
Reversibility in Parallel Rewriting Systems

Bogdan Aman

(Romanian Academy, Institute of Computer Science

Blvd. Carol I no.8, 700505 Iaşi, Romania

bogdan.aman@iit.academiaromana-is.ro)

Gabriel Ciobanu

(“A.I.Cuza” University, Faculty of Computer Science

Blvd. Carol I no.11, 700506 Iaşi, Romania

Romanian Academy, Institute of Computer Science

Blvd. Carol I no.8, 700505 Iaşi, Romania

gabriel@info.uaic.ro)

Abstract: This paper represents a study of reversibility in parallel rewriting systems
over multisets. It emphasizes the controlled reversibility for a particular case of parallel
rewriting systems given by membrane systems, a formalism inspired by the cell activ-
ity. We define reversible membrane systems in which the scenarios based on regular
expressions are able to control the direction (forward or backward) of the evolution.
The backward computation is triggered by a special symbol ρ introduced into the
system. Several results concerning the evolution of membrane systems and reversible
membrane systems are provided, opening new research opportunities.

Key Words: controlled reversibility, membrane computing

Category: F.1.1, F.4.2, F.4.3

1 Introduction

Since many biological phenomena are naturally reversible, reversible computa-

tion has biological motivations. There exist reversible formalisms to model bio-

logical systems [Cardelli and Laneve 2011] as well as chemical reactions [Kuhn

and Ulidowski 2016]. Reversible computation could be a suitable abstraction for

a range of application domains (e.g., transactions and fault tolerant systems).

It is worth pointing out that there exist both uncontrolled and controlled re-

versibility. Uncontrolled reversibility indicates how to manage a system to reverse

it to a previous state (without indicating when a backward evolution is required).

This uncontrolled reversibility can help us to understand how reversibility works,

without looking for some applications. However, in chemical and biological sys-

tems certain operations are reversible only when there is an appropriate injec-

tion of energy, and a change of entropy moves the system in a desired direction

(backward and forward). Looking to biological systems where backward and for-

ward evolutions depend on specific physical conditions, we present a controlled

reversibility in a bio-inspired computing. This means that we may have both

Journal of Universal Computer Science, vol. 23, no. 7 (2017), 692-703
submitted: 31/3/17, accepted: 30/6/17, appeared: 28/7/17 © J.UCS

reversible and irreversible steps, where the reversible steps are triggered by a

special rollback symbol ρ. Specific sequences of this special symbol coming from

the environment allow to control the direction of the computation in order to

recover from failures or to avoid deadlocks. This idea is somehow similar to that

presented in [Mezzina and Tuosto 2017] where evolution branches in a global

graph are decorated with so-called reversion guards, namely conditions on the

state of the system triggering a backward computation. The computation pro-

ceeds forward until the guard of the branch becomes true, a moment when the

computation is reverted in order to find a better branch to execute (if such a

branch exists).

We describe such a controlled reversibility in parallel rewriting systems over

multisets, a computation model used by some bio-inspired formalisms. Paral-

lel rewriting systems over multisets (PRS) consist of a set of rewriting rules

over multisets of objects, together with an initial multiset of objects; PRS are

used to describe the dynamics of systems which involve parallel access to re-

sources [Bistarelli et al. 2003]. The evolution of a PRS consists of applying rules

over available resources (objects) in a maximal parallel rewriting manner. PRS

can represent directly some variants of membrane systems [Păun 2002, Păun

et al. 2010], as well as some variants of Petri nets [Reisig 1985] by representing

transitions as rules and places as object names. The difference between mem-

brane systems and Petri nets as PRS is given by the evolution strategy; the

strategy used in membrane systems is given by a maximally parallel applica-

tion of rules, while in Petri nets we have in general an unconditional application

of transitions. In order to exemplify our approach, we present a controlled re-

versibility in membrane systems.

The structure of the paper is as follows. Section 2 presents briefly the parallel

rewriting systems over multisets. Section 3 shows how parallel rewriting systems

can represent directly some variants of membrane systems as well as some vari-

ants of Petri nets. Section 4 represents the main part of the paper; it presents the

reversible membrane systems and some important properties of these systems.

Conclusion and references end the paper.

2 Parallel Rewriting Systems over Multisets

A multiset w over a set X is a function w : X → N from the set X to the set of

natural numbers N. The multiset w is finite if the support sup(w) = {a ∈ X |
w(a) �= 0} is finite. Throughout this paper we consider finite multisets, unless

specifically mentioned otherwise. When describing a multiset characterized by

having the support {a, b, c, d} with w(a) = 3, w(b) = 4, w(c) = 1, w(d) = 2,

we use the simpler representation 3a+ 4b+ c+ 2d. In particular, elements with

multiplicity equal to 1 do not have their multiplicity specified, as is the case of c

693Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

in 3a + 4b + c + 2d. For simplicity, sometimes we overload the set notation to

multisets by using a ∈ w instead of w(a) ≥ 1. A multiset w is called non-empty

if it contains at least one element, namely |supp(w)| > 0. We denote the empty

multiset by λ.

The sum of two multisets w,w′ over X is the multiset w+w′ : X → N defined

by (w+w′)(a) = w(a) +w′(a). For two multisets w,w′ over X we say that w is

contained in w′ if w(a) ≤ w′(a) for all a ∈ X, and we denote this by w ≤ w′. If
w ≤ w′, we can define w′ − w by (w′ − w)(a) = w′(a)− w(a).

Formally, a parallel rewriting system over multisets is a tuple (O,R, w0)

consisting of an alphabet of objects O, a set of rules R and an initial multiset

of objects w0. Each rule r ∈ R has two associated non-empty multisets over O

denoted by lhs(r) and rhs(r). The two multisets are called the left-hand side

and the right-hand side of the rule. The notation employed for describing a

rule together with its left and right-hand sides is r : lhs(r) → rhs(r). When

considering a multiset F of rules, we extend the notations for left-hand side and

right-hand side to the entire multiset: lhs(F) =
∑

r∈R F (r)·lhs(r), and similarly

rhs(F) =
∑

r∈R F (r) · rhs(r).
A parallel rewriting system (O,R, w0) evolves by applying a multiset of rules

to the initial multiset, then applying yet another multiset of rules to the multiset

obtained from the first application and so on, possibly imposing certain restric-

tions on the multisets of rules that are applied. A rule r : u→ v can be applied

to a multiset w of objects if lhs(w) ≤ w. The application of the rule r produces

the multiset of objects w − lhs(r) + rhs(r) which is obtained by subtracting

the left-hand side u from w and adding the right-hand side v. A multiset R of

rules can be applied to a multiset of objects w if lhs(R) ≤ w; the result of the

application is w − lhs(R) + rhs(R). The notion of application (of non-empty

multisets of rules) yields a labelled transition system over multisets of objects

having multisets of rules as labels. In more details, w′ is obtained from w by

applying R (denoted by w
R−→ w′) if R can be applied to w, R is not empty

and w′ = w − lhs(R) + rhs(R). The non-empty condition ensures that in each

transition, at least one rule is applied.

Example 1. Consider the parallel rewriting system (O,R, w0) with O={a, . . . , e},
w0 = a + c and R = {r1, r2, r3}, where r1 : a → d, r2 : c → e, r3 : c + d → b.

Then a+ c
r1+r2−−−−→ d+ e is the only one possible maximal parallel rewriting step,

while

– a+ c
r1+r2−−−−→ d+ e;

– a+ c
r1−→ c+ d

r2−→ d+ e;

– a+ c
r2−→ a+ e

r1−→ d+ e;

694 Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

– a+ c
r1−→ c+ d

r3−→ b

yield all the possible evolutions in this parallel rewriting system. The first three

possibilities yield the same result as when the maximal parallel rewriting is

applied. On the other hand, the fourth sequence is fundamentally different since

it involves the rule r3, and it is not a maximal parallel rewriting evolution.

3 Membrane Systems and Petri Nets as PRS

Parallel rewriting systems can represent directly several variants of membrane

systems, as well as some variants of Petri nets. In what follows we present a

general representation for membrane systems, and an example of how a parallel

rewriting system can be represented as a Petri net.

The structure μ of a membrane system (also named P system) is represented

by a tree structure (with the skin as its root), or equivalently by a string of

correctly matching parentheses placed in a unique pair of matching parentheses;

each pair of matching parentheses corresponds to a membrane. Graphically, a

membrane structure is represented by a Venn diagram in which two sets can be

either disjoint, or one is the subset of the other. The membranes are labelled in

a one-to-one manner.

A P system of degree m is Π = (O,μ,w1, . . . wm,R1, . . .Rm, io), where:

– O is an alphabet of objects;

– μ is a membrane structure with the membranes labelled by natural numbers

1 . . .m, in a one-to-one manner;

– wi are multisets over O associated with the regions 1 . . .m defined by μ;

– R1, . . . ,Rm are finite sets of rules associated with the membranes 1 . . .m;

the rules have the form u → v, where u is a non-empty multiset of objects

and v a multiset over messages of the form (a, here), (a, out), (a, inj);

– i0 is either a number between 1 and m specifying the output membrane of Π,

or it is equal to 0 indicating that the output is the outer region.

We do not use here the notion of output membrane, and so i0 will be ignored.

Definition 1. The setM(Π) of membranes in a P system Π together with the

membrane structure are inductively defined as follows:

– if i is a label and w is a multiset over O ∪ O × {out}, then 〈i|w〉 ∈ M(Π);

〈i|w〉 is called an elementary membrane, and its structure is 〈〉;

695Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

– if i is a label, M1, . . . ,Mn ∈ M(Π) have distinct labels i1, . . . , in, each Mk

has structure μk and w is a multiset over O∪O×{out}∪O×{ini1 , . . . , inin},
then 〈i|w;M1, . . . ,Mn〉 ∈ M(Π); 〈i|w;M1, . . . ,Mn〉 is called a composite

membrane, and its structure is 〈μ1 . . . μn〉.
We use the notation w(M) for the multiset of a membrane M .

Definition 2. We say that a multiset of rules R is valid in a membrane M

with label i and content w(M) if lhs(R) ≤ w(M). The multiset R is called

maximally valid in M if it is valid and there is no other rule r such that lhs(r) ≤
w(M)− lhs(R).

As usually in membrane systems, a computation of Π is a (possibly infinite)

sequence of configurations C0, C1, Given a configuration Ck = (wk1, . . . , wkn),

then the next configuration Ck+1 is obtained by applying on each multiset wki

a maximally valid multiset of rules from Ri in a nondeterministic and maximal

parallel manner.

Regarding the Petri nets viewed as PRS, we provide an example that is

inspired by a Petri net model of an assembly cell for a manufacturing system

studied in [Recalde et al. 2004].

Example 2. The parallel rewriting system Π = (O,R, w0) is described by the

alphabet O = {m,x, xf , xr, y, yf , yr, z}, the initial multiset w0 = 6m+ 3xf + yf
and the rules R = {r1, . . . , r5}:
– r1 : 3m→ x;

– r2 : m→ y;

– r3 : x+ xf → xr;

– r4 : y + yf → yr;

– r5 : 2xr + yr → z + 2xf + yf .

The parallel rewriting system Π seen as a Petri net is depicted in Figure 1.

It describes the manufacture of pieces of type x, y and z, where pieces of type x

and y are used in the production of z. Rule r1 states that one piece x is produced

from three pieces of material m, while rule r2 states that one piece y is produced

from one piece of material m. Rules r3 and r4 describe the interface between

the production of pieces x, y and that of piece z, namely that one piece x or y

is loaded into a free spot xf or yf , making them ready (state denoted by xr

or yr) for further processing. Rule r5 states that one piece z is produced from

two ready pieces xr and one ready piece yr; the production of one piece z also

frees two spots xf and one spot yf . The initial multiset w0 = 6m + 3xf + yf
stands for the availability of 6 pieces of material m, 3 free slots xf and 1 free

slot yf .

696 Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

m

r1

3

r2

x y

r3 r4
xf yf

xr yr

r5

2

2

z

6

3

Figure 1: The Petri net corresponding to Π

4 Reversibility in Membrane Systems as PRS

Reversible computation deals with mechanisms for undoing the effects of certain

actions executed in a parallel rewriting system. In what follows we are deal-

ing with reversibility in the context of membrane systems viewed as instances

of PRS. The key constructions in this investigation are given by adding the re-

verse rules to the initial set of rules, as well as by adding an external control by

means of a special symbol ρ informing the system that a rollback is needed.

In what follows we consider that the parallel rewriting system Π consists of

only one compartment labelled by 1 and all rules are of form u → v, with the

multisets u and v of objects such that supp(u), supp(v) ⊆ O. This means that

Π = (O, []1,R, w0). In order to reverse the computation of such a system, the

most natural approach would be to reverse the rules (u→ v becomes v → u) and

to find a condition controlling the evolution of the system (forward or reverse).

The control is performed by an active environment which provides at some steps

a new distinct object ρ /∈ O signalling the system that it has to reverse its

computation. This ρ is an abstraction of the physical reality in which a system is

697Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

informed that a certain change in the environment has an effect on its evolution,

as in heat shock response [Voellmy 1994].

We can associate promoters and inhibitors with a rule u → v in the form

u→ v|wprom
and u→ v|¬winhib

respectively, where wprom, winhib are non-empty

multisets of objects [Bottoni et al. 2002]. A rule u→ v|wprom
is applicable only if

the objects from wprom are available together with u, while a rule u→ v|¬winhib

is applicable only if the objects from winhib are absent while the objects of u

are available. It should be noticed that wprom and winhib are not consumed, but

are just used to control the application of the rule u → v. The promoters and

inhibitors of membrane systems formalize the reaction enhancing and reaction

prohibiting roles of various substances present in cells.

Definition 3. Given a membrane system Π = (O, []1,R, w0) of degree 1, a

reversible membrane system of degree 1 is a tuple Π̃ = (O, []1, R̃, w0), where:

– O, []1 and w0 are the same alphabet of objects, structure and initial multiset

of objects as in the initial system;

– R̃ =
−→R ∪←−Rρ is a finite set of rules obtained from the rules of R:

• for u→ v ∈ R, we add u→ v|¬ρ ∈ −→R;

• for u→ v ∈ R, we add v → u|ρ ∈ ←−Rρ;

• ρ→ λ ∈ ←−Rρ.

We present the evolution of a reversible membrane defined in Definition 3

after providing a simple example of a reversible system.

Example 3. Let us consider the parallel rewriting system (O,R, w0) of Exam-

ple 1, where R = {r1, r2, r3} with r1 : a→ d, r2 : c→ e, r3 : c+d→ b. Applying

Definition 3, we obtain the system Π̃ = (O, []1, R̃, w0), where R̃ =
−→R ∪ ←−Rρ

represents the set of rules obtained from the rules of R:
– for r1 : a→ d ∈ R, we add −→r1 : a→ d|¬ρ ∈ −→R;

– for r2 : c→ e ∈ R, we add −→r2 : c→ e|¬ρ ∈ −→R;

– for r3 : c+ d→ b ∈ R, we add −→r3 : c+ d→ b|¬ρ ∈ −→R;

– for r1 : a→ d ∈ R, we add d→ a|ρ ∈ ←−Rρ;

– for r2 : c→ e ∈ R, we add ←−r2 : e→ c|ρ ∈ ←−Rρ;

– for r3 : c+ d→ b ∈ R, we add ←−r3 : b→ c+ d|ρ ∈ ←−Rρ;

– ρ→ λ ∈ ←−Rρ.

698 Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

The biochemical reactions can be seen as causal consequences in which the

input causes the output, sometimes under some external influence (e.g., tem-

perature). The principle of causality implies a certain temporal order between

some states, and by which any later event is determined by the earlier one. A

deep study of causality in parallel rewriting systems over multisets is presented

in [Agrigoroaiei and Ciobanu 2014]. We can observe here that the actual time

elapsed between the occurrence of consecutive events that are in a given causal-

ity relation is not important. Based on these considerations, and inspired by

the scenario-based P systems [Ciobanu and Sburlan 2013], we use the regular

expressions to define scenarios as a method to model different possibilities of a

membrane system.

A regular expression over an alphabet V is defined as follows: (i) λ and each

a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V ,

then E1;E2 and (E1)
∗ are regular expressions over V , and (iii) nothing else is a

regular expression over V .

A word c0; c1; . . . ; cn (described by a regular expression over the set {λ; ρ}) is
called a scenario, and it controls which rules of R̃ are applied. Given a multiset

of objects, if ci = λ then a forward computation takes place by applying the

rules from
−→R. On the other hand, if ci = ρ then a backward computation will

take place by applying the rules from
←−Rρ.

Remark. For the purpose of this paper it is enough to consider the controlled

reversibility by considering scenarios using only symbols from {λ; ρ}. The case

of considering scenarios using symbols from {λ; ρ}∪O represents a further work.

For a scenario c0; c1; . . . ; cn that is started at the same time when the com-

putation starts in Π̃ with the multiset w0, a sequence W0; . . . ;Wn denotes the

evolution of Π̃; when W0 = w0c0 represents the initial multiset together with

the initial symbol indicating the direction of computation, then the evolution is

given by Wi = wici for all 1 ≤ i ≤ n, where wi−1
Ri−1−−−→ wi for a maximally

valid multiset Ri−1 with rules from R̃. A started scenario is said to be entirely

applied if all of its symbols are consumed in the given order for consecutive con-

figurations. In the case that there does not exist a maximally valid multiset, the

started scenario is said to be interrupted.

We claim that our reversible membrane systems is only a decoration of a

membrane system. In fact, as for the most of the existing reversible calculi,

such decorations can be erased. It is enough to forget about backward rules by

removing the ρ object and scenarios in the reversible membrane systems; in this

way, there is no object ρ coming from the environment to inhibit the forward

rules. This is formally stated in what follows; the next result proves that a step

in the initial membrane system can be modelled by a step in the reversible

membrane system by applying only rules from the forward set of rules.

699Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

Proposition 4. w
R−→ w′ if and only if w

−→R−→ w′.

Proof. If w
R−→ w′, then R is valid in w and w′ = w − lhr(R) + rhs(R). By

Definition 3, for each rule r : u → v ∈ R, there exists a corresponding rule
−→r : u → v|¬ρ ∈ −→R. This means that lhs(r) = lhs(−→r) and rhs(r) = rhs(−→r),
and thus lhs(R) = lhs(

−→R) and rhs(R) = rhs(
−→R). This implies that w′ =

w − lhs(R) + rhs(R) = w − lhs(
−→R) + rhs(

−→R), and thus w
−→R−→ w′ holds.

The other implication is proven in a similar manner. �

If we have two valid multisets of rules that do not compete for the same objects,

then the following two results hold.

Proposition 5 (forward diamond). If w
−→R−→ w′ and w

−→R′
−−→ w′′, where

−→R and−→R′ are two valid multisets of rules such that lhs(
−→R) ∩ lhs(

−→R′) = ∅, then there

exists a multiset w1 such that w′
−→R′
−−→ w1 and w′′

−→R−→ w1.

Proof. If w
−→R−→ w′ and w

−→R′
−−→ w′′, then w′ = w− lhr(−→R)+rhs(

−→R) and w′′ = w−
lhr(
−→R′)+rhs(

−→R′), respectively. From lhs(
−→R)∩lhs(−→R′) = ∅ it follows that the two

multisets of rules can both be applied simultaneously on w without overlapping

on the available objects, and thus there exists a w1 such that w
−→R∪−→R′
−−−−→ w1,

where w1 = w − lhr(
−→R ∪ −→R′) + rhs(

−→R ∪ −→R′). It should be noticed that w1 =

w− lhr(
−→R)− lhs(

−→R′)+ rhs(
−→R)+ rhs(

−→R′) = (w− lhr(
−→R)+ rhs(

−→R))− lhs(
−→R′)+

rhs(
−→R′) = w′ − lhs(

−→R′) + rhs(
−→R′), and thus w′

−→R′
−−→ w1. In a similar manner,

w1 = w − lhr(
−→R) − lhs(

−→R′) + rhs(
−→R) + rhs(

−→R′) = (w − lhr(
−→R′) + rhs(

−→R′)) −
lhs(
−→R) + rhs(

−→R) = w′′ − lhs(
−→R) + rhs(

−→R), and thus w′′
−→R−→ w1. �

Proposition 6 (reverse diamond). If w
←−Rρ−−→ w′ and w

←−R′
ρ−−→ w′′, where

←−Rρ

and
←−R′ρ are two valid multisets of rules such that lhs(

←−Rρ) ∩ lhs(
←−R′ρ) = ∅, then

there exists a multiset w1 such that w′
←−R′

ρ−−→ w1 and w′′
←−Rρ−−→ w1.

Proof. The proof is similar to that of Proposition 5. �

Now we can prove that if a reversible membrane system performs a forward

step by using only rules from
−→R, then it can be matched by a backward step

performed by using only rules from
←−Rρ, and vice-versa. This result is similar

to the so-called loop lemma usually proven when studying a reversible formal-

ism [Phillips and Ulidowski 2007].

Proposition 7 (Loop). w
−→R−→ w′ if and only if ρw′

←−Rρ−−→ w.

700 Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

Proof. If w
−→R−→ w′, then

−→R is valid in w and w′ = w − lhr(
−→R) + rhs(

−→R).

By Definition 3, for each rule r : u → v ∈ R, there exist the corresponding

rules −→r : u → v|¬ρ ∈ −→R and ←−r : v → u|ρ ∈ ←−Rρ. Also, a fresh rule ρ → λ

is added to
←−Rρ. This means that lhs(−→r) = rhs(←−r) and rhs(−→r) = lhs(←−r),

and so lhs(
−→R) = rhs(

←−Rρ) and rhs(
−→R) = lhs(

←−Rρ) − {ρ}. This implies that

w′ = w − lhs(
−→R) + rhs(

−→R) = w − rhs(
←−Rρ + lhs(

←−Rρ)− {ρ}, and it follows that

w = w′+{ρ}−lhs(←−Rρ)+rhs(
←−Rρ = ρw′−lhs(←−Rρ)+rhs(

←−Rρ), and thus ρw′
←−Rρ−−→ w

holds.

The other implication is proven in a similar manner. �

Depending on the form of the scenarios, we can get other interesting results.

Proposition 8. For a membrane system Π̃ obtained from a system Π, if the

scenario used is λ∗, then the two system have the same sets of configurations.

Proof. The proof is based on induction on all the maximal valid multisets of

rules existing for each configuration, and on Proposition 4 claiming that every

forward move of a membrane system can be matched by a forward move of its

reversible membrane system, and vice-versa. �

Proposition 9. For a membrane system Π̃ obtained from a system Π, if the

scenario used is (λ; ρ)∗ or (ρ;λ)∗, then there exists at least one computation

such that w2∗k = w0, for k > 1.

Proof. If R is a maximal valid multiset of rules for w0 in Π and the scenario

used is (λ; ρ)∗, then we may have w0

−→R−→ w1 and ρw1

←−Rρ−−→ w2. Since w0

−→R−→ w1,

then due to Proposition 7 we get that ρw1

←−Rρ−−→ w0, and so w2 = w0. Hence, by

induction, the application of the sequence of multisets of rules (
−→R;
←−Rρ)

∗ leads

to an evolution such that w2∗k = w0, for k > 1.

The proof is similar when the scenario used is (ρ;λ)∗. �

Proposition 10. For a membrane system Π̃ obtained from a system Π, if the

scenario used is (λn; ρn)∗ or (ρn;λn)∗, then there exists at least one computation

such that w2∗k∗n = w0, for k > 1.

Proof. If Ri (for 0 ≤ i < n) is a maximal valid multiset of rules for wi in Π and

the scenario used is (λn; ρn)∗, we may have w0

−→R0−−→ w1

−→R1−−→ w2 . . . wn−1
−−−→Rn−1−−−−→

wn and ρwn

←−−−−Rn−1ρ−−−−→ wn+1, . . ., ρw2n−1
←−−−Rn0ρ−−−→ w2n. Since w0

−→R0−−→ w1

−→R1−−→
w2 . . . wn−1

−−−→Rn−1−−−−→ wn , then due to Proposition 7 we got that ρwn

←−−−−Rn−1ρ−−−−→ wn−1,

. . ., ρw1

←−−−Rn0ρ−−−→ w0, and thus w2n = w0. Hence, by induction, the application of

701Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

the sequence of multisets of rules (
−→R0; . . . ;

−→Rn;
←−−Rnρ; . . . ;

←−−R0ρ)
∗ leads to an evo-

lution such that w2∗k∗n = w0, for k > 1.

The proof is similar when the scenario is (ρn;λn)∗. �

5 Conclusion

Reversibility seems to be a hot topics nowadays, and an important property

of computational systems. It has been intensely studied for Turing machines

[Bennett 1973, Morita and Yamaguchi 2007], register machines [Morita 1996],

cellular automata [Morita 2007], circuits of logical elements [Fredkin and Toffoli

1982] and circuits of memory elements [Morita 2001].

Reversible membrane systems were considered in [Leporati et al. 2006], but

the model does not uses maximal parallel rewriting and the main result is the

simulation of the Fredkin gate (and thus it studies the reversible circuits). In [Al-

hazov and Morita 2010] it is studied the reversibility of P systems with maximal

parallelism systems only from a computability point of view. The so-called dual

P systems [Agrigoroaiei and Ciobanu 2008] present reversibility in P systems

under the influence of category theory (reversibility as duality).

The approach presented in this paper deals with a controlled reversibility in

a more general framework provided by parallel rewriting system over multisets.

In particular, we defined and studied reversibility in the context of membrane

systems as instances of parallel rewriting systems over multisets. The important

innovations of this approach are given by adding the reverse rules to the initial

set of rules, as well as by adding an external control by means of scenarios

specified by using a special symbol ρ informing the system that a rollback is

needed. Several results relating the evolutions of the membrane systems and the

reversible membrane systems are presented. As far as we know, it is the first

work in this direction, and so it opens new research opportunities.

This approach is different from the constructions needed for reversibility

in process calculi [Danos and Krivine 2004] which requires one to assign to

each running process an individual memory stack that also serves as a naming

scheme and yields a unique identifier for the process. When a forward transition

is performed, the information needed for a potential rollback is pushed on the

individual memory. In [Phillips and Ulidowski 2007], the structure of the evolving

processes is not destroyed, and the progress is marked by underlining the actions

that have been performed.

Acknowledgement

This work was partially supported by “A.I.Cuza” University, Faculty of Com-

puter Science, Iaşi, România, and by the COST Action IC1405.

702 Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

References

[Agrigoroaiei and Ciobanu 2008] Agrigoroaiei, O., Ciobanu, G.: Dual P Systems; Lec-
ture Notes in Computer Science 5391 (2009), 95–107.

[Agrigoroaiei and Ciobanu 2014] Agrigoroaiei, O., Ciobanu, G.: Rewriting Systems
Over Indexed Multisets; Computer Journal 57 (2014), 165–179.

[Alhazov and Morita 2010] Alhazov, A., Morita, K.: On Reversibility and Determinism
in P System; Lecture Notes in Computer Science 5957 (2010), 158–168.

[Bennett 1973] Bennett, C.H.: Logical Reversibility of Computation; IBM Journal of
Research and Development 17 (1973), 525–532.

[Bistarelli et al. 2003] Bistarelli, S., Cervesato, I., Lenzini, G., Marangoni, R. Mar-
tinelli, F.: On Representing Biological Systems Through Multiset Rewriting; Lecture
Notes in Computer Science 2809 (2003), 415–426.

[Bottoni et al. 2002] Bottoni, P., Mart́ın-Vide, C., Păun, Gh., Rozenberg, G.: Mem-
brane Systems With Promoters/Inhibitors; Acta Informatica 38 (2002), 695–720.

[Cardelli and Laneve 2011] Cardelli, L., Laneve, C.: Reversibility in Massive Concur-
rent Systems; Scientific Annals of Computer Science 21 (2011), 175–198.

[Ciobanu and Sburlan 2013] Ciobanu, G., Sburlan, D.: Scenario Based P Systems; In-
ternational Journal of Unconventional Computing 9 (2013), 351–366.

[Danos and Krivine 2004] Danos, V., Krivine, J.: Reversible Communicating Systems;
Lecture Notes in Computer Science 3170 (2004), 292–307.

[Fredkin and Toffoli 1982] Fredkin, E., Toffoli, T.: Conservative Logic; International
Journal of Theoretical Physics 21 (1982), 219–253.

[Kuhn and Ulidowski 2016] Kuhn, S., Ulidowski, I.: A Calculus For Local Reversibility;
Lecture Notes in Computer Science 9720 (2016), 20–35.

[Leporati et al. 2006] Leporati, A., Zandron, C., Mauri, G.: Reversible P Systems to
Simulate Fredkin Circuits; Fundamenta Informaticae 74 (2006), 529–548.

[Mezzina and Tuosto 2017] Mezzina, C.A., Tuosto, E.: Choreographies for Automatic
Recovery; arXiv:1705.09525 (2017).

[Morita 1996] Morita, K.: Universality of a Reversible Two-Counter Machine; Theo-
retical Computer Science 168 (1996), 303–320.

[Morita 2001] Morita, K.: A Simple Reversible Logic Element and Cellular Automata
for Reversible Computing; Lecture Notes in Computer Science 2055 (2001), 102–113.

[Morita 2007] Morita, K.: Simple Universal One-Dimensional Reversible Cellular Au-
tomata; Journal of Cellular Automata 2 (2007), 159–165.

[Morita and Yamaguchi 2007] Morita, K., Yamaguchi, Y.: A Universal Reversible Tur-
ing Machine; Lecture Notes in Computer Science 4664 (2007), 90–98.

[Păun 2002] Păun, Gh.: “Membrane Computing. An Introduction”; Springer (2002).
[Păun et al. 2010] Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): “Handbook of Mem-

brane Computing”; Oxford University Press (2010).
[Phillips and Ulidowski 2007] Phillips, I., Ulidowski, I.: Reversing Algebraic Process;

Journal of Logic and Algebraic Programming 73 (2007), 70–96 (2007).
[Recalde et al. 2004] Recalde, L., Silva, M., Ezpeleta, J., Teruel, E.: Petri Nets and

Manufacturing Systems: An Examples-Driven Tour; Lectures on Concurrency and
Petri Nets 3096 (2004), 742–788.

[Reisig 1985] Reisig, W.: “Petri Nets: An Introduction”; Springer (1985).
[Voellmy 1994] Voellmy, R.: Transduction of the Stress Signal And Mechanisms of

Transcriptional Regulation of Heat Shock/Stress Protein Gene Expression in Higher
Eukaryotes; Critical Reviews in Eukaryotic Gene Expression 4 (1994), 357–401.

703Aman B., Ciobanu G.: Reversibility in Parallel Rewriting Systems

