
A Generalization of a Popular Fault-Coverage-Preserving

Test Set Transformation

Monika Kapus-Kolar

(Jožef Stefan Institute, Ljubljana, Slovenia

monika.kapus-kolar@ijs.si)

Abstract: In the optimization of test sets for black-box conformance testing of objects
specified and modelled as a finite state machine (FSM), a popular transformation
is that under a certain precondition, a tail of a test is removed and appended to
some other test. We propose a weaker precondition under which the transformation
remains fault-coverage-preserving. Along with a weaker precondition, we propose some
weaker sufficient conditions for its satisfaction. To demonstrate the usefulness of the
relaxations, we employ them for generalizing the checking sequence (CS) construction
method of Inan and Ural (1999), to incomplete FSMs and with additional dimensions
for CS optimization. The method and its generalized version are exceptional in that
they can handle also the case where the upper bound, call it m, assumed for the size
of the state set of the FSM under test is not less than twice the size, call it n, of the
state set of the specification FSM. We prove that for complete FSMs, the additional
optimization dimensions facilitate that in the limit for increasingly large (m/n) and
(a/m), with a the number of the defined inputs, the factor of CS length reduction is
of the order O(am−n+1).

Key Words: black-box conformance testing, model-based testing, finite state ma-
chine, quasi-equivalence, test set optimization, fault-coverage-preserving transforma-
tion, checking sequence

Category: B.4.5., D.2.5.

1 Introduction

In the era of ubiquitous computing, we are embedded in a sea of devices of which

we can see only the interface towards the environment. To establish whether

such a device complies with its specification, one would perform black-box con-

formance testing. Formal construction of a test set for the purpose usually starts

by adoption of a simple formal model of what the object under test could be.

With such a model, it is usually easy to construct a test set that has the required

fault coverage, but to give such a test set also the desired form, for example the

desired trade-off between the number of tests and their length, is a more difficult

task. Here, fault-coverage-preserving test set transformations can help. In most

of the current test set construction methods with optimization, the exploitation

of such transformations is only implicit, but nevertheless noticeable.

The paper generalizes a popular fault-coverage-preserving test set transfor-

mation intended for the cases where the specification is an observable finite state

machine (OFSM), whereas the object under test presumably belongs to a given

Journal of Universal Computer Science, vol. 23, no. 6 (2017), 560-585
submitted: 20/4/16, accepted: 23/5/17, appeared: 28/6/17 © J.UCS

set of OFSMs and is supposed to be quasi-equivalent to the specification. OFSMs

and related concepts and notations are presented in Section 2. OFSM-based test

sets and related concepts and notations are presented in Section 3. The transfor-

mation and its generalization are presented in Section 4. In the transformation, a

tail of a test is under a certain precondition removed and appended to some other

test. The test set optimization method in which the use of the transformation

is most explicit is that of [Simão et al. 2012], the paper in which the reader can

find also a very illustrative example. Our generalization of the transformation

is by weakening the precondition, in a way securing that the transformation re-

mains fault-coverage-preserving. Along with a weaker precondition, we propose,

in Section 5, some weaker sufficient conditions for its satisfaction.

A common application of the considered transformation is, for example, the

trading of the number of tests for their length. There are at least four possible

reasons why one would want to do this:

1. Because experiments reported in [Endo and Simão 2013] indicate the follow-

ing: Test sets trading the number of tests for their length have better chances

that errors will not go undetected even if the OFSM under test actually has

more states than the upper bound assumed during the test set construction.

The latter might well be the case, for in the wish to make both the test set

construction process and its result acceptably cheap, one often deliberately

makes over-optimistic assumptions.

2. To reduce the cumulative length of the test set members, as, for example,

in the methods of [Simão and Petrenko 2010, Simão et al. 2012,Cutigi et al.

2016].

3. To reduce the number of the necessary resets of the OFSM under test (see,

for example, [Hierons 2004,Hierons and Ural 2006]), for they usually take a

lot of time or are undesirable in some other way.

4. To completely avoid the need for resets, for it might well be the case that

reliable reset is not possible. To avoid resets, one needs a test set consist-

ing of a single test. Such a test can be generated only for some kinds of the

specification OFSM, provided that one also makes sufficiently strong assump-

tions on the OFSM under test. Particularly challenging is the construction of

so-called checking sequences (CSs), individual tests that fail exactly on the

faulty members of the target set of candidates for the OFSM under test.

To demonstrate the usefulness of the relaxations proposed in the Sections 4

and 5, we in Section 6 employ them for generalizing (after correcting a tiny error

in it) the CS construction method of [Inan and Ural 1999], to incomplete OFSMs

and with additional dimensions for CS optimization. In comparison to the other

currently available CS construction methods [Hennie 1964,Hsieh 1971, Farmer

1973,Braun and Givone 1979,Braun and Givone 1981,Yao et al. 1993,Rezaki and

Ural 1995,Ural et al. 1997,Hierons and Ural 2002,Hierons and Ural 2003,Chen

561Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

et al. 2005,Tekle et al. 2005,Hierons and Ural 2006,Ural and Zhang 2006,Ural

and Williams 2006,Yalcin and Yenigün 2006,Hierons et al. 2008,Hierons and

Ural 2008,Simão and Petrenko 2008,Dincturk 2009,Duan and Chen 2009,Simão

and Petrenko 2009,Hierons and Ural 2010,Kapus-Kolar 2012b,Petrenko et al.

2012,Porto et. al. 2013,Kapus-Kolar 2014, Jourdan 2015], the method of [Inan

and Ural 1999] and its generalized version are exceptional in that they can handle

also the case where the upper bound, call it m, assumed for the size of the state

set of the OFSM under test is not less than twice the size, call it n, of the state set

of the specification OFSM. In Section 7 we prove that for complete FSMs, the

additional optimization dimensions facilitate that in the limit for increasingly

large (m/n) and (a/m), with a the number of the defined inputs, the factor of

CS length reduction is of the order O(am−n+1). Section 8 concludes the paper.

2 OFSMs and related concepts and notations

An OFSM is an automaton that at any moment either idles in one of its candidate

states, of which one is its initial state, or is executing a transition. The latter

involves accepting an input x defined in the current state s, issuing an output

defined for the pair (s, x) and entering the state defined as the one resulting

from executing the input/output (IO) xy from s. By executing from a state a

sequence of transitions, an OFSM executes an IO sequence (IOS) of the state.

The state of an OFSM can presumably be changed also with the reset operation,

which returns the OFSM into its initial state.

In OFSM-based black-box testing, what one directly observes are IOSs.

States are only a secondary concept, with each state name regarded mainly

as a synonym for the set of all IOSs executable from the state. OFSMs are a

tertiary concept, with each OFSM name regarded mainly as a synonym for the

initial state of the OFSM or for the IOS set of the state. In the rest of the paper,

we also reason primarily in terms of IOSs. This is evident already from the rest

of this section, in which we present our basic notations.

Definition 1 Q, s, x, y, z and Z, possibly decorated, denote, respectively, an

OFSM, a state, an input, an output, an IOS and an IOS set.

Definition 2 For each IOS z = x1y1x2y2 . . . xkyk:

• ln(z) denotes its length k, with ε denoting an IOS of the length 0.

• is(z) denotes its input sequence x1 . . . xk.

• pf (z) denotes the set of all IOSs that are its prefix.

• For each IOS z′, z′ < z denotes that z′ ∈ (pf (z) \ {z}).
• For each natural k, (z)k denotes the IOS z1z2 . . . zk with zi = z for each

1 ≤ i ≤ k.

562 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

Definition 3 For each OFSM Q:

• st(Q) denotes the set of the defined states.

• init(Q) denotes the member of st(Q) that is its initial state.

• in(Q) denotes the set of the defined inputs.

• out(Q) denotes the set of the defined outputs.

• tr(Q) denotes the set of the defined transitions.

• Each transition in tr(Q) is an (s, x/y, s′) with
({s, s′} ⊆ st(Q)) ∧ (x ∈ in(Q)) ∧ (y ∈ out(Q)). For such a transition, s is the

starting state, x is the input, y is the output and s′ is the ending state.

• There is no transition pair {(s, x/y, s′), (s, x/y, s′′)} ⊆ tr(Q) with s′ �= s′′,
which is the reason why Q is called observable.

• We assume in(Q) = {x|∃(s, x/y, s′) ∈ tr(Q)}.

Definition 4 For each OFSM Q and each state s ∈ st(Q):

• ios(s) denotes the set of all IOSs executable from s.

• A unique IOS of s is such an IOS z ∈ ios(Q) that z �∈ ios(s′) for each state

s′ ∈ (st(Q) \ {s′}).
• For each natural i, ios≤i(s) denotes the IOS set {z|(z ∈ ios(s))∧ (ln(z) ≤ i)}.
• For each IOS z ∈ ios(s):

– ts(s, z) denotes the set of all those transitions in tr(Q) of which at least

one instance is executed during its execution from s.

– st(s, z), also called ‘s-after-z’, denotes the state resulting from its

execution from s.

– ios(s, z) denotes the IOS set {z′|zz′ ∈ ios(s)}.
– in(s, z) denotes the input set {x|∃y : (zxy ∈ ios(s))}.
• For each IOS set Z ⊆ ios(s), end(s, Z) denotes the state set {st(s, z)|z ∈ Z}.
• For each IOS pair {z, z′} ⊆ ios(s), ‘divergence of z and z′ in s’ denotes that

st(s, z) �= st(s, z′).

Definition 5 The concepts introduced in Definition 4 naturally extend to

OFSMs, through the following shorthand notation: In each of the there defined

expressions, including those in quotes, it is allowed that a name of an OFSM Q

occurs in the place of s. In such a case, the name denotes the state init(Q).

Definition 6 A given OFSM Q is

• complete if for each state s ∈ st(Q) and input x ∈ in(Q), there is an

xy ∈ ios(s);

• deterministic if there is no transition pair {(s, x/y, s′), (s, x/y′, s′′)} ⊆ tr(Q)

with (y, s′) �= (y′, s′′);
• initially connected if for each state s ∈ st(Q), there is an IOS z ∈ ios(Q)

with st(Q, z) = s;

563Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

• strongly connected if for each state pair {s, s′} ⊆ st(Q), there is an IOS

z ∈ ios(s) with st(s, z) = s′;
• minimal if for each state pair {s, s′} ⊆ st(Q) with s �= s′, ios(s) �= ios(s′);
• input-equivalent to a given OFSM Q′ if for each IOS z ∈ (ios(Q) ∩ ios(Q′)),
in(Q, z) = in(Q′, z).

Definition 7 For each IOS set Z:

• pf (Z) denotes the IOS set {z|∃z′ ∈ Z : (z ∈ pf (z′))}.
• min(Z) denotes the set {z|(z ∈ Z) ∧ ¬∃z′ ∈ Z : (z′ < z)} of all its minimal

members.

• max (Z) denotes the set {z|(z ∈ Z) ∧ ¬∃z′ ∈ Z : (z < z′)} of all its maximal

members.

• For each IOS z, z ⊗ Z denotes the IOS set {zz′|z′ ∈ Z}.
• For each IOS set Z ′, Z ⊗ Z ′ denotes the IOS set {zz′|(z ∈ Z) ∧ (z′ ∈ Z ′)}.
• For each IOS z ∈ pf (Z), ios(Z, z), also called ‘Z-after-z’, denotes the IOS set

{z′|zz′ ∈ pf (Z)}.
• For each IOS z ∈ pf (Z), in(Z, z) denotes the input set

{x|∃y : (zxy ∈ pf (Z))}.

3 OFSM-based test sets and related concepts and notations

Definition 8 In the rest of the paper:

• M denotes the specification OFSM.

• S and n denote st(M) and |st(M)|, respectively.
• I denotes the set of all OFSMs possibly in the role of the OFSM under test,

i.e., satisfying all assumptions made on the OFSM under test.

• Every OFSM Q ∈ (I ∪ {M}) is presumably initially connected and minimal.

We assume that a given OFSMQ is non-faulty exactly if it is quasi-equivalent,

i.e., ios(M)-equivalent to M (see the Definitions 9-11 below). Accordingly, test

sets are defined as subsets of ios(M), whereas to pass a given test set Z means

to be Z-equivalent to M . Informally, to pass an individual test z means to

implement it exactly like M . The implementation of a given IOS z in a given

OFSM Q is the set of all IOSs in ios(Q) that are a prefix of z or differ from one

of its prefixes only in the last output. A deterministic OFSM Q passes a test set

Z of a deterministic M exactly if Z ⊆ ios(Q).

Definition 9 For each IOS set Z:

• For each IOS z = x1y1x2y2 . . . xkyk, imp(Z, z), also called ‘the

implementation of z in Z’, denotes the set of all IOSs in pf (Z) that are of

the form z′xiy
′
i with z′xiyi ∈ pf (z) and y′i an output.

564 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

• For each IOS set Z ′, imp(Z,Z ′), also called ‘the implementation of Z ′ in Z’,

denotes the IOS set {z|∃z′ ∈ Z ′ : (z ∈ imp(Z, z′))}.

Definition 10 For each IOS set pair (Z,Z ′):

• For each IOS z, Z ≡z Z ′, also called ‘z-equivalence of Z and Z ′’, denotes
that imp(Z, z) = imp(Z ′, z).
• For each IOS set Z ′′, Z ≡Z′′ Z ′, also called ‘Z ′′-equivalence of Z and Z ′’,
denotes that ∀z ∈ Z ′′ : (Z ≡z Z ′).
• Z Z ′, also called ‘quasi-equivalence of Z to Z ′’, denotes that Z ≡Z′ Z ′.
• For each IOS set Z ′′ and each IOS z, Z ≈Z′′,z Z ′ denotes that
(Z ≡z Z ′′)⇔ (Z ′ ≡z Z ′′), i.e., that Z is z-equivalent to Z ′′ exactly if Z ′ is.
• For each IOS set Z ′′, Z ≈Z′′ Z ′ denotes that ∀z ∈ pf (Z ′′) : (Z ≈Z′′,z Z ′),
i.e., that Z and Z ′ are z-equivalent to Z ′′ for the same IOSs z in the prefix

set of Z ′′.

Definition 11 The concepts introduced in the Definitions 9 and 10 naturally

extend to states and OFSMs, through the following shorthand notation: In each

of the there defined expressions, including those in quotes, it is allowed that a

name of a state s or a name of an OFSM Q occurs in the place of Z, Z ′ or Z ′′.
In such a case, the name denotes the IOS set ios(s) or ios(Q), respectively.

The fault coverage of a given test set is defined by the set of those OFSMs

in I that do not pass it. If the set comprises all faulty members I, the test set

is complete, but there are also situations where one wants a test set with some

other fault coverage. A CS is a test z with {z} a complete test set. Test sets Z

with the same imp(M,Z) have the same fault coverage.

For experimental confirmation that a given OFSMQ passes a given test set Z,

the main requirement is thatQ from its initial state executes every member of the

IOS set max (imp(M,Z)). This requires at least (|max (imp(M,Z))| − 1) resets.

Accordingly, the default cost of a given test set Z is (Σz∈max(imp(M,Z))ln(z) +

|max (imp(M,Z))| − 1). Test sets Z with the same imp(M,Z) have the same

default cost.

4 The popular transformation and a weaker precondition

The considered fault-coverage-preserving test set transformation goes as follow:

Transformation 1 In the given test set Z, replace a test pair {zz′, z′′} with

the test pair {z, z′′z′} provided that for each OFSM Q ∈ (I ∪ {M}) with

Q ≡(Z\{zz′})∪{z} M , st(Q, z′′) st(Q, z).

565Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

The precondition of the transformation requires that in each OFSM in

I ∪ {M} that passes the test set (Z \ {zz′}) ∪ {z}, the state st(Q, z′′) is quasi-
equivalent to the state st(Q, z). This secures that the implementation of z′ in
st(Q, z′′) is the same as the implementation of z′ in st(Q, z), meaning that in the

case of Q ∈ I, it does not matter which of them is established experimentally,

by pursuing z′ after z′′ or after z, respectively, for in both cases, one obtains the

same information on Q.

Now recall that we are discussing conformance testing. This means that one

is not interested in the details of the implementation of z′ in st(Q, z). All that

matters is whether st(Q, z) is z′-equivalent to the state st(M, z), for this tells

whether the implementation of z′ in st(Q, z) can make Q fail the test set Z. If

(1) the states st(M, z) and st(M, z′′) are z′-equivalent and
(2) the state st(Q, z) is z′-equivalent to st(M, z) exactly if the state st(Q, z′′) is

z′-equivalent to st(M, z′′),
it does not matter whether one checks z′-equivalence of st(Q, z) to st(M, z) or

z′-equivalence of st(Q, z′′) to st(M, z′′). This suggests that the following gener-

alization of Transformation 1 is also fault-coverage-preserving:

Transformation 2 In the given test set Z, replace a test pair {zz′, z′′} with

the test pair {z, z′′z′} provided that for each OFSM Q ∈ (I ∪ {M}) with

Q ≡(Z\{zz′})∪{z} M , st(Q, z′′) ≈st(M,z),z′ st(Q, z).

Theorem 1 (Proof in Appendix)

Transformation 2 is fault-coverage-preserving.

5 Some old and some new sufficient conditions
for satisfying the weaker precondition

5.1 Two simple sufficient conditions for direct satisfaction

For proving the st(Q, z′′) ≈st(M,z),z′ st(Q, z) required in Transformation 2, a

possible method is to prove st(Q, z′′) = st(Q, z), which proves also the st(Q, z′′)
st(Q, z) required in Transformation 1. For proving an st(Q, z) = st(Q, z′), a
possible method is to rely on the following proposition, which we newly prove

also for incomplete M (for complete M , it has been justified in [Bonifácio et al.

2012]):

Proposition 1 (Proof in Appendix) If M and a given OFSM Q ∈ I are deter-

ministic and input-equivalent, then for each natural m ≥ n with |st(Q)| ≤ m,

state s ∈ S and IOS pair {z, z′} ⊆ ios(M) with st(M, z) = st(M, z′) = s,

a sufficient condition for st(Q, z) = st(Q, z′) is the existence of an IOS set

Z ⊆ (ios(M) ∩ ios(Q)) satisfying all the following:

566 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

(1) {z, z′} ⊗ ios≤m−|end(M,Z)|(s) ⊆ Z

(2) st(Q, z1) �= st(Q, z2) for each IOS pair {z1, z2} ⊆ Z with

st(M, z1) �= st(M, z2).

Informally, the condition claimed sufficient requires that Q passes a test set

Z satisfying all the following:

(1) For each IOS z1 ∈ {z, z′}, Z comprises every IOS z1z2 ∈ ios(M) with

ln(z2) ≤ m− |end(M,Z)|.
(2) Any two IOSs in Z that diverge in M diverge also in Q.

By proving an st(Q, z) = st(Q, z′), one proves (z′′ ∈ ios(Q, z)) ⇔ (z′′ ∈
ios(Q, z′)) for every IOS z′′. This is interesting because for a deterministic Q,

the st(Q, z′′) ≈st(M,z),z′ st(Q, z) required in Transformation 2 translates to (z′ ∈
ios(Q, z′′))⇔ (z′ ∈ ios(Q, z)).

For proving a (z′′ ∈ ios(Q, z))⇔ (z′′ ∈ ios(Q, z′)) without proving st(Q, z) =

st(Q, z′), one can rely on the following new proposition:

Proposition 2 (Proof in Appendix) If M and a given OFSM Q ∈ I are

deterministic, then for each natural m ≥ n with |st(Q)| ≤ m, state s ∈ S, IOS

pair {z, z′} ⊆ ios(M) with st(M, z) = st(M, z′) = s and IOS z′′ ∈ ios(s), a

sufficient condition for (z′′ ∈ ios(Q, z))⇔ (z′′ ∈ ios(Q, z′)) is the existence of

an IOS set Z ⊆ (ios(M) ∩ ios(Q)) satisfying all the following:

(1) {z, z′} ⊗ {z′′′|(z′′′ ∈ ios≤m−|end(M,Z)|(s)) ∧ (ts(s, z′′′) ⊆ ts(s, z′′))} ⊆ Z

(2) st(Q, z1) �= st(Q, z2) for each IOS pair {z1, z2} ⊆ Z with

st(M, z1) �= st(M, z2).

Proposition 2 strongly resembles Proposition 1, but defines for (z′′ ∈ ios(Q,

z)) ⇔ (z′′ ∈ ios(Q, z′)) a sufficient condition that is weaker. Namely, M and

Q need not be input-equivalent and (1) requires the presence in Z only for

those IOSs z1z2 with (z1 ∈ {z, z′}) ∧ (z2 ∈ ios≤m−|end(M,Z)|(s)) that satisfy

ts(s, z2) ⊆ ts(s, z′′).

5.2 Two advanced sufficient conditions for direct satisfaction

This section is intended only for advanced readers and, with the exception of

the first of the two additional definitions below, contains no material necessary

for understanding the subsequent sections.

Definition 12 For each number set N , inf (N) denotes the smallest element

and sup(N) denotes the largest element.

Definition 13 For each IOS set pair (Z,Z ′), notall(Z,Z ′) denotes the IOS set

min({z|(z ∈ (pf (Z) ∩ pf (Z ′))) ∧ (in(Z ′, z) �⊆ in(Z, z))}).

567Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

Informally, notall (Z,Z ′) is the set of the minimal ones among those IOSs z

for which there is an input x with the following property: The prefix set of Z ′

comprises an IOS starting with zx, whereas the prefix set of Z does not.

For proving the st(Q, z′′) ≈st(M,z),z′ st(Q, z) required in Transformation 2,

the Propositions 1 and 2 can be helpful only if M is deterministic and state

distinguishing is not a problem. In this section, we propose two new theorems

which are conceptually their generalizations and applicable in the general case.

The first of the new theorems is conceptually a generalization of Proposition 1

and of the ideas of [Bonifácio et al. 2012]:

Theorem 2 (Proof in Appendix) For each OFSM Q ∈ I, each non-empty

IOS set Z ⊆ ios(Q) and each natural k with 0 < k ≤ |Z|, a sufficient condition

for |end(Q,Z)| ≤ k is that for the IOSs z ∈ ios(Q), there exists a function f(z)

satisfying all the following:

(1) For each IOS pair {z, z′} ⊆ ios(Q) with st(Q, z) = st(Q, z′), f(z) = f(z′).
(2) Let Δ denote sup({0, |st(Q)| − |{f(z)|z ∈ ios(Q)}| − k + 1}). For each IOS

pair {z, z′} ⊆ Z:

(i) ios≤Δ(st(Q, z)) = ios≤Δ(st(Q, z′))
(ii) For each IOS z′′ ∈ ios≤Δ(st(Q, z)), f(zz′′) = f(z′z′′).

Informally, Theorem 2 defines a sufficient condition for |end(Q,Z)| ≤ k,

which in the case of k = 1 and Z a pair {z, z′} means that st(Q, z) = st(Q, z′).
For |end(Q,Z)| ≤ k, Theorem 2 requires the existence of a function f by which

the IOSs in ios(Q) are partitioned in such a way that those with the same re-

sulting state in Q are in the same group. The remaining constraints for f are

defined in terms of Δ, a natural reflecting the number of the groups into which

ios(Q) is partitioned by f . It is required that for each IOS z ∈ Z:

1. The set of those IOSs z with ln(z) ≤ Δ which Q can execute after individual

IOSs z′ ∈ Z is the same for every IOS z′ ∈ Z.

2. For each of the continuations z, f(z′z) is the same for every IOS z ∈ Z.

To prove the st(Q, z′′) ≈st(M,z),z′ st(Q, z) required in Transformation 2 with-

out proving st(Q, z′′) = st(Q, z), it suffices to prove st(Q, z′′) ≈imp(st(M,z),Z)

st(Q, z) for an IOS set Z satisfying {z′} ⊆ Z ⊆ ios(M, z). For this, one can rely

on the following new theorem, conceptually a generalization of Proposition 2:

Theorem 3 (Proof in Appendix) For each OFSM Q, subset K = {z, z′} of
ios(Q) and IOS set Z, a sufficient condition for st(Q, z) ≈Z st(Q, z′) is the

existence of an IOS set Z ′ ⊆ pf (Z) satisfying all the following:

(1) st(Q, z) ≡Z′ st(Q, z′) ≡Z′ Z

(2) For each IOS β ∈ notall (imp(Z,Z ′), Z), there is a pair (Lβ , [Hβ,h]1≤h≤kβ
)

satisfying all the following:

568 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

(a) (Lβ ⊆ ios(Q)) ∧ (kβ > 0)

(b) For each 1 ≤ h ≤ kβ, ∅ ⊂ Hβ,h ⊆ pf (β). Let Hβ denote the IOS set

Hβ,1 ∪ . . . ∪Hβ,kβ
.

(c) For each 1 ≤ h ≤ kβ, ios(Z, zi) ios(Z, zj) for each IOS pair

{zi, zj} ⊆ Hβ,h with zi < zj.

(d) For each 1 ≤ i < j ≤ kβ, st(Q, zi) �= st(Q, zj) for each IOS pair

{zi, zj} with (zi ∈ (K ⊗Hβ,i)) ∧ (zj ∈ (K ⊗Hβ,j)).

(e) |Hβ |+ kβ > |end(Q,Lβ ∪ (K ⊗Hβ))| − |end(Q,Lβ)|
(f) st(Q, zi) �= st(Q, zj) for each IOS pair {zi, zj} with

(zi ∈ Lβ) ∧ (zj ∈ (K ⊗Hβ)).

Informally, Theorem 3 defines a sufficient condition for st(Q, z) ≈Z st(Q, z′),
which means that Q-after-z and Q-after-z′ are z′′-equivalent to Z for the same

IOSs z′′ in the prefix set of Z. For this, Theorem 3 requires the existence of

an IOS set Z ′ ⊆ pf (Z) satisfying specific constrains, of which the first is that

Q-after-z and Q-after-z′ must be Z ′-equivalent to Z.

The contributors of the remaining constraints are the IOSs in the set

notall(imp(Z,Z ′), Z), i.e., the IOSs in pf (Z)∩ ios(Q, z)∩ ios(Q, z′) after which
the behaviour of Q-after-z and Q-after-z′ becomes questionable for at least one

next input of interest. Additional constraints for each such IOS β are necessary

because the fact that Q-after-z and Q-after-z′ are Z ′-equivalent to Z does not

secure that Q-after-zβ and Q-after-z′β are z′′-equivalent to Z-after-β for the

same IOSs z′′ in Z-after-β.

For each IOS β ∈ notall(imp(Z,Z ′), Z), Theorem 3 requires the existence of

a non-empty set Hβ of prefixes of β, of a partitioning [Hβ,i]1≤i≤kβ
of Hβ and of

an IOS set Lβ ⊆ ios(Q) such that:

(1) For each 1 ≤ h ≤ kβ and IOS pair {zi, zj} ⊆ Hβ,h with zi shorter than zj ,

Z-after-zi is quasi-equivalent to Z-after-zj.

(2) For each 1 ≤ i < j ≤ kβ , divergence in Q is secured for each pair of an IOS

in K ⊗Hβ,i and an IOS in K ⊗Hβ,j.

(3) The sum of kβ and the size of Hβ is more than the difference between the

degree to which the IOSs in Lβ ∪ (K ⊗Hβ) diverge in Q and the degree to

which the IOSs in Lβ diverge in Q.

(4) Divergence in Q is secured for each pair of an IOS in Lβ and an IOS in

K ⊗Hβ.

5.3 Two sufficient conditions for indirect satisfaction

From the Sections 5.1 and 5.2, respectively, recall that to prove the st(Q, z′′)
≈st(M,z),z′ st(Q, z) required in Transformation 2, it suffices to prove st(Q, z′′) =
st(Q, z) or st(Q, z′′) ≈imp(st(M,z),Z) st(Q, z) for an IOS set Z satisfying {z′} ⊆
Z ⊆ ios(M, z).

569Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

After an IOS pair {z, z′} ⊆ ios(Q) with st(Q, z) = st(Q, z′) has been iden-

tified for a given OFSM Q ∈ I, further such pairs can be identified with the

Proposition 3 below. In the method of [Simão et al. 2012], for example, syner-

getic exploitation of Propositions 1 and 3 is employed for implicit exploitation

of Transformation 1.

Proposition 3 For each OFSM Q ∈ I and IOS pair {z, z′} ⊆ ios(Q) with

st(Q, z) = st(Q, z′), st(Q, zz′′) = st(Q, z′z′′) for each IOS z′′ ∈ ios(Q, z′).

After an IOS pair {z, z′} ⊆ ios(Q) with st(Q, z) ≈Z st(Q, z′) for an IOS

set Z has been identified for a given OFSM Q ∈ I, further such pairs can be

identified with help of the following new proposition:

Proposition 4 (Proof in Appendix) For each OFSM Q ∈ I, IOS Z and IOS

pair {z, z′} ⊆ ios(Q) with st(Q, z) ≈Z st(Q, z′), st(Q, zz′′) ≈ios(Z,z′′) st(Q, z′z′′)
for each IOS z′′ ∈ pf (Z) with st(Q, z) ≡z′′ st(Q, z′) ≡z′′ Z.

Informally, Proposition 4 defines a sufficient condition for st(Q, zz′′)≈ios(Z,z′′)

st(Q, z′z′′), which means that theQ-after-zz′′ andQ-after-z′z′′ are z′′′-equivalent
to Z-after-z′′ for the same IOSs z′′′ in the prefix set of Z-after-z′′. For this,

Proposition 4 requires the following:

(1) That Q-after-z and Q-after-z′ are z′′′-equivalent to Z for the same IOSs z′′′

in the prefix set of Z.

(2) z′′-equivalence of Q-after-z, Q-after-z′ and Z.

6 The method of [Inan and Ural 1999], a correction
and a generalization

6.1 Introduction

To be a CS, the generated test must check not only that the OFSM Q under

test has a state quasi-equivalent to init(M), but also that init(Q) is such a test.

To check the latter, the test must start with a special-purpose segment, whose

feasibility is an additional assumption on M . Besides, one needs an additional

assumption on Q. In the method of [Inan and Ural 1999], the special-purpose

segment and the additional assumptions are missing. The method that we gen-

eralize is the method of [Inan and Ural 1999] without the error.

The new method works under the following assumptions, besides those given

already in Definition 8:

(1) M and the OFSM Q under test are deterministic and input-equivalent.

(2) M is strongly connected.

(3) |st(Q)| is not more than a given natural m ≥ n.

570 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

1. If there is a state s ∈ (S \ {init(M)}) with in(s, ε) = in(M, ε), choose a

unique IOS w0 of init(M). Otherwise, let w0 ← ε.

2. Choose a collection [Ds]s∈S of harmonized state identifiers.

3. For each state s ∈ S: Zs ← max ({zz′|(z ∈ ios≤m−n(s)) ∧ (z′ ∈ Dst(s,z))})
4. For each transition t = (s, x/y, s′) in tr(M): Zt ← max(xy ⊗ Zs′) \ Zs

5. Choose a 4-tuple (S′, [Z ′
t]t∈tr(M),≺, [(qt,z, vt,z)]t∈tr(M),z∈(Zt\Z′

t)
) with the

following properties (if the first two components of the 4-tuple are given

their default values, the remaining components are unnecessary):

(1) S′ ⊆ S, where the default S′ is S.
(2) For each transition t ∈ tr(M), Z ′

t ⊆ Zt, where the default Z ′
t is Zt.

(3) ≺ is a strict order on tr(M).

(4) For each transition t = (s, x/y, s′) in tr(M) and each IOS z ∈ (Zt \ Z ′
t),

(qt,z, vt,z) is a path with the following properties:

(1) (qt,z ∈ (S \ S′)) ∧ (st(qt,z, vt,z) = s)

(2) For each transition t′ ∈ ts(qt,z, vt,z), t
′ ≺ t.

6. For each transition t ∈ tr(M) and each IOS z ∈ Z ′
t:

Zt,z ← max ({z′|(z′ ∈ ios≤m−n(s)) ∧ (ts(s, z′) ⊆ ts(s, z))})
7. Choose (the default procedure for m ≥ 2n is in Figure 2) a path set

P = [(rs, vsv
′
s)]s∈S′ ∪ [(rs, vsz)]s∈(S\S′),z∈Zs

∪ [(rt,z, vt,zv
′
t,z)]t∈tr(M),z∈Z′

t
∪

[(rqt,z , vqt,zvt,zz)]t∈tr(M),z∈(Zt\Z′
t)
∪ P ′

with the following properties:

(1) For each state s ∈ S′, (rs, vs, v′s) is a (P, s, Zs)-locator.

(2) For each state s ∈ (S \ S′), (rs, vs) is a (P, s)-locator.

(3) For each transition t = (s, x/y, s′) in tr(M) and each IOS z ∈ Z ′
t,

(rt,z , vt,z, v
′
t,z) is a (P, s,max ({z} ∪ Zt,z))-locator.

8. Choose (the default is to do it as suggested in the Section 5 of [Inan and

Ural 1999]) a test w that starts with w0 and covers P .

Figure 1: The new method.

(4) m = n or Q is strongly connected.

(5) If there is a state s ∈ (S \ {init(M)}) with in(s, ε) = in(M, ε), the initial

state of M has a unique IOS.

The assumptions missing in the method of [Inan and Ural 1999] are the last two.

In Figure 1, we give for the new method a formal specification deliberately

prescribing only what to choose, so that one is free to make the choices with any

optimization method (ideally, all choices would be made in an integrated way).

In [Inan and Ural 1999], one also finds such separation of concerns, though not

without some guidelines on how to make the choices. The auxiliary procedures

in the Figures 2 and 3 are also based on them. The corrected method of [Inan

571Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

1. For each state s ∈ (S \ S′), choose a state qs ∈ S.

2. For each state s ∈ (S′ ∪ {qs′ |s′ ∈ (S \ S′)}), construct (the default procedure

is in Figure 3) an (∅, s, Zs)-locator (q
′
s, zs, z

′
s).

3. For each state s ∈ S′: (rs, vs, v′s)← (q′s, zs, z
′
s)

4. For each state s ∈ (S \ S′):
i. Choose an IOS v′s ∈ ios(qs) with st(qs, z

′
qsv

′
s) = s.

ii. (rs, vs)← (q′qs , zqsz
′
qsv

′
s)

5. For each transition t = (s, x/y, s′) in tr(M) and each ios z ∈ Z ′
t, construct

(the default procedure is in Figure 3) an (∅, s,max ({z} ∪ Zt,z))-locator

(rt,z , vt,z, v
′
t,z).

6. P ← [(rs, vsv
′
s)]s∈S′ ∪ [(rs, vsz)]s∈(S\S′),z∈Zs

∪ [(rt,z , vt,zv
′
t,z)]t∈tr(M),z∈Z′

t
∪

[(rqt,z , vqt,zvt,zz)]t∈tr(M),z∈(Zt\Z′
t)

Figure 2: The default step 7 of the new method for m ≥ 2n.

1. Order the IOSs in Z into a sequence z1 . . . zk.

2. For each 1 ≤ i < k, choose an IOS z′i with (ziz
′
i ∈ ios(s)) ∧ (st(s, ziz

′
i) = s).

3. Let v1 ← ε. For each 1 ≤ i < k, let vi+1 ← vi(ziz
′
ivi)

m.

4. Return the triplet (s, vk, zk).

Figure 3: The default procedure for constructing an (∅, s, Z)-locator.

and Ural 1999] is conceptually that specialization of the new method in which

M is complete and S′ and all Z ′
t are empty. In the original method of [Inan and

Ural 1999], the starting part w0 of w is virtually missing..

The procedures in the Figures 1-3 rely also on the following definitions:

Definition 14

• A path is a pair (s, z) with (s ∈ S) ∧ (z ∈ ios(s)).

• A given test z covers a given path set P if for each path (s, z′) ∈ P , there is

a test z′′z′ ∈ pf (z) with st(M, z′′) = s.

• A given OFSM Q covers a given path set P if z ∈ ios(Q) for a test z which

covers P .

Definition 15 A collection of harmonized state identifiers is an IOS set

collection [Zs]s∈S that for each state s ∈ S satisfies all the following:

(1) ∅ ⊂ Zs ⊆ ios(s)

(2) For each state s′ ∈ (S \ {s}), there is an IOS pair (z, z′) with
(z ∈ Zs) ∧ (z′ ∈ Zs′) ∧ (is(z) = is(z′)) ∧ ((z, in(s, z)) �= (z′, in(s′, z′))).

Definition 16 For each path set P , each state s ∈ S and each IOS set

Z ⊆ ios(s), a (P, s, Z)-locator is a triplet (s′, z, z′) satisfying all the following:

572 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

(1) (s′ ∈ S) ∧ (z ∈ ios(s′)) ∧ (st(s′, z) = s) ∧ (z′ ∈ ios(s))

(2) For each OFSM Q ∈ I covering P and each IOS z′′zz′ ∈ (ios(M) ∩ ios(Q))

with st(M, z′′) = s′, Z ⊆ ios(Q, z′′z).

Definition 17 For each path set P and each state s ∈ S, a (P, s)-locator is a

pair (s′, z) satisfying all the following:

(1) (s′ ∈ S) ∧ (z ∈ ios(s′)) ∧ (st(s′, z) = s)

(2) For each OFSM Q ∈ I covering P ,

|end(Q, {z′z|(z′z ∈ ios(M)) ∧ (st(M, z′) = s′)})| ≤ 1.

6.2 An explanatory proof of the new method

The plan behind the steps 1-4 is as follows:

Plan 1

1. For each state s ∈ S:

i. The test w constructed in the step 8 will have a prefix ws with

st(M,ws) = s.

ii. w will check that in the OFSM Q under test, Zs ⊆ ios(Q,ws).

iii. By Ds ⊆ pf (Zs), w will, hence, check that Ds ⊆ ios(Q,ws).

2. By [Ds]s∈S a collection of harmonized state identifiers and by Proposition 1,

w will, hence, check that for each state s ∈ S, all the following is true:

i. end(Q, ios(Q) ∩ ios(M)) comprises at most one state s′ with
Zs ⊆ ios(s′), call it f(s).

ii. st(M,ws) = f(s). For each state s′ ∈ (S \ {s}), f(s′) �= f(s).

3. For each transition (s, x/y, s′) ∈ tr(M):

i. w will check that Zt ⊆ ios(Q,ws).

ii. Hence, w will check not only that st(Q,ws) = f(s), but also that

st(Q,wsxy) = f(s′).
iii. Hence, w will check that tr(Q) comprises the transition

(f(s), x/y, f(s′)).
4. By M and Q deterministic, strongly connected and input-equivalent, w will,

hence, check that all the following is true:

(1) st(Q) = {f(s)|s ∈ S}
(2) tr(Q) = {(f(s), x/y, f(s′))|(s, x/y, s′) ∈ tr(M)}

5. Hence, w will check that for each state s ∈ S, ios(f(s)) = ios(s).

6. Hence if there is a state s ∈ (S \ {init(M)}) with in(s, ε) = in(M, ε), w will

check that w0 is a unique IOS of f(init(M)).

7. w0 will be a prefix of w.

8. Hence, by in(Q, ε) = in(M, ε), w will check that init(Q) = f(init(M)).

573Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

9. Hence, w will check that ios(Q) = ios(M), meaning that w will be a CS.

The plan behind the steps 5 and 6 refines Plan 1 and is as follows:

Plan 2

1. For each state s ∈ (S \ S′):
i. For each IOS z ∈ Zs, w will have a prefix ws,zz with st(M,ws,z) = s.

ii. w will check that the state st(Q,ws,z) is the same for every IOS z ∈ Zs.

iii. For each IOS z ∈ Zs, w will, hence, check that Zs ⊆ ios(Q,ws,z).

iv. Hence, one safely assumes ws ∈ {ws,z|z ∈ Zs}.
In other words, for each extension z ∈ Zs with ws,z �= ws which Plan 1 vir-

tually foresees for the test ws, Plan 2 virtually foresees the following instance

of Transformation 1: While securing the checking of st(Q,ws,z) = st(Q,ws),

z is detached from ws and instead appended to the test ws,z.

2. For each transition t = (s, x/y, s′) in tr(M) and each IOS z ∈ Z ′
t:

i. w will have a prefix wt,z with st(M,wt,z) = s.

ii. w will check that Zt,z ⊆ ios(Q,wt,z).

iii. By Zt,z ⊆ pf (Zs), w will check Zt,z ⊆ ios(Q,ws).

iv. By [Ds]s∈S a collection of harmonized state identifiers and by Proposi-

tion 2, w will, hence, check that (z ∈ ios(Q,ws))⇔ (z ∈ ios(Q,wt,z)).

v. w will check that z ∈ ios(Q,wt,z). Hence, w will check that z∈ ios(Q,ws).

In other words, for each extension z ∈ Z ′
t which Plan 1 virtually foresees for

the test ws, Plan 2 virtually foresees the following instance of Transforma-

tion 2: While securing the checking of (z ∈ ios(Q,ws)) ⇔ (z ∈ ios(Q,wt,z)),

z is detached from ws and instead appended to the test wt,z.

3. For each transition t = (s, x/y, s′) in tr(M), assuming that w will check

(f(q), x′/y′, f(q′)) ∈ tr(Q) for every transition t′ = (q, x′/y′, q′) in tr(M)

with t′ ≺ t:

i. For each IOS z ∈ (Zt \ Z ′
t):

I. w will have a prefix wt,zvt,z with st(M,wt,z) = qt,z.

II. w will check that st(Q,wt,z) = f(qt,z).

III. By t′ ≺ t for every transition t′ ∈ ts(qt,zvt,z), w will, hence, check

that st(Q,wt,zvt,z) = f(s).

IV. Hence, w will check that

(st(Q,wt,zvt,z) = st(Q,ws)) ∧ (z ∈ ios(Q,wt,zvt,z)).

V. Hence, w will check that z ∈ ios(Q,ws).

In other words, for each extension z ∈ (Zt \ Z ′
t) which Plan 1 virtually

foresees for the test ws, Plan 2 virtually foresees the following instance

of Transformation 1: While securing the checking of st(Q,wt,zvt,z) =

st(Q,ws), z is detached from ws and instead appended to the test wt,zvt,z.

ii. Hence, w will check that (Zs ∪ Zt) ⊆ ios(Q,ws).

574 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

iii. Hence, w will check that (f(s), x/y, f(s′)) ∈ tr(M).

4. By ≺ a strict order on tr(M), w will, hence, check that for each transition

t = (s, x/y, s′) in tr(M), Zt ⊆ ios(Q,ws).

The plan behind the step 7 refines Plan 2 and is as follows:

Plan 3

1. w will cover P .

2. For each state s ∈ S′:
i. w will have a prefix usvsv

′
s with st(M,us) = rs.

ii. By (rs, vs, v
′
s) a (P, s, Zs)-locator, w will check that Zs ⊆ ios(Q, usvs).

iii. Hence, one safely assumes ws = usvs.

3. For each state s ∈ (S \ S′):
i. For each IOS z ∈ Zs, w will have a prefix us,zvsz with st(M,us,z) = rs.

ii. By (rs, vs) a (P, s)-locator, w will check that the state st(Q, us,zvs) is

the same for every IOS z ∈ Zs.

iii. Hence, one safely assumes ws,z = us,zvs.

4. For each transition t = (s, x/y, s′) in tr(M) and each IOS z ∈ Z ′
t:

i. w will have a prefix ut,zvt,zv
′
t,z with st(M,ut,z) = rt,z.

ii. By (rt,z , vt,z, v
′
t,z) a (P, s,max ({z} ∪ Zt,z))-locator, w will check that

({z} ∪ Zt,z) ⊆ ios(Q, ut,zvt,z).

iii. Hence, one safely assumes wt,z = ut,zvt,z.

5. For each transition t = (s, x/y, s′) in tr(M) and each IOS z ∈ (Zt \ Z ′
t):

(i) w will have a prefix ut,zvqt,zvt,zz with st(M,ut,z) = rqt,z .

(ii) By (rqt,z , vqt,z) the selected (P, qt,z)-locator, w will, hence, check that

st(Q, ut,zvqt,z) = st(Q,wqt,z).

(iii) As w will check that st(Q,wqt,z) = f(qt,z), it will, hence, check that

st(Q, ut,zvqt,z) = f(st(Q, ut,zvqt,z)).

(iv) Hence, one safely assumes wt,z = ut,zvqt,z .

Theorem 4 In the new method, w is a CS,

Proof. w starts with w0 and covers P . Hence:

1. For each state s ∈ S′, it has a prefix qualifying for the us in Plan 3.

2. For each state s ∈ (S \ S′), it has a prefix qualifying for the us,z in Plan 3.

3. For each transition t ∈ tr(M) and each IOS z ∈ Zt, it has a prefix qualifying

for the ut,z in Plan 3. �

The plan behind the default procedure for the step 7 in the case of m ≥ 2n

(Figure 2) is as follows:

575Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

Plan 4

1. For each state s ∈ (S′ ∪ {qs′ |s′ ∈ (S \ S′)}):
i. (q′s, zs, z

′
s) will be an (∅, s, Zs)-locator and, hence, a (P, s, Zs)-locator.

ii. By m ≥ 2n, end(st(s, z)|z ∈ ios≤m−n(s)) = S.

iii. Hence if there is a test covering (q′s, zs, z
′
s):

I. For each state s′ ∈ S, the test has a prefix z′′s′ for which it checks

that in the OFSM Q under test, Ds′ ⊆ ios(Q, z′′s).
II. By [Ds′]s′∈S a collection of harmonized state identifiers and by

Proposition 1, the test, hence, checks that end(Q, ios(Q)∩ ios(M))

comprises at most one state s′ with Zs ⊆ ios(s′).
iv. Hence, (q′s, zsz′s) will be an (∅, st(s, z′s))-locator.

2. For each state s ∈ (S \ S′), (rs, vs) will, hence, be an (∅, s)-locator and,
hence, a (P, s)-locator.

3. For each transition t = (s, x/y, s′) in tr(M) and each ios z ∈ Z ′
t,

(rt,z , vt,z, v
′
t,z) will be an (∅, s,max ({z} ∪ Zt,z))-locator and, hence, a

(P, s,max ({z} ∪ Zt,z))-locator.

The default procedure for constructing an (∅, s, Z)-locator (Figure 3) is the

one which [Inan and Ural 1999] proves for the purpose.

7 Estimation of the possible CS length reduction

In the new method, ln(w) strongly depends on the extent to whichM is complete

and on the employed [Ds]s∈S . In [Inan and Ural 1999], M is assumed to be

complete and CS construction for the general m is presented in detail only for

the case where the input sequence set {is(z)|z ∈ Ds} is the same for every

state s ∈ S. Assuming such an {is(z)|z ∈ Ds} and completeness of M , we in

the following assess the ratio between the ln(w) obtained if the new method is

executed with (S \S′) and all (Zt \Z ′
t) empty and the ln(w) obtained if the new

method is executed, as originally the only option, with S′ and all Z ′
t empty.

For each state s ∈ S and each non-empty IOS set Z ⊆ ios(s), let l(s, Z)

denote ln(vkzk) of the shortest IOS vkzk which the procedure in Figure 3 can

construct for them. In the rest of the section, we assume also the following:

(1) m ≥ 2n

(2) The step 7 of the new method is executed as the default version of the

procedure in Figure 2, i.e., as a procedure calling the one in Figure 3.

(3) In every in instance of the procedure in Figure 3, ln(vkzk) = l(s, Z).

(4) For each state s ∈ S:

i. As |Ds| need not be more than (n−1), this is its assumed upper bound.

ii. As ln(z) of individual IOSs z ∈ Ds need not be more than (n− 1), this

is its assumed upper bound.

576 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

(5) Because in the case of no neglectably short unique IOS for init(M), one

usually considers sufficient that w covers P , i.e., checks that each transition

in tr(M) is correctly implemented, we assume that the step 8 of the new

method is, like in [Inan and Ural 1999], executed without securing that w

starts with w0.

(6) For each gap z between consecutive special-purpose segments combined in

w, as ln(z) need not be more than (n− 1), this is its assumed upper bound.

(7) Because for the possible overlapping of the segments, [Inan and Ural 1999]

reports experiments showing that the resulting reduction of ln(w) is 10-15%,

this is its assumed range.

Under the above assumptions:

1. Let a denote |in(M)|. Let b denote |Zinit(M)|.
2. Let lmin denote inf ({l(s, Zs)|s ∈ S}). Let lmax denote sup({l(s, Zs)|s ∈ S}).
3. Let l′max denote sup({l(s,max({z} ∪ Zt,z))|(t ∈ tr(M)) ∧ (z ∈ Z ′

t)}).
4. For each state s ∈ S:

i. For each IOS z ∈ Zs: m− n ≤ ln(z) ≤ m− 1

ii. (|Zs| = b) ∧ (am−n ≤ b ≤ am−1)

5. Hence:

i. lmin ≥ (m− n) · (m+ 1)a
m−n−1

ii. (m− n) · (m+ 1)a
m−n−1 ≤ lmax ≤ lmin · m+n

m−n

6. For each transition t ∈ tr(M) and each IOS z ∈ Z ′
t:

i. For each IOS z′ ∈ max ({z} ∪ Zt,z): ln(z
′) ≤ m

ii. |max ({z} ∪ Zt,z)| ≤ (1 +mm−n) · (n− 1)

7. Hence: l′max ≤ m · (m+ 1)(1+mm−n)·(n−1)−1 ≤ (m+ 1)(1+mm−n)·(n−1)

8. In the case of (S \ S′) and all (Zt \ Z ′
t) empty:

ln(w) ≤ 0.9 · ((Σs∈S′(ln(vsv
′
s) + n)) + (Σt∈tr(M),z∈Z′

t
(ln(vt,zv

′
t,z) + n)))

≤ 0.9 · ((Σs∈S′(lmax + n)) + (Σt∈tr(M),z∈Z′
t
(l′max + n)))

≤ 0.9 · (n · (lmax + n) + (l′max + n) · (Σt∈tr(M)|Zt|))
≤ 0.9 · (n · (lmax + n) + (l′max + n) · (Σt∈tr(M)b))

≤ 0.9 · n · (lmax + n+ a · b · (l′max + n))

9. In the case of S′ and all Z ′
t empty:

ln(w) ≥ 0.85 · ((Σs∈(S\S′),z∈Zs
ln(vsz)) + (Σt∈tr(M),z∈(Zt\Z′

t)
ln(vqt,zvt,zz)))

≥ 0.85 · ((Σs∈S,z∈Zs lmin) + (Σt∈tr(M),z∈Zt
lmin))

≥ 0.85 · lmin · ((Σs∈S |Zs|) + (Σt∈tr(M)|Zt|))
10. Let R denote the ratio

0.9·n·(lmax+n+a·b·(l′max+n))
0.85·lmin ·((Σs∈S|Zs|)+(Σt∈tr(M)|Zt|))

11. R ≤ 0.9·(lmax+n+a·b·(l′max+n))
0.85·lmin ·am−n+1

12.
a·b·(l′max+n)

lmax+n ≤ am·((m+1)(1+mm−n)·(n−1)+n)

(m−n)·(m+1)am−n−1+n

13. In the limit for increasingly large (a/m) and (m/n):

577Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

i. am·((m+1)(1+mm−n)·(n−1)+n)

(m−n)·(m+1)am−n−1+n
≈ am·(m+1)(1+mm−n)·(n−1)

(m−n)·(m+1)am−n−1

≈ am·(m+1)(1+mm−n)·(n−1)

(m+1)am−n ≈ 0

ii. Hence:
a·b·(l′max+n)

lmax+n ≈ 0

iii. Hence:
0.9·(lmax+n+a·b·(l′max+n))

0.85·lmin ·am−n+1 ≈ 0.9·(lmax+n)
0.85·lmin ·am−n+1

iv. n
lmax
≤ n

lmin
≤ n

(m−n)·(m+1)am−n−1

v. n

(m−n)·(m+1)am−n−1
≈ 0

vi. Hence: 0.9·(lmax+n)
0.85·lmin ·am−n+1 ≈ 0.9·lmax

0.85·lmin ·am−n+1

vii. 0.9·lmax

0.85·lmin ·am−n+1 ≤ 0.9·(m+n)
0.85·(m−n)·am−n+1

viii. 0.9·(m+n)
0.85·(m−n)·am−n+1 ≈ 0.9

0.85·am−n+1

ix. Hence, the order of R is at most O(a−(m−n+1)).

x. Hence, w obtained with (S \ S′) and all (Zt \Z ′
t) empty is shorter than

w obtained with S′ and all Z ′
t empty, by a factor whose order is at least

O(am−n+1).

8 Conclusions

For the optimization of OFSM-based test sets, we have discussed a popular

transformation by which under a certain precondition, a tail of a test is removed

and appended to some other test. We have proposed a weaker precondition

under which the transformation remains fault-coverage-preserving. Along with

a weaker precondition, we have proposed some weaker sufficient conditions for

its satisfaction. For practice this means that for any planned move of a test tail,

the tests introduced for checking that this is safe can now be simpler.

The latter can be useful particularly in the construction of CSs, which we

have demonstrated on the CS construction method of [Inan and Ural 1999]. With

the help of the new insights, we have generalized it to incomplete OFSMs and

furnished it with new options which can sometimes reduce the CS length by a

factor exponential in the assumed upper bound on the number of extra states

in the implementation. For complete OFSMs and the upper bound at least the

size of the state set of the specification OFSM (such a large upper bound is

currently allowed only in the method of [Inan and Ural 1999] and its proposed

generalization), this has been formally proven. For the general case, guidelines

for optimally choosing the parameters of the generalized method are yet to be

developed.

In the considered transformation and in most of the current OFSM-based

test set construction methods with optimization, one reasons in terms of (quasi-)

equivalence or equality of states. With our generalization of the transformation

and one of the methods, we have introduced the reasoning in terms of a weaker

578 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

and parameterized relation between states. It would be interesting to see how

much (and at what cost) the switching to the new kind of reasoning can improve

the other methods.

For the reasoning in terms of (quasi-)equivalence or equality of states, one has

at disposal a formal apparatus consisting of items such as templates for deduction

steps in the interpretation of IOSs observed or expected to be observed on the

OFSM under test (see, for example, [Simão and Petrenko 2010,Bonifácio et al.

2012,Kapus-Kolar 2012a]) and sufficient conditions for various test set properties

(see, for example, [Bonifácio et al. 2012, Simão et al. 2012]). Of the apparatus,

we have for the new kind of reasoning adapted (in Theorem 3 and Proposition 4)

only two deduction step templates. It would be interesting to adapt also the rest.

We have assumed that to pass a test, the OFSM under test has to implement

it exactly like the specification OFSM. It would be interesting to generalize the

new insights and their applications to a wider class of conformance relations, for

example the one introduced in [Kapus-Kolar 2016].

Acknowledgement

The work was supported by the Slovenian Research Agency under the research

programme P2-0095 Parallel and Distributed Systems.

References

[Bonifácio et al. 2012] Bonifácio, A.L., Vieira Moura, A., Simão, A.: “Model partitions
and compact test case suites”, Int. J. Found. Comput. Sci., 23, 1 (Jan 2012) 147-
172.

[Braun and Givone 1979] Braun, R.D., Givone, D.D.: “An improved algorithm for de-
riving checking experiments”, IEEE Trans. Comput., C-28, 2 (Feb 1979) 153-156.

[Braun and Givone 1981] Braun, R.D., Givone, D.D.: “A generalized algorithm for
constructing checking sequences”, IEEE Trans. Comput., C-30, 2 (Feb 1981) 141-
144.

[Chen et al. 2005] Chen, J., Hierons, R.M., Ural, H., Yenigün, H.: “Eliminating redun-
dant tests in a checking sequence”, Proc. TestCom’05, LNCS 3502, Springer-Verlag,
Berlin, Germany (2005), 146-158.

[Cutigi et al. 2016] Cutigi, J.F., Simão, A., Souza S.R.S.: “Reducing FSM-based test
sets with guaranteed fault coverage”, Comput. J., Advanced access, 2016.

[Dincturk 2009] Dincturk, M.E.: “A Two Phase Approach for Checking Sequence Gen-
eration”, M.Sc. Thesis, Sabancı University (2009).

[Duan and Chen 2009] Duan, L., Chen, J.: “Exploring alternatives for transition ver-
ification”, J. Syst. Soft., 82, 9 (Sept 2009) 1388-1402.

[Endo and Simão 2013] Endo, A.T., Simão, A.: “Evaluating test set characteristics,
cost, and effectiveness of FSM-based testing methods”, Inf. Softw. Technol., 55, 6
(June 2013) 1045-1062.

[Farmer 1973] Farmer, D.E.: “Algorithms for designing fault-detection experiments for
sequential machines”, IEEE Trans. Comput., C-22, 2 (Feb 1973) 159-167.

[Hennie 1964] Hennie, F.C.: “Fault detecting experiments for sequential circuits”,
Proc. SWCT’64, Princeton, NJ, USA (1964), 95-110.

579Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

[Hierons 2004] Hierons, R.M.: “Using a minimal number of resets when testing from a
finite state machine”, Inf. Proc. Let., 90, 6 (June 2004) 287-292.

[Hierons and Ural 2002] Hierons, R.M., Ural, H.: “Reduced length checking se-
quences”, IEEE Trans. Comput., 51, 9 (Sept 2002) 1111-1117.

[Hierons and Ural 2003] Hierons, R.M., Ural, H.: “UIO sequence based checking se-
quences for distributed test architectures”, Inf. Softw. Technol., 45, 12 (Sept 2003)
793-803.

[Hierons and Ural 2006] Hierons, R.M., Ural, H.: “Optimizing the length of checking
sequences”, IEEE Trans. Comput., 55, 5 (May 2006) 618-629.

[Hierons and Ural 2008] Hierons, R.M., Ural, H.: “Checking sequences for distributed
architectures”, Distrib. Comput., 21, 3 (Sept 2008) 223-238.

[Hierons and Ural 2010] Hierons, R.M., Ural, H.: “Generating a checking sequence
with a minimum number of reset transitions”, Aut. Soft. Eng., 17, 3 (Sept 2010)
217-250.

[Hierons et al. 2008] Hierons, R.M., Jourdan, G.-V., Ural, H., Yenigün, H.: “Using
adaptive distinguishing sequences in checking sequences”, Proc. SAC’08, ACM
(2008), 682-687.

[Hsieh 1971] Hsieh, E.P.: “Checking experiments for sequential machines”, IEEE
Trans. Comput., C-20, 10 (Oct 1971) 1152-1166.

[Inan and Ural 1999] Inan, K., Ural, H.: “Efficient checking sequences for testing finite
state machines”, Inf. Softw. Technol., 41, 11-12 (Sept 1999) 799-812.

[Jourdan 2015] Jourdan, G.-V.: “Reduced checking sequences using unreliable reset”,
Inf. Process. Lett., 115, 5 (May 2015) 532-535.

[Kapus-Kolar 2012a] Kapus-Kolar, M.: “New state-recognition patterns for confor-
mance testing of finite state machine implementations”, Comput. Stand. Int., 34,
4 (June 2012) 390-395.

[Kapus-Kolar 2012b] Kapus-Kolar, M.: “On “Exploring alternatives for transition ver-
ification””, J. Syst. Soft., 85, 8 (Aug 2012) 1744-1748.

[Kapus-Kolar 2014] Kapus-Kolar, M.: “On the global optimization of checking se-
quences for finite state machine implementations”, Microprocess. Microsys., 38,
3 (May 2014) 208-215.

[Kapus-Kolar 2016] Kapus-Kolar, M.: “Improved state-counting-based construction of
complete test sets for FSM implementations”, Elektrotehnǐski vestnik/ Electrotech-
nical Review, 83, 3 (2016).

[Petrenko et al. 2012] Petrenko, A., Simão, A., Yevtushenko, N.: “Generating checking
sequences for nondeterministic finite state machines”, Proc. ICST’12, IEEE CS
(2012), 310-319.

[Porto et. al. 2013] Porto, F.R., Endo, A.T., Simão, A.: “Generation of checking se-
quences using identification sets”, Proc. ICFEM’13, LNCS 8144, Springer-Verlag,
Berlin, Germany (2013), 115-130.

[Rezaki and Ural 1995] Rezaki, A., Ural, H.: “Construction of checking sequences
based on characterization sets”, Comput. Commun., 18, 12 (Dec 1995) 911-920.

[Simão and Petrenko 2008] Simão, A., Petrenko, A.: Generating checking sequences
for partial reduced finite state machines”, Proc. TestCom/FATES’08, LNCS 5047,
Springer-Verlag, Berlin, Germany (2008), 153-168.

[Simão and Petrenko 2009] Simão, A., Petrenko, A.: “Checking sequence generation
using state distinguishing subsequences”, Proc. ICST’09 Workshops, IEEE CS
(2009), 48-56.

[Simão and Petrenko 2010] Simão A, Petrenko A.: “Fault coverage-driven incremental
test generation”, Comput. J., 53, 9 (Nov 2010) 1508-1522.

[Simão et al. 2012] Simão, A., Petrenko, A., Yevtushenko, N.: “On reducing test length
for FSMs with extra states”; Softw. Test. Verif. Rel., 22, 6 (Sept 2012) 435-454.

580 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

[Tekle et al. 2005] Tekle, K.T., Ural, H., Yalcin, M.C., Yenigün, H.: “Generalizing
redundancy elimination in checking sequences”, Proc. ISCIS’05, LNCS 3733,
Springer-Verlag, Berlin, Germany (2005), 915-925.

[Ural et al. 1997] Ural, H., Wu, X., Zhang, F.: “On minimizing the length of checking
sequences”, IEEE Trans. Comput., 46, 1 (Jan 1997) 93-99.

[Ural and Williams 2006] Ural, H., Williams, C.: “Constructing checking sequences for
distributed testing”, Form. Asp. Comput., 18, 1 (March 2006) 84-101.

[Ural and Zhang 2006] Ural, H., Zhang, F.: “Reducing the length of checking sequences
by overlapping”, Proc. TestCom’06, LNCS 3964, Springer-Verlag, Berlin, Germany
(2006), 274-288.

[Yalcin and Yenigün 2006] Yalcin, M.C., Yenigün, H.: “Using distinguishing and UIO
sequences together in a checking sequence”, Proc. TestCom’06, LNCS 3964,
Springer-Verlag, Berlin, Germany (2006), 259-273.

[Yao et al. 1993] Yao, M., Petrenko, A., von Bochmann, G.: “Conformance testing
of protocol machines without reset”, Proc. PSTV’93, IFIP Trans. C-16, North-
Holland, Amsterdam (1993), 241-256.

Appendix

Proof of Theorem 1.

1. Let Z ′ denote the test set (Z \ {zz′}) ∪ {z}.
2. Let Z ′′ denote the test set Z ′ ∪ {z′′z′}.
3. By st(M, z′′) ≈st(M,z),z′ st(M, z), st(M, z′′) ≡z′ st(M, z).

4. For each OFSM Q ∈ I with Q ≡Z M :

i. (Q ≡Z′ M) ∧ (st(Q, z) ≡z′ st(M, z))

ii. Hence, st(Q, z′′) ≈st(M,z),z′ st(Q, z). Hence, st(Q, z′′) ≡z′ st(M, z).

iii. Hence, st(Q, z′′) ≡z′ st(M, z′′). Hence, Q ≡Z′′ M .

5. For each OFSM Q ∈ I with Q �≡Z M :

i. If Q �≡Z′ M then Q �≡Z′′ M .

ii. If Q ≡Z′ M :

I. (st(Q, z) �≡z′ st(M, z)) ∧ (st(Q, z′′) ≈st(M,z),z′ st(Q, z)).

II. Hence, st(Q, z′′) �≡z′ st(M, z).

III. Hence, st(Q, z′′) �≡z′ st(M, z′′). Hence, Q �≡Z′′ M . �

Proof of Theorem 2.

1. For each IOS z ∈ ios(Q) and natural i, let fi(z) denote the set

{(z′, f(zz′))|(z′ ∈ ios(Q, z)) ∧ (ln(z′) ≤ i)}.
2. For each natural i, let Πi denote the set of the sets into which the IOSs in

ios(Q) are partitioned according to fi, with |Π0| = |{f(z)|z ∈ ios(Q)}|.
3. Let k′ denote |st(Q)| − |Π0| −Δ+ 1.

4. If Δ = |st(Q)| − |Π0| − k + 1, then k′ = k and, hence, k′ > 0.

5. If Δ = 0, then k′ = |st(Q)|− |Π0|+1 and, hence, k′ ≤ k and, by (1), k′ > 0.

6. By the Lemma 1 below, |Πi| strictly increases with i until it, as it can be

at most |st(Q)|, stabilizes to a certain value v.

581Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

7. As for every z in ios(Q), f∞(z) provides precise information on ios(Q, z),

v = |st(Q)| and, hence, |Πi| ≥ inf ({|st(Q)|, |Πi−1|+ 1}) for every i > 0.

8. Hence, by Δ ≥ 0 and induction on i, |ΠΔ| ≥ inf ({|st(Q)|, |Π0|+Δ}).
9. Hence, |ΠΔ| ≥ inf ({|st(Q)|, |st(Q)| − k′ + 1}).

10. Hence, by k′ > 0, |ΠΔ| ≥ |st(Q)| − k′ + 1.

11. By (2), |{fΔ(z)|z ∈ Z}| = 1 and, hence, ΠΔ comprises a set Z ′ with
Z ⊆ Z ′.

12. Suppose that |end(Q,Z)| > k′ and, hence, |end(Q,Z ′)| > k′.
13. Take any set Z ′′ consisting of the members of Z ′ and one member of each

of the sets in ΠΔ \ {Z ′}.
14. By (1), for each IOS pair {z, z′} ⊆ ios(Q) with z and z′ belonging to

different sets in ΠΔ, st(Q, z) �= st(Q, z′).
15. Hence, by |end(Q,Z ′)| > k′, |end(Q,Z ′′)| > k′ + |ΠΔ| − 1.

16. Hence, by |ΠΔ| ≥ |st(Q)| − k′ + 1, |end(Q,Z ′′)| > |st(Q)|, which is a

contradiction. �

Lemma 1 In the setting of the proof of Theorem 2, if |Πi+1| = |Πi| for a

natural i then |Πi+2| = |Πi+1|.

Proof.

1. Suppose that |Πi+1| = |Πi| and, hence, Πi+1 = Πi.

2. Suppose that |Πi+2| �= |Πi+1| and, hence, Πi+2 �= Πi+1.

3. By Πi+2 �= Πi+1, ios(Q) has a subset {zxyz′′, z′xyz′′} with the following

properties:

i. z, z′ and z′′ are IOSs, whereas xy is an IO.

ii. (ln(z′′) = i) ∧ (fi+1(z) = fi+1(z
′)) ∧ (f1(zxyz

′′) �= f1(z
′xyz′′))

iii. Hence, fi+1(zxy) �= fi+1(z
′xy).

iv. By Πi+1 = Πi, hence, fi(zxy) �= fi(z
′xy).

v. Hence, fi+1(z) �= fi+1(z
′), which is a contradiction. �

Proof of Proposition 1.

1. Take any IOS set Z ′ ⊆ Z with |Z ′| = |end(M,Z)| = |end(M,Z ′)|.
2. For each IOS z′′ ∈ ios(Q) and each IOS z′′′ ∈ Z ′, let f ′(z′′, z′′′) denote the

Boolean telling whether there is an IOS z1 ∈ Z with

(st(Q, z1) = st(Q, z′′)) ∧ (st(M, z1) �= st(M, z′′′)) ∧ (st(Q, z1) �= st(Q, z′′′)).
3. For each IOS z′′ ∈ ios(Q), let f(z′′) denote the collection [f ′(z′′, z′′′)]z′′′∈Z′ .

4. For each IOS pair {z′′, z′′′} ⊆ ios(Q) with st(Q, z′′) = st(Q, z′′′),
f(z′′) = f(z′′′).

5. Let Δ denote (|st(Q)| − |{f(z′′)|z′′ ∈ ios(Q)}|).
6. Hence, by M and Q deterministic and input-equivalent and by

(st(M, z) = st(M, z′)) ∧ (Z ⊆ ios(Q)):

582 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

i. By (1), ios≤m−|end(M,Z)|(st(Q, z)) = ios≤m−|end(M,Z)|(st(Q, z′)).
ii. By (2), for each IOS z′′ ∈ ios≤m−|end(M,Z)|(st(Q, z)), f(zz′′) = f(z′z′′).
iii. By (2), |{f(z′′)|z′′ ∈ ios(Q)}| ≥ |end(M,Z)|.
iv. Hence, by |st(Q)| ≤ m, m− |end(M,Z)| ≥ Δ.

7. By Theorem 2 for k = 1, hence, st(Q, z) = st(Q, z′). �

Definition 18 A component of an undirected graph G is a connected subgraph

of G that is not a subgraph of any larger such subgraph.

Proof of Theorem 3.

1. Let F denote the set of all IOSs z′′xy ∈ pf (Z) with

(st(Q, z) ≡z′′ st(Q, z′) ≡z′′ Z) ∧ (st(Q, z) �≈Z,z′′xy st(Q, z′)).
2. Suppose that the condition claimed sufficient is satisfied, but

st(Q, z) �≈Z st(Q, z′). Hence, F �= ∅.
3. Let φ be one of the shortest IOSs in F .

4. Take any IOS β ∈ notall(imp(Z,Z ′), Z) with Hβ ⊆ pf (φ).

5. By the Lemma 2 below, |end(Q,K ⊗Hβ,h)| > |Hβ,h| for every 1 ≤ h ≤ kβ .

6. By (d), hence, |end(Q,K ⊗Hβ)| ≥ |Hβ |+ kβ .

7. By (e), hence, |end(Q,Lβ)|+ |end(Q,K ⊗Hβ)| > |end(Q,Lβ ∪ (K ⊗Hβ))|.
8. Hence, end(Q,Lβ) ∩ end(Q,K ⊗Hβ) �= ∅, which contradicts (f). �

Lemma 2 In the setting of the proof of Theorem 3,

|end(Q,K ⊗Hβ,h)| > |Hβ,h| for each 1 ≤ h ≤ kβ.

Proof. For each 1 ≤ h ≤ kβ :

1. Start regarding the pairs (α, zi) with (α ∈ K) ∧ (zi ∈ Hβ,h) as the vertices

of an undirected graph G in which any two vertices (α, zi) and (α′, zj) are

connected by an edge exactly if ((α, zi) �= (α′, zj))∧ (st(Q,αzi) = st(Q.α′zj).
2. Individual components of G, hence, represent individual states in end(Q,K⊗

Hβ,h).

3. For given components Gu and Gv and IOS zi ∈ Hβ,h, let Gu ∼zi Gv denote

that there is an {α, α′} = K with (α, zi) a vertex of Gu and (α′, zi) a vertex

of Gv.

4. For each IOS zi ∈ Hβ,h:

i. By st(Q, z) �≈Z,φ st(Q, z′), the vertices (z, zi) and (z′, zi) belong to two

different components.

ii. For this and only this pair of components, zi is, hence, a kind of a con-

nector.

5. Start regarding the connectors as the edges of an undirected graph G′ in

which individual vertices represent individual components of G.

6. By the Lemma 3 below, G′ is acyclic. Hence, G′ has more vertices than edges.

7. Hence, G has more than |Hβ,h| components.

583Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

8. Hence, |end(Q,K ⊗Hβ,h)| > |Hβ,h|. �

Lemma 3 In the setting of the proof of Lemma 2, ∨1≤i≤k(Gi �∼zi Gi mod k+1)

for each pair ([Gi]1≤i≤k, [zi]1≤i≤k) satisfying k ≥ 2 and all the following:

(1) [Gi]1≤i≤k is a collection of k different components of G.

(2) [zi]1≤i≤k is a collection of k different IOSs in Hβ,h.

Proof. For each such pair ([Gi]1≤i≤k, [zi]1≤i≤k):

1. For each 1 ≤ i ≤ k, let i′ denote (i mod k + 1).

2. Suppose that ∀1 ≤ i ≤ k : (Gi ∼zi Gi′).

3. Take the IOS z′′ with φ = zkz
′′.

4. For each 1 ≤ i ≤ k, there is, hence, an {αi, α
′
i} = K with (αi, zi) a vertex of

Gi and (α′
i, zi) a vertex of Gi′ .

5. Without loss of generality, assume

(∀1 ≤ i < k : (zi < zk)) ∧ (st(Q,αkzk) �≡z′′ ios(Z, zk)).

6. For each 1 ≤ i ≤ k:

i. (α′
i, zi) and (αi′ , zi′) are vertices of Gi′ .

ii. Hence, st(Q,α′
izi) = st(Q,αi′zi′).

iii. Hence, (st(Q,αi′zi′) �≡z′′ ios(Z, zk))⇒ (st(Q,α′
izi) �≡z′′ ios(Z, zk)).

7. For each 1 ≤ i < k:

i. Suppose that

(st(Q,α′
izi) �≡z′′ ios(Z, zk)) �⇒ (st(Q,αizi) �≡z′′ ios(Z, zk)).

ii. By (c) and zi < zk, hence, ios(Z, zi) ios(Z, zk).

iii. Hence, F comprises a prefix of ziz
′′, which, by ln(ziz

′′) < ln(φ), is a

contradiction.

iv. Hence, (st(Q,α′
izi) �≡z′′ ios(Z, zk))⇒ (st(Q,αizi) �≡z′′ ios(Z, zk)).

8. By induction starting with st(Q,αkzk) �≡z′′ ios(Z, zk), hence,

st(Q,α′
kzk) �≡z′′ ios(Z, zk), which, by φ ∈ F , is a contradiction. �

Proof of Proposition 2.

1. Suppose that the premise is true and let K denote the IOS pair {z, z′}.
2. Let Z ′ denote the IOS set {z′′′|(z′′′ ∈ ios(s)) ∧ (ts(s, z′′′) ⊆ ts(s, z′′))}.
3. (Z ⊆ Z ′) ∧ (Z ⊆ ios(Q, z)) ∧ (Z ⊆ ios(Q, z′))
4. For each IOS β ∈ notall(Z,Z ′):

i. Take any IOS set Lβ ⊆ end(M,Z) with

(end(M,Lβ) = (end(M,Z) \ {st(s, z′′′)|z′′′ ∈ pf (β)}))∧
(|Lβ| = |end(M,Lβ)|).

ii. Let Hβ denote pf (β). Hence, |Hβ | = m− |end(M,Z)|+ 1.

iii. Order the state set {st(s, z′′′)|z′′′ ∈ pf (β)} into a sequence s1 . . . skβ
.

iv. For each 1 ≤ h ≤ kβ , let Hβ,h denote the IOS set

{z′′′|(z′′′ ∈ Hβ) ∧ (st(s, z′′′) = sh)}.

584 Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

v. For each 1 ≤ h ≤ kβ , ios(Z
′, z1) = ios(Z ′, z2) for each IOS pair

{z1, z2} ⊆ Hβ,h.

vi. For each 1 ≤ i < j ≤ kβ , st(Q, zi) �= st(Q, zj)

for each IOS pair {zi, zj} with (zi ∈ (K ⊗Hβ,i)) ∧ (zj ∈ (K ⊗Hβ,j)).

vii. (|end(Q,Lβ)| = |end(M,Z)| − kβ) ∧ (|end(Q,Lβ ∪ (K ⊗Hβ))| ≤ m)

viii. |Hβ|+ kβ > |end(Q,Lβ ∪ (K ⊗Hβ))| − |end(Q,Lβ)|
ix. st(Q, z1) �= st(Q, z2) for each IOS pair {z1, z2} with

(z1 ∈ Lβ) ∧ (z2 ∈ (K ⊗Hβ)).

5. By Theorem 3, hence, st(Q, z1) ≈Z′ st(Q, z2).

6. By z′′ ∈ Z ′, hence, (z′′ ∈ ios(Q, z))⇔ (z′′ ∈ ios(Q, z′)). �

Proof of Proposition 4.

1. Suppose that an IOS z′′ satisfies the condition claimed sufficient for

st(Q, zz′′) ≈ios(Z,z′′) st(Q, z′z′′), but the latter is not true.

2. Hence, there is an IOS z′′′ ∈ ios(Z, z′′) with
st(Q, zz′′) �≈ios(Z,z′′),z′′′ st(Q, z′z′′).

3. By st(Q, z) ≡z′′ st(Q, z′) ≡z′′ Z, st(Q, z) �≈Z,z′′z′′′ st(Q, z′).
4. The latter contradicts st(Q, z) ≈Z st(Q, z′). �

585Kapus-Kolar M.: A Generalization of a Popular Fault-Coverage-Preserving ...

