.

We now describe the user workflow above, then we will formally define the

remaining declarations D,D′ and D′′. The user first registers in the server (con-

text l) by invoking operation register of the back-end component of l associated

to the \users pattern (the register operation, as we will see, creates a new user-

name item under l\pwdDB\ that represents the l password database). Then, the

user logs in, by invoking a different operation of the same back-end component

(which creates a session id for the user and sets its username as a “user” property

of its session), and locally executes the front-end component editorapp of the

editor application with lexec, i.e., downloading it from “l\editor\editorapp”,

833Bravetti M.: RESTful Services and Web-OS Middleware ...

deploying it in the local context l′ = loclinit,edtype able of executing the “edtype”

technology, and executing it with parameter “frp” (which is received by the put

operation of the front-end component that, as we will see, creates a new doc-

ument and saves it locally at the “frp” relative path, i.e. considering it to be

relative to its physical-base). The call to lexec returns the fresh name of the

collection resource generated in context l′ to locally deploy the front-end com-

ponent editorapp: such a name is stored in variable x and is, then, used (l′\x\

being the physical base of front-end the component) to call its operation save.

This could represent, e.g., the effect of the actions of the user on the GUI of

the front-end component. When calling save, the client session associated to l

is delegated (superscript {l}) so that the code of operation save, which runs

on context l′, accesses the l server of the editor application on user’s behalf by

passing its session id (in the previous case of lexec the l client session delegation

is done automatically when it internally calls put, as we will detail in the next

section about semantics). The save operation, as we will see, accesses (by using a

simple relative path beginning with userfiles\, which is referred, by default, to

its code-base l\editor) the editor application back-end component with pattern

\editor\userfiles\∗ in order to save a copy on the server of the file whose local

relative path is frp (under a server directory whose name is the username of

the user, determined from the “user” property of its session, see details below).

Finally, the user logs out: the “user” property of its session is deleted and its

session id is destroyed.

Set D, defining the back-end component with pattern \users, contains:

register(x)
Δ
= usr = x̂ 1 . pwd = x̂ 2 . putpwdDB\usrpwd . return

login(x)
Δ
= usr = x̂ 1 . pwd = x̂ 2 . y = getpwdDB\usr . if y == pwd then

(ν<session> . put<session>\userusr . returnok) else return err

logout(x)
Δ
= delete<session>\user . ¬<session> . return

where x̂ 1 and x̂ 2 stand for the first and second element of the list in x.

Set D′, defining editor back-end component (with pattern \editor\userfiles

\∗), contains:

put(x)
Δ
= y = get<session>\user . put

I
y\<ipath>x . return

Set D′′, defining editor front-end component, contains:

put(frp)
Δ
= put<phbase>\frpnewdoc . return

save(frp)
Δ
= x = get<phbase>\frp . putuserfiles\frpx . return

Here newdoc is any predefined constant representing the value of created

document. Notice that, as we already described above, the last put specifies an

address which is relative to the front-end component code-base.

834 Bravetti M.: RESTful Services and Web-OS Middleware ...

5.3 Semantics

In order to present the semantics we need to preliminary define the syntax of

terms P representing programs/operations in execution.

We begin by extending the syntax of URLs so to represent, session and

application attribute managing via special resources. First of all, we introduce

metavariable S that ranges over client session identifiers (a name x or no session

ns, in the case no session for the current context is detained by the client):

S ::= ns | x

The extended syntax of url that we consider is:

url ::= l\[exec\]rpath | l\special\rpath

special ::= session | session\S | application

Predicate cond(url) is assumed to be consistently extended with respect to the

one provided with the system specification in such a way that, for any context

l, cond(l\session\) = true.

Moreover, we need to introduce session-location delegation sets “sls”, i.e. sets

of pairs l :S, which, attached (as a superscript) to middleware command calls,

are transmitted to the command code (and transmitted back with any update to

the involved sessions when the command is terminated). As we will see, they are

determined according to session delegation sets rs specified in the static code

(terms E). Their syntax is:

sls ::= {sllist} | {} | I sllist ::= l :S, sllist | l :S

As for “rs” superscripts, sls = {} just denotes the absence of session delegation

(in this case the “sls” superscript is just omitted when writing the command)

and sls = I denotes an internal command.

The syntax of terms P representing operations under execution is as follows.

P ::= x = putslssurl:S e.P | x = getslssurl:S .P | x = delete
sls
surl:S .P |

x = rexecslssurl:S e.P | x = lexec
sls
surl:S e.P | x = e.P | x sls e.P |

x(y).P | (νx)P | spawn P .P | if be thenP elseP |

ν l\session\S.P | ¬ l\session\S.P | recX.P | X | 0

where a symbolic URL surl is a url where a name x ∈ N may occur in the

place of its location l; that is, surl is such that, for some x, surl{l/x} is a

url (this obviusly holds in the case surl is a url). Symbolic URLs are needed

to express run-time behaviours where the location l of a URL depends on the

content of a variable x, as in the semantics of the lexec command that, as we will

see, determines the local deployment location based on predifined function loc.

Moreover, with respect to static code, every surl is followed by a “:S” session

information, which: if surl is a url denotes the client session id possessed for

the context l of the url (which is automatically transmitted when the command

is called); otherwise we always have S = ns (no client session id is possessed).

Finally session creation and destruction are expressed in terms of actions on

l\session\S that abstractly identifies resources of the current client session S.

835Bravetti M.: RESTful Services and Web-OS Middleware ...

We assume function fr(), yielding the set of free names of N of a (list of)

syntactic element(s), replacement of a name x∈N of P with value v, i.e. P{v/x},

and replacement of a recursion variable X of P with a term P ′, i.e. P{P ′/X},

to be defined as in the process algebra for REST.

We are now in a position to present the actual semantics. As for the REST

process algebra, we make use, for notational convenience, of paths path repre-

senting the path information that can occur in an url (with the extended syntax

considered above) after a context l, i.e. a path is a string such that l path is a

url, and basic urls burl as a directory url where the final \ is omitted, i.e. a

burl is a string such that burl\ is a url. We will use Path to denote the set of

all path strings above. Moreover, Com is taken to be the set of commands com

(commands that can be defined in a declaration D), while ACom is taken to be

the set of commands acom, with acom ranging over all middleware commands:

acom ::= com | lexec

The semantics, in reduction style, relies on a structural congruence relation

defined by the same laws in Table 1 considered for the REST process algebra.

Moreover, assumed R (resource sets) to denote terms N that do not include

(νn)N subterms and [R]url ∈ R to mean that R includes [R]url among its

parallel terms, reduction transitions −→ are defined, with the help of auxiliary

transitions −→c for commands com, by:

– the same rules in Tables 2 and 3 considered for the REST process algebra,

apart from the last rule of Table 2 (communication rule) which must be

replaced by the rule in Table 5 (which accounts for transmission of the client

session and for session delegation) and from the fact that in Table 3 post

is to be replaced by rexec, in is to be replaced by sls, and “:S” has to be

added at the end of the url of every command.

– the rules in Table 6 (which replace the rule for command match presented

in Table 4 for the REST process algebra), Table 7 and 8.

In the following we present each table and we define the auxiliary functions

it uses.

Table 3 (with the above modifications) and Table 6 include the semantic rules

defining auxiliary transitions −→c for commands com. Concerning put, get

and delete the behavior is the same as in the REST process algebra. The same

holds true for rexec on collection resources, that works as post. In particular,

when they are not redefined by matching, they all ignoring session information,

including delegation, passed with the request. Concerning a rexec op<v> com-

mand on a single resource URL, in case of matching with a back-end component

(which does not redefine command rexec itself), it invokes operation “op” de-

fined in component declaration D.

836 Bravetti M.: RESTful Services and Web-OS Middleware ...

Table 3 deals with the behaviour of unmatched and internal commands. All

auxiliary functions used in the table are defined as for the REST process al-

gebra (with patsurl and coms considering R = 〈D〉url
⊥→pat

type for any url⊥ and

type, instead of R = 〈D〉pat), except sets of locations in which it is allowed to

directly generate new subitems via rexec (Ing) and to create a subitem via

put (Inp), which need to be both extended. They are now defined by Ing =

{l\, l\session\, l\exec\ | l ∈ L} and Inp = {ε, l\, l\application\ | l ∈ L}: i.e.

session ids are generated as fresh subresources of l\session\ that are collections

(where session attributes of that session id will be put) and it is possible to

create application attributes under l\application\.

Table 6 defines the behavior of a command com when the URL it addresses

is matched by a pattern pat of some declaration 〈D〉url
⊥→pat

type (residing at the

exec directory of the context l of the addressed URL) that redefines its behav-

ior, i.e., in the case of com being rexec: either D includes a definition of rexec

(in this case the first rule of Table 6, which works exactly like the rule for match-

ing of REST commands, is applied); or D does not include it, but it includes

the definition of operation op with op<e> being the parameter of rexec, for

some expression e (in this case the second rule of Table 6 is applied). The two

rules in Table 6 check pattern matching with the help of the auxiliary predicate

match(url, pat,R) that is defined as for the REST process algebra and realize

the operation call by means of pi-calculus channel based communication. The

only significant novelty here is the management of symbolic references, which are

replaced with corresponding (special) URLs, and session delegation in pi-calculus

channel based communication both when the operation is called (including both

explicitly delegated client sessions and the the client session for location l of the

URL addressed by the command, which is automatically transmitted) and when

the operation returns (transmitting back the status of explicitely delegated and

l sessions). In this table we need to consider a couple of new auxiliary functions.

↪→ yields the argument on its left if it is not ⊥, otherwise it yields the argument

on its right. It is used for selecting between code-base (for front-end components)

and physical-base (for back-end components). Function url(url, ref) performs

relative ref addressing resolution and is defined as for the REST process alge-

bra. Function l(l optpath, optl), with optpath∈Path∪{ε} and optl being either ε

or a location l′, operates similarly considering locations only: it returns l if optl

is ε (relative addressing resolution), l′ otherwise.

Table 7 defines the behaviour of the lexec command. An important role is

played by the predefined loc partial function, which, based on the type of the

front-end component at the URL (denoted by l path\n in the table) referred

by lexec and the location (l′ in the table) executing the lexec command, de-

termines the local deployment location for the component (such a location is a

server context residing in the same machine as l′ which is capable of executing

837Bravetti M.: RESTful Services and Web-OS Middleware ...

the technology of the front-end component). In particular, if partial function

loc is undefined it means that such a technology is unsupported (the machine

where l′ resides is uncapable of executing technology type). This is expressed in

Table 7 by using some auxiliary functions. type(v) determines the type of value

v in the case it is a passive typed front end component. More precisely, we have

that type(v) yields: type, if v = 〈D〉type; ε, otherwise. The latter case is used

to detect that v is not a passive typed front end component (we assume that,

obviously, ε is not a type): if such a v is at the URL referred to by an lexec it

fails. supportedl,type is assumed to be a predicate that is true whenever (l, type)

belongs to the domain of predefined function locl,type. Notice that, in the case

type is ε, this implies that supportedl,type is false. The behaviour of lexec de-

fined in the rule of Table 7 is the following. First the front-end component is

downloaded from the reference URL l path\n, then, in the case its technology

type is supported for location l′ running lexec (and it is indeed a front-end

component), it is deployed at the exec directory of the location loc given by

locl′,type. In order to do this an execution pattern loc\n′\n (where n′ is a freshly

generated collection resource and n is the component name, i.e. the last name in

the lexec reference URL) is assigned to the deployed component, constituting

its physical-base (the directory loc\n′). The code-base of the component (the

directory l path\ of the lexec reference URL) is also recorded together with the

deployment descriptor, as explained before. Finally the front-end component is

executed by performing a put command (its “constructor”) at loc\n′\n and

passing it the argument e of lexec. Session delegation prescribed by the sls su-

perscript of lexec is done when calling the put command, which also delegates

the l client session, so that the front-end component can access back-end com-

ponents at its code-base location l on behalf of the thread running lexec. lexec

returns the freshly generated directory name n′ which can be then used (under

location loc) to execute operations on the locally deployed front-end component.

Table 8 defines session id creation and destruction for the current client (the

invoker of the operation code). Recall that l\session\S abstractly identifies

resources of the current client session, S being the session id or ns (meaning

that no session is detained). Thus, in the case of creation, nothing has to be

done if S
= ns and, similarly, for destruction if S = ns (first rules for session

creation and destruction in Table 8). In the case of creation with S = ns, a

new fresh collection resource is created under l\session\ whose name becomes

the current session id (this is enacted by syntactical replacement in the code

continuation). In the case of destruction with S
= ns, the collection resource

l\session\S is deleted (which requires all session attributes for session id S to

have been previously deleted) and the current client session is set to the ns value

(this is, again, enacted by syntactical replacement in the code continuation).

Notice that, similarly as for the semantics of the REST process algebra (Ta-

838 Bravetti M.: RESTful Services and Web-OS Middleware ...

[x slse.P]url ‖ [x(y).Q]url′ ‖ R −→ [P]url ‖ [Q{E(e)/y}θ1θ2]url′ ‖ R

θ1 = {l\session\S ′ / l\session\S | l : S ′ ∈ sls}

θ2 = {l optpath : S ′ / l optpath : S | optpath ∈ Path ∪ {ε} ∧ l : S ′ ∈ sls}

Table 5: New communication rule.

ble 4): replacement {z̄sls∪{l:S}/return} in Table 6 means that all occurrences

of “return e” terms in E (inside any binder) are replaced by “zsls∪{l:S} e. 0”;

and replacements θ1 and θ2 in Tables 5, 6 and 8 syntactically replace all occur-

rences of elements to the right of “/” (inside any binder) with the corresponding

elements to the left.

We now define semantics of systems following the same approach adopted

for the REST process algebra.

Definition 2. Let N be a well-defined system. We use [[N]]url to denote the

semantics of N when executed by creating, with a put command, an empty

(ε) resource at url. [[N]]url is defined as as in Definition 1 where we take P =

puturl:ns.

For example the semantics of the online editor application example presented

in Section 5.2 is obtained by considering [[N]]linit\init.

5.4 Java Based Implementations

Simple Java based implementations of our integrated version of interface-based

and RESTful based web services (on which WebOS middleware primitives are

based) were experimented in the context of several Master’s (and one Bache-

lor’s) Theses that we supervised, see e.g. [Gregori 2007, Guidi 2008, Taioli 2008,

Giovannini 2010, Torelli 2014]. In particular, we created a small Java library

capable of performing the involved middleware commands by storing client ses-

sions and resolving relative url addressing [Guidi 2008]. We used such a library

in applets (front-end components downloaded with the local execution mecha-

nism) and servlets (back-end components). We studied the effectiveness of our

middleware primitives by considering several example applications. In particular,

we considered comet applications (application that send events in real time to

the front-end interface) and we tested several solutions based on services keep-

ing responses permanently open and performing long polling requests (where

a new request is performed immediately after a comet message is retrieved)

[Gregori 2007, Taioli 2008, Giovannini 2010, Torelli 2014]. We also noticed that

the usage of a session-based push service made it possible to avoid using pipe-

based internal communication between servlets: in this way application internal

839Bravetti M.: RESTful Services and Web-OS Middleware ...

N ‖ R −→ R′ ∧ com(y)
Δ
= E ∈ D ∧match(l path, pat,R)

[x = comsls
l path:S e.P]url′ ‖ [〈D〉url

⊥→pat
type]l\exec\m\ ‖ R −→c R

′

N ‖ R −→ R′ ∧ op(y)
Δ
= E ∈ D ∧match(l path, pat,R)

[x=rexecslsl path:Sop<e>.P]url′‖[〈D〉url
⊥→pat

type]l\exec\m\‖R−→cR
′

op /∈ Com∧

rexec/∈dom(D)∧

path = path′\n

N = ((νz)([z sls∪{l:S}e.z(x).P]url′ ‖

(νt)[z(y).E θ1θ2{z̄
sls∪{l:S}/return}]l\exec\m\t\)) ‖ [〈D〉url→pat

type]l\exec\m\

z /∈{t, y} ∧ {z, t, y}∩fr(sls,S, e, P, url′, E, url, pat, path,m)=∅

θ1={l\session\ns / <session>}{l\application / <application>}

{l id(d(pat)) / <phbase>}{path− pat / <ipath>}

θ2={x=acomI
url(l d(pat),rpath):nse / x=acomI

rpathe | acom∈ACom}

{x=acom
{l(url⊥↪→l,r):ns|r∈rs}

url(url⊥↪→l d(pat),ref):ns
e / x=acomrs

refe | acom∈ACom ∧ rs
=I}

{x{l(url⊥↪→l,r):ns|r∈rs}e / x rse}

Table 6: New rules for auxiliary transitions of matched commands.

[x = getl path\n :S . if supportedl′,type(x) then
(
loc = locl′,type(x) .

n′=rexecloc\ :ns. rexecloc\exec\:nsx
l path\→\n′\n.put

sls∪{l:S}
loc\n′\n :nse.

P{n′ /y}
)
elseP{err/y}]l′ path′ ‖ R −→ R′

[y = lexec
sls
l path\n:Se.P]l′ path′ ‖ R −→ R′

{x, loc, n′}∩

fr(P)=∅

Table 7: Rules for local execution.

communication could be merely expressed in terms of service-based invocations

(that is of the middleware primitives) [Giovannini 2010]. In general our experi-

ments showed the easy implementability of the middleware and its wide appli-

cability to several execution environments and web technologies.

840 Bravetti M.: RESTful Services and Web-OS Middleware ...

[ν l\session\S.P]url ‖ R −→ [P]url ‖ R S
= ns

[x = rexecl\session\:ns.Pθ1θ2]url ‖ R −→ R′

[ν l\session\ns.P]url ‖ R −→ R′
x /∈ fr(P)

θ1 = {l\session\x / l\session\S | S ∈ N ∪ {ns}}

θ2 = {l optpath : x / l optpath : S | optpath ∈ Path ∪ {ε} ∧ S ∈ N ∪ {ns}}

[¬ l\session\ns.P]url ‖ R −→ [P]url ‖ R

[deletel\session\S\:ns.Pθ1θ2]url ‖ R −→ R′

[¬ l\session\S.P]url ‖ R −→ R′
S
= ns

θ1 = {l\session\ns / l\session\S | S ∈ N ∪ {ns}}

θ2 = {l optpath : ns / l optpath : S | optpath ∈ Path ∪ {ε} ∧ S ∈ N ∪ {ns}}

Table 8: Rules for session creation and destruction.

6 Conclusion

Concerning related work, the process algebra that we presented is, to the best of

our knowledge: the first attempt to formalize the execution model of an operating

system with process algebra; the first one expressing, via explicit representation

of URLs and URL matching, the behavior of RESTful Services (furthermore

extending it); and, independently of the adoption of services of the RESTful

kind, the first one managing sessions (and session delegation) in the form of pairs

session identifier and context/application it refers to as it happen in practice, e.g.

with java based web technologies. In particular, concerning the formalization of

RESTful services, [Zuzak et al. 2011] focuses on the abstract representation of

resources as elements of a space and the modification to such a space caused by

the HTTP methods, [Hernández and Moreno Garćıa 2010] on transition systems

where transitions abstractly represent the execution of an HTTP method and the

consequent state modification in the client, finally [Wu et al. 2013] concentrates

on the formalization of REST service constraints (in order to check if they are

stateless, cacheable, etc.).

Regarding locations, our approach is similar to [Riely and Hennessy 1998]

for the tree structure of process locations: we however express the tree structure

in a location name (URLs) and we are able to match and reuse part of it.

Moreover we make use of the tree structure directly in the communication which

841Bravetti M.: RESTful Services and Web-OS Middleware ...

is based, at the level of service invocation, on pattern maching on location names,

and is encoded as inter-location pi-calculus communication. On the contrary

in [Riely and Hennessy 1998] the communication is intra-location only.

Regarding session treatment, our approach differs from [Lapadula et al. 2007]

because it represents the behavior of sessions via fresh session identifiers (and

not as correlation data). Moreover it differs from that in [Boreale et al. 2006,

Cruz-Filipe et al. 2013, Boreale et al. 2008, Vieira et al. 2008] where sessions are

represented via fresh identifiers and managed implicitly at service invocation as

in our approach, but are not associated to application contexts and data. More

precisely, in such approaches all communications to be performed inside the ses-

sion must be expressed jointly with the service invocation that creates the session

in the form of a conversation. In our approach instead session identifiers are as-

sociated to locations l (contexts) and, when a session identifier is created by a

service invocation (it is created server-side by the context l as in a Tomcat server)

it is stored, together with the associated context l, in the client session table at

client-side (as it actually happens in a browser). Every future invocation to that

context will implicitly use again that session identifier until some service-side

code will explicitly cancel it with a session cancellation command. Since session

identifiers are associated to contexts, it possible to express low level mechanisms

such as client communication inside different sessions in an interleaved way (by

calling services belonging to different contexts) and session delegation (by spec-

ifying the context for which to delegate the client session) without having to

manage explicitly session identifiers (they are implicitly managed when a service

is called as in [Boreale et al. 2006, Cruz-Filipe et al. 2013, Boreale et al. 2008,

Vieira et al. 2008]). On the other hand our approach does not include any high-

level mechanism for dealing with data streams as in [Cruz-Filipe et al. 2013],

pipes as in [Boreale et al. 2008] or context-sensitive message passing as in

[Vieira et al. 2008].

Concerning future work, the develompent of a detailed, non ambiguous and

executable formal description of REST services and WebOS middleware via pro-

cess algebra opens the possibility for the automatic analysis of such systems with,

e.g., model checking techniques. Moreover, the presented formal modeling, being

it detailed and realistic, e.g., in expressing pattern based URL matching mecha-

nisms and functioning of HTTP sessions, puts the basis for REST clients/services

and WebOS middleware implementations (that can differ for each of the involved

endpoint locations) to be checked for correctness. This could be enacted both

with static code checking, e.g. based on so-called behavioural types, and with

testing or monitoring techniques. The formal development of these techniques

and of related software tools automatizing them is left for future work.

842 Bravetti M.: RESTful Services and Web-OS Middleware ...

References

[Boreale et al. 2006] Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I.,
Loreti, M., Martins, F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.
T., Zavattaro, G.: “SCC: A Service Centered Calculus”; Proc. of Web Services and
Formal Methods, Third International Workshop (WS-FM 2006); Volume 4184 of
LNCS, 2006, pp 38-57.

[Boreale et al. 2008] Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: “Sessions and
Pipelines for Structured Service Programming”; Proc. of Formal Methods for Open
Object-Based Distributed Systems, 10th IFIP WG 6.1 International Conference
(FMOODS 2008); Volume 5051 of LNCS, 2008, pp 19-38.

[Bravetti 2014] Bravetti, M.: “Formalizing RESTful Services and Web-OS Middle-
ware”; Proc. of Web Services and Formal Methods, 10th International Workshop;
Volume 8379 of LNCS, 2014, pp 48-68.

[Google Chromium] “Google Chromium OS Project”,
http://www.chromium.org/chromium-os

[Cruz-Filipe et al. 2013] Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconce-
los, V. T.: “The Stream-based Service-Centered Calculus: a Foundation for Service-
Oriented Programming”; Formal Aspects of Computing, 2013.

[Fielding 2000] Fielding, R. T.: “Architectural styles and the design of network-based
software architectures”; PhD Thesis, University of California, Irvine, 2000 (Chapter
5 Representational State Transfer (REST)).

[Giovannini 2010] Giovannini, P.: “Development of Rich Internet Applications with
Asynchronous Communication in Pure Service-Oriented Paradigm”, Bachelor’s the-
sis (Supervisor M. Bravetti), University of Bologna, Italy, 2010.

[Gregori 2007] Gregori, C.: “A Comet Based Methodology for the Development of Java
Applets with Asynchronous Communication and its Application to a Shared White-
board System”, Master’s thesis (Supervisor M. Bravetti), University of Bologna,
Italy, 2007.

[Groote 1993] Groote, J.F.: “Transition system specifications with negative premises”;
Theoretical Computer Science, 118(2):263-299, 1993

[Guidi 2008] Guidi, A.: “A Methodology Based on Java, Services and HTTP Remote
Filesystem for the Development of Universally Executable Applications that Pre-
serve Configuration and Data”, Master’s thesis (Supervisor M. Bravetti), University
of Bologna, Italy, 2008.

[Hernández and Moreno Garćıa 2010] Hernández, A. G., Moreno Garćıa, M. N. “A
formal definition of RESTful semantic web services”; Proc. of First International
Workshop on RESTful Design (WS-REST 2010); ACM, 2010, pp 39-45.

[Lapadula et al. 2007] Lapadula, A., Pugliese, R., Tiezzi, F.: “Calculus for Orchestra-
tion of Web Services”; Proc. of 16th European Symposium on Programming (ESOP
2007); Volume 4421 of LNCS, 2007, pp 33-47.

[Milner 1999] Milner, R.: “Communicating and Mobile Systems: the Pi-Calculus”,
Cambridge Univ. Press, 1999.

[Milner et al. 1992] R. Milner, J. Parrow, D. Walker “A Calculus of Mobile Processes
I and II”, Information and Computation 100(1): 1-77, 1992

[Riely and Hennessy 1998] Riely, J., Hennessy, M.: “A Typed Language for Distributed
Mobile Processes (Extended Abstract)”; Proc. of Principles of Programming Lan-
guages (POPL 1998), pp 378-390.

[SOAP] World Wide Web Consortium, “SOAP Protocol Version 1.2”,
http://www.w3.org/TR/soap/

[Taioli 2008] Taioli, F.: “A Methodology Based on Comet Long-Polling for the Devel-
opment, by means of Web Services, of Java Applets with Asynchronous Commu-
nication”, Master’s thesis (Supervisor M. Bravetti), University of Bologna, Italy,
2008.

843Bravetti M.: RESTful Services and Web-OS Middleware ...

[Torelli 2014] Torelli, M.: “Push Notifications in Android Apps: Use of GCM and an
Alternative Solution Based on HTTP Long Polling”, Master’s thesis (Supervisor M.
Bravetti), University of Bologna, Italy, 2014.

[Vieira et al. 2008] Vieira, H. T., Caires, L., Seco, J. C.: “The conversation calculus:
a model of service-oriented computation”; Proc. of 17th European Symposium on
Programming (ESOP 2008); Volume 4960 of LNCS, 2008, pp 269-283.

[Wu et al. 2013] Wu, X., Zhang, Y., Zhu, H., Zhao, Y., Sun, Y., Liu, P.: “Formal
Modeling and Analysis of the REST Architecture Using CSP”; Proc. of Web Services
and Formal Methods, 9th International Workshop (WS-FM 2012); Volume 7843 of
LNCS, 2013, pp. 87102.

[Zuzak et al. 2011] Zuzak, I., Budiselic, I., Delac, G.: “Formal Modeling of RESTful
Systems Using Finite-State Machines”; Proc. of Web Engineering - 11th Int. Con-
ference (ICWE 2011); Volume 6757 of LNCS, 2011, pp 346-360.

844 Bravetti M.: RESTful Services and Web-OS Middleware ...

