The Least Σ-jump Inversion Theorem for n-families

Marat Faizrahmanov
(N.I. Lobachevsky Institute of Mathematics and Mechanics
Kazan (Volga Region) Federal University, Kazan, Russia
marat.faizrahmanov@gmail.com)

Iskander Kalimullin
(N.I. Lobachevsky Institute of Mathematics and Mechanics
Kazan (Volga Region) Federal University, Kazan, Russia
ikalimul@gmail.com)

Antonio Montalbán
(University of California
Berkeley, USA
anthony@math.berkeley.edu)

Vadim Puzarenko
(S.L. Sobolev Institute of Mathematics
Novosibirsk State University
Novosibirsk, Russia
vagrig@math.nsc.ru)

Abstract: Studying the Σ-reducibility of families introduced by [Kalimullin and Puzarenko 2009] we show that for every set $X \geq_T \emptyset'$ there is a family of sets F which is the Σ-least countable family whose Σ-jump is Σ-equivalent to $X \oplus \overline{X}$. This fact will be generalized for the class of n-families (families of families of ... of sets).

Key Words: jump of structure, enumeration jump, Σ-jump, Σ-reducibility, countable family, n-family

Category: F.1.1., F.1.2., F.4.1.

1 Introduction

In this paper study a reducibility among families of sets introduced in [Kalimullin and Puzarenko 2009]. We will say that a family $\mathcal{F}_0 \subseteq 2^\omega$ is Σ-reducible to a family $\mathcal{F}_1 \subseteq 2^\omega$ if for every admissible set \mathcal{A}

$$\mathcal{F}_1 \text{ is } \Sigma\text{-definable in } \mathcal{A} \implies \mathcal{F}_0 \text{ is } \Sigma\text{-definable in } \mathcal{A}.$$

A family $\mathcal{F} \subseteq 2^\omega$ is Σ-definable in \mathcal{A} if there is a Σ-formula Φ such that

$$\mathcal{F} = \{ \{ x \in \omega : \Phi(x, y) \} : y \in Y \},$$
for some Σ-definable subset $Y \subseteq A$. This reducibility can be reformulated in terms of enumeration operators:

Theorem 1. [Kalimullin and Puzarenko 2009] For families F_0 and F_1, the following conditions are equivalent:

1. $F_0 \leq_{\Sigma} F_1$;
2. $F_0 \cup \{\emptyset\} = \{\Theta(C \oplus B \oplus E(F)) : C \in K_{F_1}\}$ for some enumeration operator Θ and some set $B \in K_{F_1}$, where $E(F) = \{u : \exists X \in F[D_u \subseteq X]\}$, and K_{F_1} is the class of sets of the form $\{(n,m)\} \oplus A_1 \oplus \ldots \oplus A_m$, $A_i \in F_1$.

On the other hand, \leq_{Σ} is a natural extension of the enumeration and Turing reducibilities, since $A \leq_{e} B \iff \{A\} \leq_{\Sigma} \{B\}$.

Let us highlight that Σ-reducibility among families is equivalent to the Σ-definability relation between special structures M_F [Kalimullin and Puzarenko 2009]. See the end of this section for the detailed definition of M_F. Following [Montalbán 2009], [Puzarenko 2009], [Stukachev 2009] we can view the Σ-jumps of families as the jumps of the corresponding structures.

Definition 2. For a structure \mathcal{M}, define the jump of \mathcal{M} to be the structure $J(\mathcal{M}) = (HF(\mathcal{M}), U_{\Sigma})$, where U_{Σ} is a ternary Σ-predicate on $HF(\mathcal{M})$ universal for the class of all binary Σ-predicates on $HF(\mathcal{M})$, is called a Σ-jump.

For any n-family \mathcal{F} instead of $\mathcal{J}(\mathcal{M}:\tau)$ we simply write $\mathcal{J}(\mathcal{F})$. The Σ-jump does not depend on the choice of a universal Σ-predicate, up to Σ-equivalence. Furthermore, this Σ-jump on structures having Turing (enumeration) degrees acts in the same way as a Turing (enumeration) jump (see [Puzarenko 2009]). As in the classical case, the Σ-jump operation satisfies the following:

1. $\mathcal{A} \leq_{\Sigma} \mathcal{J}(\mathcal{A})$;
2. $\mathcal{A} \leq_{\Sigma} \mathcal{B} \Rightarrow \mathcal{J}(\mathcal{A}) \leq_{\Sigma} \mathcal{J}(\mathcal{B})$.

We define $\mathcal{J}^n(\mathcal{A})$ by induction on $n \in \omega$ as follows: $\mathcal{J}^0(\mathcal{A}) = \mathcal{A}$, $\mathcal{J}^{n+1}(\mathcal{A}) = \mathcal{J}(\mathcal{J}^n(\mathcal{A}))$. It was shown in [Puzarenko 2009] that for any structures \mathcal{M} and \mathcal{A} on a finite signature, \mathcal{M} is Σ_{m+1}-definable in \mathcal{A} iff $\mathcal{M} \leq_{\Sigma} \mathcal{J}^m(\mathcal{A})$.

In [Kalimullin and Puzarenko 2009] some unexpected properties of the family InfCE of all infinite c.e. sets under Σ-reducibility were found. In particular, for a family \mathcal{F}, $\mathcal{F} \leq_{\Sigma} \text{InfCE}$ iff the following conditions hold:

1. all sets in \mathcal{F} are c.e.;
2. the index set $\{e : W_e \in \mathcal{F}\}$ is Σ_0^0;
3. there exists a computable cover $\hat{\mathcal{F}}$ of \mathcal{F}, i.e., a computable family $\hat{\mathcal{F}} \subseteq \mathcal{F}$ such that for any $W \in \mathcal{F}$, we have $W \subseteq V$ for some $V \in \hat{\mathcal{F}}$.
In this paper, we show that the family InfCE has yet another natural property: InfCE is the Σ-least family among all countable families, whose Σ-jump computes \emptyset'', i.e., it is the least jump inversion of the Turing degree of \emptyset''. Moreover, each set $A \geq_T \emptyset'$ has such jump inversion. We show also, that each family $\mathcal{F} \geq_\Sigma \mathcal{V}$ has the Σ-least jump inversion in the extended class of n-families.

The notation and terminology follows from Rogers [Rogers 1967] and [Ershov 1996]. We now formally introduce the generalized notion of n-families and fix the precise way of their coding into the structures.

Definition 3. A 0-family is a subset of ω. For an integer $n > 0$, an n-family is a countable set of $(n - 1)$-families. We consider the empty set as an 0-family.

According to [Kalimullin and Faizrahmanov 2016] the definition of computably enumerable n-families is inductive: an n-family \mathcal{F} is computably enumerable if its elements, $(n - 1)$-families, are uniformly computably enumerable. We give this definition generalized to an arbitrary admissible set (see [Ershov 1996]):

Definition 4.
1. A Σ_s-formula $\Phi(\overline{z}, y), s \in \omega$, defines a 0-family $X \subseteq \text{Nat}(A)$ in an admissible set A if there is a tuple $\overline{c} \in A^k$ such that

 $X = \{m \in \text{Nat}(A) : A |\Phi(\overline{c}, m)\}.$

 In this case, we will write $X = \mathcal{F}^{0,A}_{\Phi(\overline{c})}$.

2. A Σ_s-formula $\Phi(\overline{z}, x, y)$ defines an 1-family \mathcal{F}, if there are a nonempty Σ_s-subset $E \subseteq A$ and a tuple $\overline{c} \in A^k$ such that

 $\mathcal{F} = \{\mathcal{F}^{1,A}_{\Phi(\overline{c}, x)} : x \in E\}.$

 In this case, we will write $\mathcal{F} = \mathcal{F}^{1,A}_{\Phi(\overline{c})}$.

3. A Σ_s-formula $\Phi(\overline{z}, x_1, \ldots, x_{n+2}, y)$ defines an $(n + 2)$-family \mathcal{F}, if there are a nonempty Σ_s-subset $E \subseteq A^{n+2}$ and a tuple $\overline{c} \in A^k$ such that

 $\mathcal{F} = \{\mathcal{F}^{n+1,A}_{\Phi(\overline{c}, x)} : x \in \text{Pr}_1(E)\},$

 where

 $\text{Pr}_1(E) = \{x : \exists y_1 \ldots \exists y_{n+1} (x, y_1, \ldots, y_{n+1}) \in E\}$,

 $E(x) = \{(y_1, \ldots, y_{n+1}) : (x, y_1, \ldots, y_{n+1}) \in E\}.$

 In this case, we will write $\mathcal{F} = \mathcal{F}^{n+2,A}_{\Phi(\overline{c})}$.

An n-family \mathcal{F} is Σ_s-definable (Σ-definable for the case $s = 1$) in A if some Σ_s-formula defines \mathcal{F} in A.
This definition extends the definition given in [Kalimullin and Puzarenko 2009].

We will see below that for the \(n \)-families it is enough to consider only special cases of admissible sets, namely, the hereditary finite structures \(\mathbb{HF}(\mathfrak{M}) \), where \(\mathfrak{M} \) is some algebraic structure. Let \(M \) be the domain of \(\mathfrak{M} \) and let \(\sigma \) be the language of \(\mathfrak{M} \). The domain of \(\mathbb{HF}(\mathfrak{M}) \) is the class of \(HF(M) \) of hereditarily finite sets over the set \(M \) is defined by induction as follows:

- \(H_0(M) = \{ \emptyset \} \);
- \(H_{n+1}(M) = H_n(M) \cup \mathcal{P}_\omega (H_n(M) \cup M) \);
- \(HF(M) = \bigcup_{n<\omega} H_n(M) \cup M \)

(\(P_\omega (X) \) denotes the set of all finite subsets of \(X \)).

The hereditarily finite superstructure over \(\mathfrak{M} \) is the algebraic structure \(\mathbb{HF}(\mathfrak{M}) \) in the signature \(\sigma \cup \{ U(1), \in \} \), where \(U^{\mathbb{HF}(\mathfrak{M})} = M, \in^{\mathbb{HF}(\mathfrak{M})} \subseteq (HF(M)) \times (HF(M) \setminus M) \) is the membership relation on \(\mathbb{HF}(\mathfrak{M}) \), the constant symbol \(\emptyset \) is interpreted as the empty set, and symbols in the signature \(\sigma \) are interpreted in the same way as on \(\mathfrak{M} \).

Following [Kalimullin and Puzarenko 2009], we can code every \(n \)-family \(\mathcal{F} \) into the admissible superstructure \(\mathbb{HF}(\mathfrak{M}_\mathcal{F}) \) over the special structure \(\mathfrak{M}_\mathcal{F} \) defined by induction as follows.

- For an arbitrary 0-family \(A \) let \(\mathfrak{M}_A \) be the structure in the signature \(\sigma = \{ r, I^1, R^2 \} \) with the domain \(M_\mathcal{F} = \omega \cup X, X = \{ x_n : n \in A \} \), such that \(R^{\mathfrak{M}_A} = \{(n,n+1) : n \in \omega \} \cup \{(x_n,n) : n \in A \}, r^{\mathfrak{M}_A} = 0 \) and \(I^{\mathfrak{M}_A} = \{ x^{\mathfrak{M}_A} \} \).

- For an \(n \)-family \(\mathcal{F} = \{ S_i : i \in \omega \}, n > 0 \), let \(\mathfrak{M}_A \) be the structure in the signature \(\sigma = \{ r, I^1, R^2 \} \) with the domain \(\bigcup_{k=1}^{n} \mathfrak{M}_{S_k} \cup \{ r^{\mathfrak{M}_S} \} \) (each \(\mathfrak{M}_{S_k} \) is an isomorphic copy of \(\mathfrak{M}_{S_k} \) with a new domain) such that \(I^{\mathfrak{M}_S} = \bigcup_{k=1}^{n} I^{\mathfrak{M}_{S_k}} \) and

\[
R(x, y) \iff x = (\exists k, i) [x = r^{\mathfrak{M}_{S_k}} & y = r^{\mathfrak{M}_{S_k}} \lor R^{\mathfrak{M}_{S_k}} (x, y)]
\]

for each \(x, y \in [\mathfrak{M}_\mathcal{F}] \).

Through this inductive definition, the elements of \(I^{\mathfrak{M}_\mathcal{F}} \) are precisely the elements originally denoted as \(r^{\mathfrak{M}_S} \) for 0-families \(A \in \cdots \in \mathcal{F} \). For \(i \in I^{\mathfrak{M}_S} \) we denote the corresponding 0-family by \(A_i \).

It is easy to check that every \(n \)-family \(\mathcal{F} \) is \(\Sigma \)-definable in \(\mathbb{HF}(\mathfrak{M}_\mathcal{F}) \). For example, if \(n = 0 \) then a 0-family \(A \subseteq \omega \) is defined by the formula saying that there is a sequence

\[
r^{\mathfrak{M}_\mathcal{F}} = n_0, n_1, n_2, \ldots, n_{x+1}, p
\]

such that \(R(n_i, n_{i+1}) \) for all \(i \leq x \), and \(R(p, n_{x+1}), p \neq n_x \). Moreover, it follows from [Kalimullin and Puzarenko 2009] that the \(\Sigma \)-definability of \(\mathcal{F} \) is equivalent to the \(\Sigma \)-definability of \(\mathfrak{M}_\mathcal{F} \) itself.
Proposition 5. [Kalimullin and Puzarenko 2009] An n-family F is Σ-definable in a countable admissible set A iff the structure M_F (and, therefore, $HF(M_F)$) is Σ-definable in A.

Under Σ-interpretation of a structure M in a signature σ we understand a Σ-definable structure N in the language $\sigma \cup \{\sim\}$, where \sim is a new congruence relation on N such that $N/\sim = M$.

Definition 6. Let F be an n-family and M be a structure. We say that F is Σ-reducible to M (written $F \leq_{\Sigma} M$) if M_F is Σ-definable in $HF(M)$. Similarly, $M \leq_{\Sigma} F$ if M is Σ-definable in $HF(M_F)$. If F and S are n- and m-families correspondingly we say that F is Σ-reducible to S if $F \leq_{\Sigma} M_S$. As usual, the relation \equiv_{Σ} holds in the case of Σ-reductions from the left to the right and from the right to the left.

Note that for an n-family F and the $(n+1)$-family $\{F\}$ we have $\{F\} \equiv_{\Sigma} F$.

By this reason we can view an n-family F as an m-family for $m > n$.

Recall that for the case $n = 0$ the standard notation is

$$Y \oplus A = \{2x : x \in Y\} \cup \{2x + 1 : x \in A\}.$$

If Y is an arbitrary set and F is an n-family, $n > 0$, then we define the join of Y and F inductively by letting

$$Y \oplus F = \{Y \oplus S : S \in F\}.$$

For an n-family F and an integer k, denote by F^k the n-family $\{k\} \oplus F$. Clearly, for every integer k and an n-family F, we have $F \equiv_{\Sigma} F^k$. For n-families F, G define the n-family

$$F \oplus G = F^0 \cup G^1.$$

It is easy to see that $F \leq_{\Sigma} F \oplus G$, $G \leq_{\Sigma} F \oplus G$, and

$$F \leq_{\Sigma} M, G \leq_{\Sigma} M \implies F \oplus G \leq_{\Sigma} M$$

for every structure M.

2 Jump and jump inversion on n-families

Example 1. ([Puzarenko 2009]). For a 0-family A the jump $J(A)$ is Σ-equivalent to $M_{J(A)}$, where $J(A)$ is the the enumeration jump of A:

$$J(A) = K(A) \oplus \overline{K(A)}$$

and

$$K(A) = \{n : n \in \Phi_n(A)\},$$

where $\{\Phi_n\}_{n \in \omega}$ is an effective enumeration of the enumeration operators.
Example 2. It is easy to check that for the family InfCE of all infinite c.e. sets we have \(J(\text{InfCE}) \equiv J(J(\emptyset)) \equiv J(\emptyset) \). Indeed, \(\emptyset \) is computably isomorphic to \(\{ n : W_n \text{ is infinite} \} \), and a c.e. set \(W_n \) is infinite if and only if the (uniformly) computable set

\[V_n = \{ s : W_{n,s} \neq W_{n,s+1} \} \]

is infinite, and so, if and only if \(F \subseteq V_n \) for some \(F \in \text{InfCE} \). The predicate \(F \subseteq V_n \) can be recognized by \(J(F) \).

The inverse reduction \(J(\text{InfCE}) \leq J(J(\emptyset)) \) is obvious.

Therefore, the family InfCE is a jump inversion of \(J(J(\emptyset)) \), i.e., \(J(\text{InfCE}) \equiv J(J(\emptyset)) \).

Proposition 7. The 1-family InfCE is the least jump inversion for the 0-family \(J(J(\emptyset)) \) among countable structures, i.e., \(J(J(\emptyset)) \leq \Sigma M \) implies \(\text{InfCE} \leq \Sigma M \).

Proof. Suppose \(J(J(\emptyset)) \leq \Sigma M \) for some countable \(M \). Then the index set \(\{ n : W_n \text{ is infinite} \} \) is \(\Sigma_2 \)-definable in \(\mathbb{HF}(M) \). Then there is \(\Delta_0 \)-formula \(\Phi \) such that

\[W_n \text{ is infinite} \iff \mathbb{HF}(M) \models \exists a \forall b \Phi(n,a,b). \]

Then the sequence

\[V_{n,a} = \begin{cases} W_n, & \text{if } \mathbb{HF}(M) \models \forall b \Phi(n,a,b); \\ \omega, & \text{otherwise,} \end{cases} \]

exhausting all infinite c.e. sets can be determined by the \(\Sigma \)-predicate

\[x \in V_{n,a} \iff x \in W_n \lor x \in \omega \land \exists b \neg \Phi(n,a,b). \]

This allows us to prove the reducibility \(\text{InfCE} \leq \Sigma M \) for every countable \(M \) such that \(J(J(\emptyset)) \leq \Sigma M \).

Now, our goal is to extend Proposition 7 for arbitrary \(n \)-family \(\mathcal{F} \). For each \(n \)-family \(\mathcal{F} \), recursively define an \((n+1)\)-family \(\mathcal{E}(\mathcal{F}) \):

\[\mathcal{E}(\mathcal{F}) = \begin{cases} \mathcal{K}_1 \cup \{ 2x \} : x \in A \}, & \text{if } n = 0 \text{ and } \mathcal{F} = A \subseteq \omega, \\ \mathcal{K}_{n+1} \cup \{ \mathcal{E}(S) : S \in \mathcal{F}^0 \}, & \text{if } n > 0, \end{cases} \]

where \(\mathcal{K}_1 = \{ 2x, 2x + 1 : x \in \omega \} \) and \(\mathcal{K}_{n+1} = \{ \mathcal{K}_n \} \). This is similar to some definitions that appear in [Kalimullin and Puzarenko 2009] and [Faizrahmanov and Kalimullin 2016 (a), (b)].

According to the following theorem we will call \(\mathcal{E}(\mathcal{F}) \) as the least \(\Sigma \)-jump inversion for \(\mathcal{F} \) (meaning that in fact it is an inversion of \(J(\emptyset) \oplus \mathcal{F} \)).
Theorem 8. For any n-family \mathcal{F} the $(n + 1)$-family $\mathcal{E}(\mathcal{F})$ is the least jump inversion of \mathcal{F}. Namely,

1) $\mathcal{F} \leq_{\Sigma} \mathcal{J}(\mathcal{E}(\mathcal{F}))$;

2) for each countable structure \mathcal{B} of a finite signature, $\mathcal{E}(\mathcal{F}) \leq_{\Sigma} \mathcal{B}$ if $\mathcal{F} \leq_{\Sigma} \mathcal{J}(\mathcal{B})$.

3) $\mathcal{J}(\mathcal{E}(\mathcal{F})) \leq_{\Sigma} \mathcal{J}(\emptyset) \oplus \mathcal{F}$.

Proof. 1) Since we can view each n-family as an m-family for $m > n$, without loss of generality we assume that $n > 0$. Let $\mathcal{A} = \mathcal{HF}(\mathcal{M}_{\mathcal{E}(\mathcal{F})})$.

It is easy to see that there is a Σ_2-formula Φ such that

$$\mathcal{A} \models \Phi(x_1, \ldots, x_n, m) \iff \exists i [R^A(x_n, i) \& I^A(i) \& A_i = \{2m\}] \iff$$

$$\exists i [R^A(x_n, i) \& I^A(i) \& 2m \in A_i \& 2m + 1 \notin A_i],$$

where each A_i, for $i \in I^n(x)$, is from the definition of $\mathcal{M}_{\mathcal{E}(\mathcal{F})}$. Then for the Σ-subset

$$E = \{(x_1, \ldots, x_n) : R^A(x_1, x_1) \& R^A(x_i, x_{i+1}) \text{ for } 1 \leq i < n\}$$

of \mathcal{A}^n we will have

$$\mathcal{F} = \{\mathcal{F}^n_{\Phi(x), E(x)} : x \in \text{Pr}_1(E)\}.$$

Hence $\mathcal{F} \leq_{\Sigma} \mathcal{E}(\mathcal{F})$ so that $\mathcal{F} \leq_{\Sigma} \mathcal{J}(\mathcal{E}(\mathcal{F}))$.

2) Let an n-family \mathcal{F} is Σ-reducible to $\mathcal{J}(\mathcal{B})$ for some structure \mathcal{B}. Hence $\mathcal{F}^0 \leq_{\Sigma} \mathcal{J}(\mathcal{B})$. Fix a Σ_2-subset $E \subseteq HF(\mathcal{B})$, Σ_2-formula Θ and a tuple $\bar{r} \in HF^m(\mathcal{B})$ such that

$$\mathcal{F}^0 = \{\mathcal{F}^n_{\Theta(\bar{r}, x), E(x)} : x \in \text{Pr}_1(E)\}.$$

Let Ψ be a Δ_0-formula such that the Σ_2-formula $\exists a \forall b \Psi(a, b, \bar{r}, x_1, \ldots, x_n, k)$ defines the Σ_2-predicate

$$\{(x_1, \ldots, x_n) \in E^n : \Theta(\bar{r}, x_1, \ldots, x_n, k)\}$$

in $\mathcal{HF}(\mathcal{B})$. Then there is a Σ-formula Φ such that for every $x_1, \ldots, x_n, a \in HF(\mathcal{B})$ and $k \in \omega$ we have $\mathcal{HF}(\mathcal{B}) \models \Phi(x_1, \ldots, x_n, (a, k), 2k)$ and

$$\mathcal{HF}(\mathcal{B}) \models \Phi(x_1, \ldots, x_n, (a, k), 2k+1) \iff \mathcal{HF}(\mathcal{B}) \models \exists b \Psi(a, b, \bar{r}, x_1, \ldots, x_n, k).$$

It is easy to see that for every $x_1, \ldots, x_n, a \in HF(\mathcal{B})$ and $k \in \omega$ we have

$$\mathcal{F}^n_{\Phi(x_1, \ldots, x_n, (a, k))} = \{2k\} \iff \mathcal{HF}(\mathcal{B}) \models \forall b \Psi(a, b, \bar{r}, x_1, \ldots, x_n).$$
Thus, $\mathcal{E}(\mathcal{F}) = \{\mathcal{F}^{n+1}_{x}(\mathcal{F}^n) : x \in \mathcal{P}_1(C)\} \cup \mathcal{N}_{n+1}$ for the Σ-set

$$C = \{(x_1, \ldots, x_n, (a, k)) \in \mathcal{H}_n(\mathcal{B}) : x_1, \ldots, x_n, a \in \mathcal{H}(\mathcal{B}), k \in \omega\}.$$

Therefore $\mathcal{E}(\mathcal{F}) \leq \Sigma \mathcal{B}$.

3) By Theorem 1 from [Stukachev 2009] there is a countable structure \mathcal{B} such that $J(\emptyset) \oplus \mathcal{F} \equiv \Sigma \mathcal{J}(\mathcal{B})$. Since $\mathcal{F} \leq \Sigma \mathcal{J}(\mathcal{B})$ we have $\mathcal{E}(\mathcal{F}) \leq \Sigma \mathcal{B}$. Therefore, $\mathcal{J}(\mathcal{E}(\mathcal{F})) \leq \Sigma \mathcal{J}(\mathcal{B}) \leq \Sigma J(\emptyset) \oplus \mathcal{F}$. This ends the proof.

Corollary 9. For every pair of Σ-families \mathcal{F} and \mathcal{G}

1. $\mathcal{F} \leq \Sigma \mathcal{G} \implies \mathcal{E}(\mathcal{F}) \leq \Sigma \mathcal{E}(\mathcal{G})$;

2. $\mathcal{E}(\mathcal{F} \oplus \mathcal{G}) \equiv \Sigma \mathcal{E}(\mathcal{F}) \oplus \mathcal{E}(\mathcal{G})$.

Proof. Part 1 follows from the fact that $\mathcal{F} \leq \Sigma \mathcal{G} \leq \Sigma \mathcal{E}(\mathcal{G})$. Part 2 follows from the fact that $\mathcal{E}(A \oplus B) = \mathcal{F}_1 \cup \{\{2x : x \in A \oplus B\} \cup \{\{4x\} : x \in A\} \cup \{\{4x+2\} : x \in B\} \equiv \Sigma \{X \oplus Y : X \in \mathcal{E}(A) \& Y \in \mathcal{E}(B)\} = \mathcal{E}(A) \oplus \mathcal{E}(B)$.

By the definition of $\mathcal{E}(\cdot)$ the least double jump inversion $\mathcal{E}^2(\mathcal{F}) = \mathcal{E}(\mathcal{E}(\mathcal{F}))$ of an \mathcal{F}-family \mathcal{F} is an $(n+2)$-family. But we know from [Faizrahmanov and Kalimullin 2016 (a)] that under Turing reducibility of presentations of \mathcal{F}-families the least double jump is an $(n+1)$-family. For example, for the case of 0-family A the least double jump $\mathcal{E}^2(A)$ has the same Turing degrees of presentations of $\mathcal{M}_{\mathcal{E}^2(A)}$ as the degrees of presentations of \mathcal{M}_5, where \mathcal{G} is the 1-family

$$\mathcal{G} = \{F \subseteq \omega : F \text{ is finite}\} \cup \{\{x\} : x \in A\}.$$

Below we show that for the case of Σ-reducibility we can not have an equivalence between $\mathcal{E}^2(\mathcal{F})$ and some $(n+1)$-family even for $n = 0$.

Theorem 10. For a set A and a 1-family \mathcal{G} we have

$$\mathcal{J}(\mathcal{G}) \leq \Sigma J(\emptyset) \oplus \mathcal{E}(A) \implies \mathcal{J}(\mathcal{G}) \leq \Sigma J(\emptyset)$$

and, therefore, $\mathcal{J}(\mathcal{G}) \not\leq \Sigma J(\emptyset) \oplus \mathcal{E}(A)$. Thus, no 1-family can be a double jump inversion of A.

Proof. (Sketch) Let us look at the jump of $\mathcal{J}(\mathcal{G}) = \mathcal{J}(\mathcal{M}_5)$ for 1-families \mathcal{G}. Because of [Kalimullin and Puzarenko 2009], all Σ-predicates in \mathcal{M}_5 can be encoded in the sets

$$A_1 \oplus A_2 \oplus \cdots \oplus A_m \oplus E(\mathcal{G}),$$

where $A_i \in \mathcal{G}$ and the set $E(\mathcal{G}) = \{u : (\exists A \in \mathcal{G})[D_u \subseteq A]\}$ codes the \exists-theory of \mathcal{M}_5. But the family of enumeration jumps of these sets cannot fully represent the jump of the whole \mathcal{G} since we need to keep the information when a jump for
a tuple A_1, \ldots, A_m is an extension of the jump for a tuple $A_1, \ldots, A_m, A_{m+1}$. In fact, the jump $\mathcal{J}(\mathcal{S})$ (up to Σ-equivalence) can be viewed as a structure coding the jumps of the sets $A \in E(\mathcal{S}) \oplus \mathcal{S}$ extended by the similar coding of the jumps of elements of the \oplus-closure of $E(\mathcal{S}) \oplus \mathcal{S}$ with an additional binary operation which maps coding places of $J(X), J(Y)$ to the coding places of $J(X \oplus Y)$. Each coding instance should be generated by this binary operation from the instances coding jumps of the elements of $E(\mathcal{S}) \oplus \mathcal{S}$. The last instances should be marked by a special predicate. We omit technical details and a technical verification. Informally, such structure allows to compute all Σ-types in $\mathcal{M}_\mathcal{S}$, and, therefore, to build an isomorphic copy of the original $\mathcal{J}(\mathcal{S})$.

Suppose that $\mathcal{J}(\mathcal{S}) \leq \Sigma J(\emptyset) \oplus \mathcal{E}(A) = \{ J(\emptyset) \oplus \{ 2n, 2n + 1 \} : n \in \omega \} \cup \{ J(\emptyset) \oplus \{ 2n \} : n \in A \}$ as witnessed by some Σ-formula Φ. For simplicity we assume that Φ has no parameters.

Note that the structure $\mathcal{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ is bi-embeddable with $\mathcal{M}_{J(\emptyset) \oplus \mathcal{H}_1} \leq \Sigma J(\emptyset)$, where

$$J(\emptyset) \oplus \mathcal{H}_1 = \{ J(\emptyset) \oplus \{ 2n, 2n + 1 \} : n \in \omega \}.$$

Moreover, they are densely bi-embeddable in the sense that for every finite substructure $\mathcal{M}_0 \subseteq \mathcal{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ there is a substructure $\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_{J(\emptyset) \oplus \mathcal{E}(A)}$ such that $\mathcal{M}_1 \cong \mathcal{M}_{J(\emptyset) \oplus \mathcal{H}_1}$, and vice versa. Considering the same formula Φ in $\mathcal{H}(\mathcal{M}_{J(\emptyset) \oplus \mathcal{H}_1})$ we get a structure $\mathcal{S} \leq \Sigma J(\emptyset)$ densely bi-embeddable with $\mathcal{J}(\mathcal{S})$. But $J(X) \subseteq J(Y)$ implies $J(X) = J(Y)$ so that this is possible only if $\mathcal{J}(\mathcal{S}) \equiv \mathcal{S}$. Hence, $\mathcal{J}(\mathcal{S}) \leq \Sigma J(\emptyset)$.

In the case when Φ has parameters we should change \mathcal{H}_1 by a 1-family in the form

$$\mathcal{H}_1 \cup \{ n_1 \} \cup \{ n_2 \} \cup \cdots \cup \{ n_k \}$$

for appropriate choice of $n_1, \ldots, n_k \in A$ (depending on the given parameters of Φ) preserving the dense bi-embeddability property up to finitely many constants.

To prove the second part of the theorem suppose that $\mathcal{J}(\mathcal{S}) \equiv \Sigma J(\emptyset) \oplus \mathcal{E}(A)$. Then by the first part $\mathcal{J}(\mathcal{S}) \leq \Sigma \mathcal{J}(\emptyset)$. On the other hand, by Theorem 8

$$A \leq \Sigma \mathcal{J}(\mathcal{E}(A)) \leq \Sigma \mathcal{J}^2(\mathcal{S}) \leq \Sigma \mathcal{J}^2(\emptyset) \equiv \Sigma J^2(\emptyset),$$

so that $A \in \Sigma^0_3$.

Since $\mathcal{J}(\mathcal{E}^2(A)) \equiv \Sigma J(\emptyset) \oplus \mathcal{E}(A)$, by Theorem 8 we have also the following corollary:

Corollary 11. For a set a set $A \notin \Sigma^0_3$ there is no 1-family \mathcal{S} such that $\mathcal{S} \equiv \Sigma \mathcal{E}^2(A)$, so that the least double jump inversion of a 0-family A can not be replaced by a 1-family.
Acknowledgments

The research of the first author was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project no. 1.1515.2017/4.6. The research of the second author was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project no. 1.451.2016/1.4. Also the research of the first two authors was supported by RFBR Grant No. 15-01-08252 A. The third named author was partially supported by the Packard Fellowship and by the NSF grant DMS-1700361. The research of the fourth author was supported by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-6848.2016.1) and by RFBR Grant No. 15-01-05114-a.

References

