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Abstract: Studying the Σ-reducibility of families introduced by [Kalimullin and Pu-
zarenko 2009] we show that for every set X �T ∅′ there is a family of sets F which is

the Σ-least countable family whose Σ-jump is Σ-equivalent to X ⊕X. This fact will
be generalized for the class of n-families (families of families of . . . of sets).
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1 Introduction

In this paper study a reducibility among families of sets introduced in [Kalimullin

and Puzarenko 2009]. We will say that a family F0 ⊆ 2ω is Σ-reducible to a

family F1 ⊆ 2ω if for every admissible set A

F1 is Σ-definable in A =⇒ F0 is Σ-definable in A.

A family F ⊆ 2ω is Σ-definable in A if there is a Σ-formula Φ such that

F = {{x ∈ ω : Φ(x, y)} : y ∈ Y },
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for some Σ-definable subset Y ⊆ A. This reducibility can be reformulated in

terms of enumeration operators:

Theorem 1. [Kalimullin and Puzarenko 2009] For families F0 and F1, the fol-

lowing conditions are equivalent:

1. F0 �Σ F1;

2. F0 ∪ {∅} = {Θ(C ⊕ B ⊕ E(F1)) : C ∈ KF1} for some enumeration operator

Θ and some set B ∈ KF1 , where E(F) = {u : ∃X ∈ F [Du ⊆ X ]}, and KF1

is the class of sets of the form {〈n,m〉} ⊕A1 ⊕ . . .⊕Am, Ai ∈ F1.

On the other hand, �Σ is a natural extension of the enumeration and Turing

reducibilities, since A �e B ⇐⇒ {A} �Σ {B}.
Let us highlight that Σ-reducibility among families is equivalent to the Σ-

definability relation between special structures MF [Kalimullin and Puzarenko

2009]. See the end of this section for the detailed definition of MF. Following

[Montalbán 2009], [Puzarenko 2009], [Stukachev 2009] we can view the Σ-jumps

of families as the jumps of the corresponding structures.

Definition 2. For a structure M, define the jump of M to be the structure

J(M) = (HF(M), UΣ), where UΣ is a ternary Σ-predicate on HF(M) universal

for the class of all binary Σ-predicates on HF(M), is called a Σ-jump.

For any n-family F instead of J(MF) we simply write J(F). The Σ-jump does

not depend on the choice of a universal Σ-predicate, up to Σ-equivalence. Fur-

thermore, this Σ-jump on structures having Turing (enumeration) degrees acts

in the same way as a Turing (enumeration) jump (see [Puzarenko 2009]). As in

the classical case, the Σ-jump operation satisfies the following:

1. A �Σ J(A);

2. A �Σ B ⇒ J(A) �Σ J(B).

We define Jn(A) by induction on n ∈ ω as follows: J0(A) = A, Jn+1(A) =

J(Jn(A)). It was shown in [Puzarenko 2009] that for any structures M and A on

a finite signature, M is Σm+1-definable in A iff M �Σ Jm(A).

In [Kalimullin and Puzarenko 2009] some unexpected properties of the fam-

ily InfCE of all infinite c.e. sets under Σ-reducibility were found. In particular,

for a family F, F �Σ InfCE iff the following conditions hold:

1. all sets in F are c.e.;

2. the index set {e : We ∈ F} is Σ0
3 ;

3. there exists a computable cover F̂ of F, i.e., a computable family F̂ ⊆ F such

that for any W ∈ F, we have W ⊆ V for some V ∈ F̂.
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In this paper, we show that the family InfCE has yet another natural prop-

erty: InfCE is the Σ-least family among all countable families, whose Σ-jump

computes ∅′′, i.e., it is the least jump inversion of the Turing degree of ∅′′. More-

over, each set A �T ∅′ has such jump inversion. We show also, that each family

F �Σ ∅′ has the Σ-least jump inversion in the extended class of n-families.

The notation and terminology follows from Rogers [Rogers 1967] and [Ershov

1996]. We now formally introduce the generalized notion of n-families and fix

the precise way of their coding into the structures.

Definition 3. A 0-family is a subset of ω. For an integer n > 0, an n-family is

a countable set of (n− 1)-families.

We consider the empty set as an 0-family.

According to [Kalimullin and Faizrahmanov 2016] the definition of com-

putably enumerable n-families is inductive: an n-family F is computably enumer-

able if it’s elements, (n− 1)-families, are uniformly computably enumerable. We

give this definition generalized to an arbitrary admissible set (see [Ershov 1996]):

Definition 4. 1. A Σs-formula Φ(z, y), s ∈ ω, defines a 0-family X ⊆ Nat(A)

in an admissible set A if there is a tuple c ∈ A
k such that

X = {m ∈ Nat(A) : A |= Φ(c,m)}.

In this case, we will write X = F
0,A
Φ(c).

2. A Σs-formula Φ(z, x, y) defines an 1-family F, if there are a nonempty Σs-

subset E ⊆ A and a tuple c ∈ A
k such that

F = {F0,A
Φ(c,x) : x ∈ E}.

In this case, we will write F = F
1,A
Φ(c),E .

3. A Σs-formula Φ(z, x1, . . . , xn+2, y) defines an (n + 2)-family F, if there are

a nonempty Σs-subset E ⊆ A
n+2 and a tuple c ∈ A

k such that

F = {Fn+1,A

Φ(c,x),E(x) : x ∈ Pr1(E)},

where

Pr1(E) = {x : ∃y1 . . . ∃yn+1 (x, y1, . . . , yn+1) ∈ E},
E(x) = {(y1, . . . , yn+1) : (x, y1, . . . , yn+1) ∈ E}.

In this case, we will write F = F
n+2,A
Φ(c),E .

An n-family F is Σs-definable (Σ-definable for the case s = 1) in A if some

Σs-formula defines F in A.
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This definition extends the definition given in [Kalimullin and Puzarenko 2009].

We will see below that for the n-families it is enough to consider only special

cases of admissible sets, namely, the hereditary finite structures HF(M), where

M is some algebraic structure. Let M be the domain of M and let σ be the

language of M. The domain of HF(M) is the class of HF (M) of hereditarily

finite sets over the set M is defined by induction as follows:

– H0(M) = {∅};
– Hn+1(M) = Hn(M) ∪ Pω(Hn(M) ∪M);

– HF (M) =
⋃

n<ω Hn(M) ∪M

(where Pω(X) denotes the set of all finite subsets of X).

The hereditarily finite superstructure over M is the algebraic structureHF(M)

in the signature σ ∪ {U (1),∈(2), ∅}, where UHF(M) = M , ∈HF(M)⊆ (HF (M)) ×
(HF (M) \M) is the membership relation on HF(M), the constant symbol ∅ is

interpreted as the empty set, and symbols in the signature σ are interpreted in

the same way as on M.

Following [Kalimullin and Puzarenko 2009], we can code every n-family F into

the admissible superstructure HF(MF) over the special structure MF defined by

induction as follows.

– For an arbitrary 0-family A let MA be the structure in the signature σ =

{r, I1, R2} with the domain MF = ω ∪X , X = {xn : n ∈ A}, such that

RMA = {〈n, n+ 1〉 : n ∈ ω}∪{〈xn, n〉 : n ∈ A}, rMA = 0 and IMA = {rMA}.
– For an n-family F = {Si : i ∈ ω}, n > 0, let MA be the structure in the

signature σ = {r, I1, R2} with the domain
⋃

k,i |Mk
Si
| ∪ {rMF} (each Mk

Si
is

an isomorphic copy of MSi with a new domain) such that IMF =
⋃

k,i I
Mk

Si

and

R(x, y) ⇔ x = (∃k, i) [x = rMF & y = rM
k
i ∨ RMk

i (x, y)]

for each x, y ∈ |MF|.
Through this inductive definition, the elements of IMF are precisely the

elements originally denoted as rMA for 0-families A ∈ · · · ∈ F. For i ∈ IMF

we denote the corresponding 0-family by Ai.

It is easy to check that every n-family F is Σ-definable in HF(MF). For example,

if n = 0 then a 0-family A ⊆ ω is defined by the formula saying that there is a

sequence

rMF = n0, n1, n2, . . . , nx+1, p

such that R(ni, ni+1) for all i � x, and R(p, nx+1), p �= nx. Moreover, it follows

from [Kalimullin and Puzarenko 2009] that the Σ-definability of F is equivalent

to the Σ-definability of MF itself.
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Proposition5. [Kalimullin and Puzarenko 2009] An n-family F is Σ-definable

in a countable admissible set A iff the structure MF (and, therefore, HF(MF))

is Σ-definable in A.

Under Σ-interpretation of a structure M in a signature σ we understand a Σ-

definable structure N in the language σ ∪ {∼}, where ∼ is a new congruence

relation on N such that N/ ∼∼= M.

Definition 6. Let F be an n-family and M be a structure. We say that F is

Σ-reducible to M (written F �Σ M) if MF is Σ-definable in HF(M). Similarly,

M �Σ F if M is Σ-definable in HF(MF). If F and S are n- and m-families

correspondingly we say that F is Σ-reducible to S if F �Σ MS. As usual, the

relation ≡Σ holds in the case of Σ-reductions from the left to the right and from

the right to the left.

Note that for an n-family F and the (n+ 1)-family {F} we have {F} ≡Σ F.

By this reason we can view an n-family F as an m-family for m > n.

Recall that for the case n = 0 the standard notation is

Y ⊕A = {2x : x ∈ Y } ∪ {2x+ 1 : x ∈ A}.

If Y is an arbitrary set and F is an n-family, n > 0, then we define the join

of Y and F inductively by letting

Y ⊕ F = {Y ⊕ S : S ∈ F}.

For an n-family F and an integer k, denote by Fk the n-family {k} ⊕ F.

Clearly, for every integer k and an n-family F, we have F ≡Σ Fk. For n-families

F,G define the n-family

F ⊕ G = F0 ∪ G1.

It is easy to see that F ≤Σ F ⊕ G, G ≤Σ F ⊕ G, and

F ≤Σ M,G ≤Σ M =⇒ F ⊕ G ≤Σ M

for every structure M.

2 Jump and jump inversion on n-families

Example 1. ([Puzarenko 2009]). For a 0-family A the jump J(A) is Σ-equivalent

to MJ(A), where J(A) is the the enumeration jump of A:

J(A) = K(A)⊕K(A) and K(A) = {n : n ∈ Φn(A)},

where {Φn}n∈ω is an effective enumeration of the enumeration operators.
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Example 2. It is easy to check that for the family InfCE of all infinite c.e. sets

we have J(InfCE) ≡Σ J(J(∅)) ≡e ∅′′. Indeed, ∅′′ is computably isomorphic to

{n : Wn is infinite}, and a c.e. set Wn is infinite if and only if the (uniformly)

computable set

Vn = {s : Wn,s �= Wn,s+1}
is infinite, and so, if and only if F ⊆ Vn for some F ∈ InfCE. The predicate

F ⊆ Vn can be recognized by J(F ).

The inverse reduction J(InfCE) ≤Σ J(J(∅)) is obvious.
Therefore, the family InfCE is a jump inversion of J(J(∅)), i.e., J(InfCE) ≡Σ

J(J(∅)).

Proposition7. The 1-family InfCE is the the least jump inversion for the

0-family J(J(∅)) among countable structures, i.e., J(J(∅)) ≤Σ J(M) implies

InfCE ≤Σ M.

Proof. Suppose J(J(∅)) ≤Σ J(M) for some countable M. Then the index set

{n : Wn is infinite} is Σ2-definable in HF(M). Then there is Δ0-formula Φ such

that

Wn is infinite ⇐⇒ HF(M) |= ∃a∀b Φ(n, a, b).
Then the sequence

Vn,a =

{
Wn, if HF(M) |= ∀b Φ(n, a, b);
ω, otherwise,

exhausting all infinite c.e. sets can be determined by the Σ-predicate

x ∈ Vn,a ⇐⇒ x ∈ Wn ∨ x ∈ ω & ∃b¬Φ(n, a, b).

This allows us to prove the reducibility InfCE ≤Σ M for every countable M such

that J(J(∅)) ≤Σ J(M).

Now, our goal is to extend Proposition 7 for arbitrary n-family F. For each

n-family F, recursively define an (n+ 1)-family E(F):

E(F) =

{
H1 ∪ {{2x} : x ∈ A}, if n = 0 and F = A ⊆ ω,

Hn+1 ∪ {E(S) : S ∈ F0}, if n > 0,

where H1 = {{2x, 2x+ 1} : x ∈ ω} and Hn+1 = {Hn}. This is similar to some

definitions that appear in [Kalimullin and Puzarenko 2009] and [Faizrahmanov

and Kalimullin 2016 (a), (b)].

According to the following theorem we will call E(F) as the least Σ-jump

inversion for F (meaning that in fact it is an inversion of J(∅)⊕ F).
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Theorem 8. For any n-family F the (n + 1)-family E(F) is the least jump in-

version of F. Namely,

1) F �Σ J(E(F));

2) for each countable structure B of a finite signature, E(F) �Σ B if F �Σ

J(B).

3) J(E(F)) �Σ J(∅)⊕ F.

Proof. 1) Since we can view each n-family as an m-family for m > n, without

loss of generality we assume that n > 0. Let A = HF(ME(F)).

It is easy to see that there is a Σ2-formula Φ such that

A |= Φ(x1, . . . , xn,m) ⇐⇒ ∃i [RA(xn, i)& IA(i)&Ai = {2m}] ⇐⇒

∃t [RA(xn, i)& IA(i)& 2m ∈ Ai&2m+ 1 �∈ Ai],

where each Ai, for i ∈ IME(F) , is from the definition of ME(F). Then for the

Σ-subset

E = {(x1, . . . , xn) : R
A(rA, x1)&RA(xi, xi+1) for 1 � i < n}

of An we will have

F = {Fn,A
Φ(x),E(x) : x ∈ Pr1(E)}.

Hence F �Σ2 E(F) so that F �Σ J(E(F)).

2) Let an n-family F is Σ-reducible to J(B) for some structure B. Hence

F0 �Σ J(B). Fix a Σ2-subset E ⊆ HF (B), Σ2-formula Θ and a tuple c ∈
HFm(B) such that

F0 = {Fn,HF(B)

Θ(c,x),E(x) : x ∈ Pr1(E)}.

Let Ψ be a Δ0-formula such that the Σ2-formula ∃a∀b Ψ(a, b, c, x1 . . . , xn, k)

defines the Σ2-predicate

{(x1, . . . , xn) ∈ En : Θ(c, x1, . . . , xn, k)}

in HF(B). Then there is a Σ-formula Φ such that for every x1, . . . , xn, a ∈
HF (B) and k ∈ ω we have HF(B) |= Φ(x1, . . . , xn, 〈a, k〉, 2k) and

HF(B) |= Φ(x1, . . . , xn, 〈a, k〉, 2k+1) ⇐⇒ HF(B) |= ∃b¬Ψ(a, b, c, x1, . . . , xn, k).

It is easy to see that for every x1, . . . , xn, a ∈ HF (B) and k ∈ ω we have

F
0,HF(B)
Φ(x1,...,xn,〈a,k〉) = {2k} ⇐⇒ HF(B) |= ∀b Ψ(a, b, c, x1, . . . , xn).
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Thus, E(F) = {Fn+1,HF(B)

Φ(x),C(x) : x ∈ Pr1(C)} ∪Hn+1 for the Σ-set

C = {(x1, . . . , xn, 〈a, k〉) ∈ HF(B) : x1, . . . , xn, a ∈ HF (B), k ∈ ω}.

Therefore E(F) �Σ B.

3) By Theorem 1 from [Stukachev 2009] there is a countable structure B

such that J(∅)⊕ F ≡Σ J(B). Since F �Σ J(B) we have E(F) �Σ B. Therefore,

J(E(F)) �Σ J(B) �Σ J(∅)⊕ F. This ends the proof.

Corollary 9. For every pair of n-families F and G

1. F ≤Σ G =⇒ E(F) ≤Σ E(G);

2. E(F ⊕ G) ≡Σ E(F)⊕ E(G).

Proof. Part 1 follows from the fact that F ≤Σ G ≤Σ J(E(G)). Part 2 follows

from the fact that E(A ⊕ B) = H1 ∪ {{2x : x ∈ A ⊕ B}} = H1 ∪ {{4x} : x ∈
A} ∪ {{4x+ 2} : x ∈ B}} ≡Σ {X ⊕ Y : X ∈ E(A) & Y ∈ E(B)} = E(A)⊕ E(B).

By the definition of E(·) the least double jump inversion E2(F) = E(E(F))

of an n-family F is an (n + 2)-family. But we know from [Faizrahmanov and

Kalimullin 2016 (a)] that under Turing reducibility of presentations of n-families

the least double jump is an (n+ 1)-family. For example, for the case of 0-family

A the least double jump E2(A) has the same Turing degrees of presentations of

ME2(A) as the degrees of presentations of MG, where G is the 1-family

G = {F ⊆ ω : F is finite} ∪ {{x} : x ∈ A}.

Below we show that for the case of Σ-reducibility we can not have an equivalence

between E2(F) and some (n+ 1)-family even for n = 0.

Theorem 10. For a set A and a 1-family G we have

J(G) ≤Σ J(∅)⊕ E(A) =⇒ J(G) ≤Σ J(∅)

and, therefore, J(G) �≡Σ J(∅) ⊕ E(A). Thus, no 1-family can be a double jump

inversion of A.

Proof. (Sketch) Let us look at the jump of J(G) = J(MG) for 1-families G.

Because of [Kalimullin and Puzarenko 2009], all Σ-predicates in MG can be en-

coded in the sets

A1 ⊕A2 ⊕ · · · ⊕Am ⊕ E(G),

where Ai ∈ G and the set E(G) = {u : (∃A ∈ G) [Du ⊆ A]} codes the ∃-theory of

MG. But the family of enumeration jumps of these sets cannot fully represent

the jump of the whole G since we need to keep the information when a jump for
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a tuple A1, . . . , Am is an extension of the jump for a tuple A1, . . . , Am, Am+1. In

fact, the jump J(G) (up to Σ-equivalence) can be viewed as a structure coding

the jumps of the sets A ∈ E(G)⊕G extended by the similar coding of the jumps

of elements of the ⊕-closure of E(G) ⊕ G with an additional binary operation

which maps coding places of J(X), J(Y ) to the coding places of J(X⊕Y ). Each

coding instance should be generated by this binary operation from the instances

coding jumps of the elements of E(G)⊕ G. The last instances should be marked

by a special predicate. We omit technical details and a technical verification.

Informally, such structure allows to compute all Σ-types in MG, and, therefore,

to build an isomorphic copy of the original J(G).

Suppose that

J(G) ≤Σ J(∅)⊕ E(A) = {J(∅)⊕ {2n, 2n+ 1} : n ∈ ω} ∪ {J(∅)⊕ {2n} : n ∈ A}

as witnessed by some Σ-formula Φ. For simplicity we assume that Φ has no

parameters.

Note that the structure MJ(∅)⊕E(A) is bi-embeddable with MJ(∅)⊕H1
≤Σ

J(∅), where
J(∅)⊕H1 = {J(∅)⊕ {2n, 2n+ 1} : n ∈ ω}.

Moreover, they are densely bi-embeddable in the sense that for every finite sub-

structure M0 ⊆ MJ(∅)⊕E(A) there is a substructure M0 ⊆ M1 ⊆ MJ(∅)⊕E(A)

such that M1
∼= MJ(∅)⊕H1

, and vice versa. Considering the same formula Φ in

HF(MJ(∅)⊕H1
) we get a structure L �Σ J(∅) densely bi-embeddable with J(G).

But J(X) ⊆ J(Y ) implies J(X) = J(Y ) so that this is possible only if J(G) ∼= L.

Hence, J(G) �Σ J(∅).
In the case when Φ has parameters we should change H1 by a 1-family in the

form

H1 ∪ {n1} ∪ {n2} ∪ · · · ∪ {nk}
for appropriate choice of n1, . . . , nk ∈ A (depending on the given parameters of

Φ) preserving the dense bi-embeddability property up to finitely many constants.

To prove the second part of the theorem suppose that J(G) ≡Σ J(∅)⊕ E(A).

Then by the first part J(G) ≤Σ J(∅). On the other hand, by Theorem 8

A ≤Σ J(E(A)) ≤Σ J2(G) ≤Σ J2(∅) ≡Σ J2(∅),

so that A ∈ Σ0
3 .

Since J(E2(A)) ≡Σ J(∅)⊕ E(A), by Theorem 8 we have also the following corol-

lary:

Corollary 11. For a set a set A /∈ Σ0
3 there is no 1-family G such that G ≡Σ

E2(A), so that the least double jump inversion of a 0-family A can not be replaced

by a 1-family.
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