Go home now Header Background Image
Search
Submission Procedure
share: |
 
Follow us
 
 
 
 
Volume 23 / Issue 7

available in:   PDF (137 kB) PS (219 kB)
 
get:  
Similar Docs BibTeX   Write a comment
  
get:  
Links into Future

 

Selecting Parameters of an Improved Doubly Regularized Support Vector Machine based on Chaotic Particle Swarm Optimization Algorithm

Chuandong Qin (North Minzu University, China)

Zhenxia Xue (Northern Michigan University, USA)

Quanxi Feng (Oklahoma State University, USA)

Xiaoyang Huang (Xiamen University, China)

Abstract: Taking full advantages of the L1-norm support vector machine and the L2-norm support vector machine, a new improved double regularization support vector machine is proposed to analyze the datasets with small samples, high dimensions and high correlations in the parts of the variables. A kind of smooth function is used to approximately overcome the disdifferentiability of the L1-norm and the steepest descent method is used to solve the model. But the parameters of this model bring some trouble about the accuracy of the experiments. By use of the characteristics of chaotic systems, we propose a chaotic particle swarm optimization to select the parameters in the model. Experiments show the improvement gains the better effects.

Keywords: L1 norm support vector machine, L2 norm support vector machine, chaotic particle swarm optimization, double regularization support vector machine

Categories: H.2, I.2.11, I.5.2