Journal of Universal Computer Science, vol. 23, no. 4 (2017), 353-384
submitted: 23/11/16, accepted: 16/2/17, appeared: 28/4/17 © J.UCS

Twister Generator of Arbitrary Uniform Sequences

Aleksel F. Deon
(Department of Information Systems and Computer Science
N.E. Bauman Moscow State Technical University, Moscow, Russia
deonalex@mail.ru)

Yulian A. Menyaev
(Winthrop P. Rockefeller Cancer Institute
University of Arkansas for Medical Sciences, Little Rock, AR, USA
yamenyaev(@uams.edu)

Abstract: Twisting generators for pseudorandom numbers may use a congruential array to
simulate stochastic sequences. Typically, the computer program controls the quantity of
elements in array to limit the random access memory. This technique may have limitations in
situations where the stochastic sequences have an insufficient size for some application tasks,
ranging from theoretical mathematics and technic constructions to biological and medical
studies. This paper proposes a novel approach to generate complete stochastic sequences which
don’t need a congruential twisting array. The results of simulation confirm that received
random numbers are distributed absolutely uniformly in the set of unique sequences. Moreover,
combination of this novel approach with an algorithm of tuning for twisting generation affords
the length extension of created sequences without requiring additional computer random access
memory.

Key Words: Pseudorandom Number Generator, Stochastic Sequences, Congruential Numbers,
Twister Generator
Categories: G.2.1,G.3,F.2

1 I ntroduction

This article continues previously presented approaches [Deon and Menyaev 2016],
where the principle of twisting generation of complete uniformed sequences is
discussed. Typical pseudorandom number generators (PRNG) are broadly used in
cryptography [Shamir 1983; Lewko and Waters 2009; Claessen and Palka 2013],
testing of technical systems [Eichenauer-Herrmann and Niederreiter 1994; Hellekalek
1995; Sussman et al. 2006; Mandal et al. 2016], analyzing of teletraffic [Li 2010,
2017], theoretical simulation of natural processes [Niederreiter 1992; Meka and
Zuckerman 2010; Goplan et al. 2011], theoretical mathematics [Leva 1992;
Applebaum, 2012; White et al. 2008; Langdon 2009], biological verification studies
[Juratly et al. 2015, 2016; Cai et al., 2016; Sarimollaoglu et al., 2014], clinical
medicine [Menyaev et al. 2013, 2016; Tong et al. 2014; Chapman et al. 2015; Carey
et al. 2016] and development of medical equipment [Zharov et al. 2001; Menyaev and
Zharov 2005, 2006; Menyaev and Zharova 2006]. Previously, the length of 15 or 16
bits for numbers from intervals [0:215 - 1] =[0:32767] and [0:216— 1] =

[O: 65535] accordingly was sufficient for random numbers. However, the modern




354 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

tasks require the lengths of 32-64 bits for the diapasons of random numbers. Using the
technology of twisting generation, which is based on congruential arrays [Matsumoto
and Nishimura 1998; Matsumoto et al., 2006, 2007; Bos et al. 2011; Deon and
Menyaev 2016] may be faced with limitations in some cases. Let’s analyze this more
in detail.

To build a twister, a congruential generation is needed. It allows organizing the
random value x;,, followed by current value x; using function f(x;) limited by
modulus m:

xi41 = f(x;) mod m. (1)

Historically, function f(x;) linear dependences from the congruential constants a
and C:

f(x) = ax; +c. 2

In generator MT19937 [Matsumoto and Nishimura 1998] a realization of index i is
accomplished by array mt, which could be placed and then initialized in computer
RAM by using the following code:

#define N 624
static unsigned long mt[N];
static int mti;
mt[0] = seed & OxfTffffft;
for (mti = 1; mti <N; mti++)
mt[mti] = ( 69069 * mt[mti-1] ) & Oxffffffft;

The elements in array mt include the random numbers created by linear
congruential equation (2) with constants a = 69069 and c = 0. The quality of
generated numbers is defined by an orthogonal transformation of matrix A
[Matsumoto et al., 2006, 2007]. Now our current interest is directed to the address
space, which is required for 624 words having length of 4 bytes or 32 bits (that time
type long signed 4 bytes, later it became 8 bytes). However, this size may be
insufficient to realize some tasks in the address space of log,(624-4) =
log,2496 < 12 bits using the common data bus of a computer or microcontroller.

The same approach is used for twisting random numbers with a length of 64 bits
[Saito and Matsumoto 2008]. In that variation a congruential generation of an array is
applied, and in turn it consists of 312 elements of random numbers.

#define NN 312
static unsigned long long mt[NNT];
mt[0] = seed;
for (mti=1; mti<NN; mti++)
mt[mti] = (6364136223846793005ULL * (mt[mti-1] ~ (mt[mti-1] >> 62)) + mti);

This 2™ variation has the same address space, i.e. log,(312 - 8) = log,2496 <
12. Herein, one can see that the global twister of a whole sequence having 2496 bits
totally, cannot provide completeness of uniform generation of random numbers. In
other words, the initial congruential array has to contain more elements.

In our previous study [Deon and Menyaev 2016] it has been shown that absolute



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 355

uniformity of generation is reachable only in complete sequences of random numbers.
In that case each complete sequence consists of non-repeatable random numbers
having w bit length. The interval of generation is defined by length w of each number
x €[0:2% —1]. In this interval the global circular twister provides absolute
uniformity of generation for the initial congruential array.

static public int w = 16; // number bit length
static public int N = 1 << w; // sequence length
static public int[] x = new int[N]; // sequence
static public int maskW = (int)(OxFFFFFFFF >> (32 - w));
x[0] = x0; // the beginning of sequence
for (inti=1;1<N;i++)

x[i]=(a*x[i- 1]+ ¢ ) & maskW;

In this listing the length of a random number is 16 bits. Therefore, a congruential
generation realizes the interval of all the numbers as
x € [0:29 —1] = [0: 276 — 1] = [0: 65535]. All of them are presented in array X
only once.

While this seems promising, what should be done if the task of generation requires
the numbers having accidentally received bit length w? If the technology of MT19937
is applied for that task, there is no guarantee that all the numbers are created without
unpredictable skipping of elements within uniform generation. On the other side, if a
technology of complete sets is used, the whole array could not be placed in the RAM
of a computer or microcontroller; i.e. if the length of number is 32 bits, the 32-address
buses will not have enough space for the computer program due to all available bytes
being occupied by the array used for congruential twisting generation. The same story
may occur with 64 bit random numbers when 64-address buses are used.

Following this, the aim of the current article is to find the solution for generation
of complete sequences having uniformly distributed random numbers in interval
[0: 2% — 1] with accidental bit length w, i.e. without congruential-twister array
technology.

2 Fundamentals

Let’s consider a sequence of numbers with equal bit length w. The initial number is
defined as x,. All other numbers may be derived using congruential formulas (1) and
(2). If the amount of unique non-repeatable numbers is equal 2%, the sequence is
completed due to the fact that it contains all the numbers from interval [0:2% — 1]. It
has been confirmed experimentally [Deon and Menyaev 2016], that congruential
sequences with 2% length may have the property of completeness if the constant a is
the subject to the condition (a — 1) mod 4 = 0, and also constant ¢ takes odd values
and is the subject to the condition c mod 2 # 0. Both constants a and ¢ do not exceed
the interval limited by [0: 2% — 1].

In complete congruential sequences the global circular twister creates complete
sequences as well. In addition, it should be taken into account that complete
sequences have uniform singular distribution of their elements. This follows directly
from the definition of completeness. Therefore, the properties of complete



356 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

congruential and twisting sequences are sufficient for the following next
constructions. Our goal is to abandon the initial congruential array, but the task of
complete congruential twisting generation of uniformly distributed random sequences
still has to be fulfilled.

Figure 1. Schematics of generation l
for the global twister 1 without xG EEE
congruential arrays 0



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 357

Let there be a seed x0€([1:2% —1] with a bit mask as
maskW = OxFFFFFFFF > (32 —w). Next, let’s take into account the pair of
adjacent congruential numbers < xL,xR > which are placed to the left and to the
right. In the beginning, let’s define the left value as xL = x0; right value is defined by
the congruence xR = (a-xL + c) & maskW. So, the congruential sequence is
generated if both operations xL = xR and xR = (a-xL + c) & maskW are
accomplished.

The quantity of iterations is one less than the total quantity of numbers in the
sequence due to the initial number coinciding with the beginning of sequence
xL = x0. Thus, for generation of congruential twister 0 the working array couldn’t be
used; the subsequent random value is generated at the next stage of the iteration.

Now let’s consider the twister 1, which is by definition a global circular shift to
the left of congruential sequence (twister 0), with a step size of 1 bit. The forming of
twister 1 for the sequence having w = 3 bits is displayed in Fig.1.

The length of the complete sequence is N = 2% = 23 = 8. To demonstrate an
example, let’s use the following values: x, = 1, a = 5, ¢ = 1. For this variation the
congruential generation creates the sequence 1 6 74 5 2 3 0. Based on this, twister 1
provides the following next sequence 357 124 6 0, and its elements are presented as
XG values in Fig.l. In the initial iteration an adjacent congruential numbers are
xL =1, xR = 6. A simultaneous shift to the left with a step of 1 bit provides xG = 3.
The 2™ iteration starts from the equating of XR taken from the initial iteration to
xL = xR = 6. At the same time, the new value of XR is derived as said above:
xR =(a-xL+c)&maskW = (5-6+ 1) &111, = 7. The new value of xG = 5 is
generated similarly as in the initial generation: it is a simultaneous shift to the left of
xL = 6 and xR = 7 with a step of 1 bit. So, after realizing of all 8 iterations the new §
generated numbers XG for complete twisting sequence will be received.

Below is the program code to realize described twisting technology in which the
array of the initial congruential generation with subsequent global circular shift is
abandoned. In each new global twister NT the shift of adjacent congruential numbers
is made w — 1 times in the interval of nW € [1: w — 1] bits with the mask maskT.
This program code is organized as the static object class prepared in C# dialect from
Microsoft Visual Studio 2013; the similar code may be demonstrated for the language
C (dialect Win32) or C++ (dialect CLR). Anyway, the result is the same. The names
P030202 and cP030202 are chosen by chance.

namespace P030202
{ class cP030202
{ static public uint w = 3U; // number bit length

static public uint N1 = OxFFFFFFFF >> (32 - (int)w);
static public uint x0 = 1U; // sequence beginning
static public uint xB =x0;  // current twister beginning
static public uint xG; // created random number
static public uint xL. = 0U, xR = x0; // paired numbers
static public uint a = 5U; // congruential constant a
static public uint ¢ = 1U; // congruential constant ¢

static public uint nW = 0U;// paired twister number in w



358 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

static public uint nT =0U;  // twister number in nwN
static public uint nV = 0U; // element number in x
static public uint maskW = OXxFFFFFFFF >> (32-(int)w);
static public uint maskU = 1U << ((int)w - 1);  // elder
static public uint maskT = maskU; // twister first bits

/
static void Main(string[] args)
{ uint N=NI1+1; // sequence length
Console.WriteLine("w = {0} N1 = {1} N={2}",
w, N1, N);
Console.WriteLine("a = {0} c= {1}", a, c);
intk=1; // sequence number

for (int nT = 0; nT <N; nT++)
{ for (nW = 0; nW <w; nW++)
{ maskT = maskU; // twister mask beginning
for (int m = 1; m < nW; m++)
maskT |= maskU >> m;
Console.Write("k = {0,3} | ", k++);

xR =xB; // sequence beginning

for (inti=0; 1 <N; i++)

{ xL =xR; // pair left value
xR = Cong(xL); // pair right value
if (MW == 0) xG =xL; // congruential pair
else xG = TwistPair(); // twister pair
Console.Write("{0,3}", xG);

}

Console.Write(" | nT = {0,2} nW = {1} ",

nT, nW);

if (MW == 0) Console.WriteLine();
else Console. WriteLine("maskT={0:X}", maskT);

H
xB = Cong(xB); // next beginning
H
Console.ReadKey(); // result viewing
}
//
static uint Cong(uint z)
{ return (a * z + c) & maskW; // next value
}
/

static uint TwistPair()

{ uint g = (xR & maskT) >> (int)(w - nW); // elder
return ((xL << (int)nW) & maskW) | g; // younger

}

H
H

/1



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 359

After executing this code the following listing appears.

w=3 N1=7 N=8

a=5c=1
k= 1116745230 |nT=0n0W=0

= 2135712460 |nT=0nW=1 maskT=4

=3173625140 |nT=0nW=2maskT=6

= 4167452301 |nT=1n0W=0

= 5|571246 03 |nT=1 nW=1 maskT=4

= 6|/3625140 7 |nT=1nW=2 maskT=6

= 717452301 6 |nT=2nW=0

= 8|712460 35 |nT=2nW=1 maskT=4

=9|16251407 3 |nT=2nW=2 maskT=6
k=1014523016 7 |nT=3nW=0
k=11112460 3 5 7 |nT=3 nW=I maskT=4
k=12125140 7 3 6 |nT=3 nW=2 maskT=6
k=131523016 7 4 |nT=4n0W=0
k=141246 03 57 1 |nT=4 nW=I maskT=4
k=15]51407 3 6 2 |nT=4 nW=2 maskT=6
k=16123 0167 4 5 |nT=50W=0
k=17]146 03 57 1 2 |nT=5nW=1 maskT=4
k=18 1407 3 6 2 5 |nT=5nW=2 maskT=6
k=19130167 452 |nT=6n0W=0
k=206 0357124 |nT=6nW=1 maskT=4
k=2114073 6251 |nT=6nW=2 maskT=6
k=2210167 4523 |nT=7nW=0
k=2310357124 6 |nT=7nW=I maskT=4
k=24107 36251 4 |nT=7nW=2 maskT=6

This result may be compared with similar studies in a previous simulation [Deon
and Menyaev 2016]: they are equal. However, the difference is that in a current
program code the algorithm realized in function Main() does not use the initial
congruential array which is applied in [Matsumoto and Nishimura 1998; Deon and
Menyaev 2016]. Thus, the achieved fact is that generation of received complete
sequences of random numbers isn’t limited by technical options of the computer
equipment. The length of the complete sequence may be any size long, however, the
bit length w of random numbers may be limited by capabilities of common data bus of
32 or 64 bits used for logical operations in computers.

3 Code States

In the previous section, the simulation technique of the complete sequence uses the
generalizing cycles for calculation of random numbers. Practical applications mostly
need the technology providing the random value after a single order. To obtain that
code let us use the programming technique based on the method of storing state st for
generator. The state transition diagram from the current state to the next one is shown
in Fig. 2. The assignment is the following:



360 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

- state 101 provides the congruential generation of random numbers in
complete sequence;

- state 102 allows tuning of parameters for twisting generation;

- state 103 realizes the twisting generation of random numbers in complete
sequence;

- state 104 sets the congruential beginning for the next congruential and
twisting complete sequence;

- state 105 organizes the ending of generation process for the all possible
congruential and twisting complete sequences, and it sets the repeatable
beginning state of generator.

Figure 2: Code states for generation of random numbers

Below is the program code which realizes the common generation of random
numbers. In the main function Main() each random value uint X is created
independently. All of them together are collected in complete random sequences.
Functions Cong() and TwistPair() are the same as in program P030202 in previous
section Fundamentals. The names PO30301 and cP030301 are chosen by chance.

namespace P030301
{ class cP030301
{ static public uint w = 3U;, // number bit length

static public uint N1 = OxFFFFFFFF >> (32 - (int)w);
static public uint x0 = 1U; // sequence beginning
static public uint xB =x0; // current twister beginning
static public uint xG; // created random number
static public uint xL = 0U, xR =x0; // paired numbers
static public uint a = 5U; // congruential constant a
static public uint ¢ = 1U; // congruential constant ¢

static public uint st1 = 101U;// state of generation of xG
static public uint nW = 0U;// paired twister number in w
static public uint n”T =0U;  // twister number in nwN
static public uint nV = 0U; // element number in x
static public uint maskW = OxFFFFFFFF >> (32-(int)w);
static public uint maskU = 1U << ((int)w -1);  // elder
static public uint maskT = maskU;  // twister first bits
/

static void Main ( string[] args )



1

/1

Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 361

{ uint N=NI1 + 1;
Console.WriteLine ( "w= {0} N={1}",w, N);
Console.WriteLine ( "a= {0} c¢={1}",a,c);
for (intk=1;k<=w * N; k++)
{ Console.Write ("k={0,3} |",k);
for (inti=0;1<N;i++)

{ uint x = Next (); // random number
Console.Write ( "{0,3}", x );
}
Console.Write (" | nT = {0,2} nW = {1}",
nT, nW);
Console.WriteLine ();
}
Console.ReadKey (); // result viewing

H

static public uint Next ()

{ Nextl (); // random number generation
return xG; // generated random number

b

static bool Next1()

{ bool FlagNextl = false; /1 xG will be created
bool FlagWhilel = true; // looking for twister
while ( FlagWhilel ) // st states running
{ switch (stl) // states switching

{ case 101U: // congruential generation
xL =xR; // beginning of pair
xR = Cong ( xL ); // ending of pair
xG =xL; /I generated number
if (nV <NI1)nV++; // next number
else st1 = 102U;

FlagWhilel = false; // number is created
break;

case 102U: // preparation to pair twister nW
nW++; // a pair twister number in w
if (nW<w)

{ maskT = maskU; //elder 1 in twister mask
for (intm=1; m <nW; m++)
maskT |= maskU >>m; // twister mask

xL =xB; // twister beginning
xR = Cong( xL ); // pair XL, xR
nV =0U; // value number in twister nT
stl =103U; // generate twister nT

}
else stl = 104U;

break;



362 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

case 103U: // twister generation
xG = TwistPair (); // result of generation

xL =xR; // beginning of the next pair

xR = Cong ( xL ); // next pair

if (nV==N1)stl =102U;

else nV++; // next value number

FlagWhilel = false; // number is created

break;

case 104U:  // the end of twisters nW inside nT
if (nT <NI1)

{ nT++; // nT number for twister group nW
xB = Cong( xB); // beginning
xR =xB;
nW = 0U; // twister number in w
nV =0U; // value number in twister
stl =101; // generation of twister nT

else stl = 105U;
break;
case 105U: // initial parameters
nW = 0U;
nT =0U;
xR =x0;
stl =101U; // initial parameters
break;
} /] switch
} // while
return FlagNext1; // result of generation

}

//
// functions Cong and TwistPair
//

}

}

After this code execution the listing below appears; it is presented here with
abridgments for what the dash lines are used.

w=3 N=8

a=5c¢c=

k= 1116745230
= 2135712460
= 3]173625140
= 4167452301
= 5157124603
= 636251407

k=22101674523



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 363

k=23]103571246
k=24107362514

Complete sequences in the listing are similar with ones which appear after
execution of program P030202 in the previous section Fundamentals. The only
difference is that now each random value is received without using the cycles of
transitional twisters.

4 Constructions and results

When creating the twisting sequences an important note should be addressed when
choosing parameters a and ¢ which are received in accordance with (2) for generation
of random numbers having W bits. Both parameters have to belong to the interval
a,c € [0: 2% — 1] and have to satisfy the following properties:

{(a —1Dmodw=0 3)

cmod?2 # 0, forodd numbers

The automatic tuning of parameter a satisfying the subinterval [ab, ae] c

[0: 2% — 1] may be performed in various ways. In this current work for constant a the
algorithm of double interval modeling is applied. The diagram of two subintervals
al + a2 = [alb,ale| + [aZb, a2e] c [0: 2% — 1] is showed in Fig.3.

al a2
<~ ——— . -~ >
4
® @ @ @
a%b ale a2b a,2e
Y

Interval for a

Figure 3: Schematics of interval realization for congruential constant a

The value ale is to the left from N/2, while value a2b = ale + 4 is to the right
from N /2. Moving of a in interval al is accomplished from the right to the left, i.e.
from aleto alb with a step of -4; moving of a in interval a2 is accomplished from the
left to the right, i.e. from a2b to a2e with a step of +4. This choice for a was made
artificially to provide better confusion for generation. Congruential parameter ¢ could
take all the odd numbers in the interval [1: 2 — 1] that range from 1 to 2% — 1.

In Fig.4 the code states are shown for the random number generation with
automatic tuning of congruential constants and masks of twisters. The states starting
from 10x are the same as in previous section Code Sate, thus, their description is
skipped below. The other assignments are the following:

- state 1 begins the total generation;
- state 2 sets the parameters for block 1 to continue the generation after



364 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

congruential constants are changed;
- state 201 provides the changing of constant C;
- state 202 defines the subintervals al or a2 for constant a;
- state 203 derives the new value for a in subinterval al,;
- state 204 derives the new value for a in subinterval a2;
- state 205 ends the total generation and provides transition to state 1.

@@@‘
:

& &
¥ ¥

»

Figure 4: Code states for tuning of random number generation

Below is the program code for the name space nsDeonYuliTwist32D in which
dynamic class cDeonYuliTwist32D provides twisting generation of random numbers
having any length up to 32 bits.

namespace nsDeonYuliTwist32D
{ class cDeonYuliTwist32D

{ public uint w = 16U; // number bit length
public uint N1 = 0U; // maximal number
public uint x0 = 1U; // sequence beginning
uint xB = 1U; // current twister beginning
uint xG = 0U; // created random number
uint xL = 0U, xR = 1U; // paired numbers
double abf=0.39; // relative beginning of a
double aef = 0.39; // relative ending of a
public uint alb = 1U, ale = 0U;, // interval al
uint als = 0U; // state of interval al

public uint a2b = 1U, a2e = 0U; // interval a2



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

uint a2s = 0U; // state of interval a2

uint al = 5U; // constant for interval al
uint a2 = 5U; // constant for interval a2
uint nA = 1U; // constant number for al or a2
public uint a = 5U; // current value of constant a
double cbf=0.1; // relative beginning of ¢
double cef=0.3; // relative ending of ¢
public uint cb = 1U, ce = 0U; // interval ¢
public uint ¢ = 1U; // congruential constant ¢

uint stG = 0U; // state group number
uint st0 = 1U; // initial state group
uint stl = 101U; /I xG generation group
uint st2 = 201U; // parameter change group
public uint nW = 0U; // pair twister number in w
public uint nT = 0U; // twister number

public uint nV = 0U; // element number in x

public uint maskW = 0U; // number mask
public uint maskU = 0U; // elder bit mask
public uint maskT = 0U; // twister bits

/
public cDeonYuliTwist32D()
{ N1 = O0xFFFFFFFF >> (32 - (int)w);// max-number
x0=N1/7, // sequence beginning
H
//
public uint Next()
{ bool FlagNext = true;
while (FlagNext)
{ switch (stG) // state groups
{ case OU: // initial state group
FlagNext = DeonYuli Next0();
break;
case 1U: /I xG generation group
FlagNext = DeonYuli_Next1();
break;
case 2U: // change parameter group
FlagNext = DeonYuli_Next2();
break;
} // switch
} // while
return xG; // created random number
b
/
bool DeonYuli Next0()
{ bool FlagWhile0 = true; // parameter setting
while (FlagWhile0) // st0 states running

{ switch (st0) // states switching

365



366 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

{ case 1U: // initial actions
nA = 1U; /I generation begins in al
als=1U; // create twister 0 in al
a2s = 0U; // a2 while not used
al =ale; // end of interval al
a=al; // current constant a
a2 =a2b—4U; //left from beginning of a2
c=cb; // beginning of interval c
st0 = 2U; /I generation parameters
break;

case 2U: // for changed parameters
xB =x0; // sequence beginning
xR = xB; // end of pair xL, xR
nT =0U; // twister 0 number
nW =0U; // twister number in w
nV =0U; // initial value number
stG = 1U; // xG group of generation
stl =101U; // xG generation
FlagWhile0 = false; // finish job
break;

} // switch

} // while
return true; /I xG generation is necessary
H
//

bool DeonYuli Next1()

{ bool FlagNextl = false; /1 xG will be created
bool FlagWhilel = true; //' looking for a twister
while (FlagWhilel) // stl states running
{ switch (stl) // states switching

{ case 101U: // congruential generation
xL =xR; // beginning of pair
xR =DeonYuli_Cong(xL); //pair XL, xR
xG =xL; // generated number
if (nV <N1) nV++; // next number

else st1 = 102U;
FlagWhilel = false;  // number is created

break;

case 102U: // for pair twister nW
nW++; // pair twister number in w
if (MW <w)

{ maskT = maskU;// elder 1 in twister mask
for (int m=1; m <nW; m++)
maskT |= maskU >> m; // twister mask
xL =xB; // beginning of twister
xR = DeonYuli_Cong(xL); // pair xL, xR
nV =0U; //value number in twister nT



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 367

stl =103U; /I generate twister nT
}
else stl = 104U;
break;
case 103U: // twister generation
xG = DeonYuli_TwistPair(); // pair twister
xL =xR; // beginning of the next pair

xR =DeonYuli Cong(xL); //mapaxL, xR
if (nV ==N1) stl = 102U;

else nV++; // next value number
FlagWhilel = false;  // number is created
break;

case 104U: // nW twisters end in nT
if (nT <N1)

{ nT++;  // nT number for twisters in nW
xB =DeonYuli Cong(xB);

xR =xB;

nW = 0U; // twister number in w
nV =0U; // value number in twister
stl = 101U; // nT twister generation

}
else st1 = 105U;

break;

case 105U: // constant changing
stG = 2U; // change parameter group
st2 =201U; // parameters changing
FlagWhilel = false; // group move out
FlagNextl = true; // moving into group 2
break;

} /] switch

} // while
return FlagNextl1; // result of generation
H
//

bool DeonYuli Next2()

{ bool FlagNext2 = true; // to be changed
bool FlagWhile2 = true; // running flag
while (FlagWhile2)

{ switch (st2)

{ case 201U: // change parameter c
¢ +=2U; // next constant ¢
if (c <=ce)

{ stG=0U; // initial action group
st0 =2U; // current initial action
FlagWhile2 = false; // work is over

FlagNext2 =true;  // move into group 0



368 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

else st2 =202U;

break;
case 202U: // change interval for a
c=cb; // initial value ¢

if (nA == 1U) nA =2U; else nA = 1U;
if (nA == 1U) st2 =203U; // interval al

else st2 = 204U; // interval a2
break;
case 203U: /I new value from al
al -=4U;
if (al <alb) // al is over
{ als=2U; // interval al is over
st2 =205U; // states of intervals
break;
}
a=al; // current constant a
c=cb; // beginning of constant c
als=1U; // interval al is active
stG = 0U; // initial action group
st0 = 2U; // current initial actions
FlagWhile2 = false; // work is over
FlagNext2 = true; // move into group 0
break;
case 204U: // new value from a2
a2 +=4U;
if (a2 > a2e) // a2 is finished
{ a2s=2U; // interval a2 is over
st2 =205U; // interval states
break;
}
a=a2; // current constant a
c =cb; // beginning of constant ¢
a2s=1U; // interval a2 is active
stG = 0U; // initial action group
st0 = 2U; // common initial generation
FlagWhile2 = false; // work is over
FlagNext2 = true; // move into group 0
break;
case 205U: // one of al or a2 is finished

if (a2s !1=2U) st2 = 204U;
else if (als = 2U) st2 = 203U;

else
{ stG=0U; // group 0
st0 = 1U; // common beginning

FlagWhile2 = false;  // work is over
FlagNext2 = true;// move into group 0



1

/1

1

Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

break;
H

}

return FlagNext2; // work is over
b
uint DeonYuli_Cong(uint z)
{ return (a * z + ¢) & maskW; // the next number
H

uint DeonYuli_ TwistPair()

{ uint g = (xR & maskT) >> (int)(w - nW);  // elder
return ((xL << (int)nW) & maskW) | g; // younger

H

1

public void Start()
{ N1 =0xFFFFFFFF >> (32 - (int)w); // max-number
maskW = OxFFFFFFFF >> (32 - (int)w);

maskU = 1U << ((int)w - 1); // elder bit mask
maskT = maskU; // first twister bit
DeonYuli_SetA(); // set al and a2 borders
DeonYuli_SetC(); // set ¢ borders
X0 &= maskW;

stG = 0U; // xG generation group
st0 = 1U; // generator initialization

}

public void TimeStart()
{ x0 = (uint)DateTime.Now.Millisecond;

/1

1

Start(); // generator starts

}

public void SetW(int sw)

{ w = (uint)Math.Abs(sw); // number bit length
if (w<3U)w=3U; // min-length
else if (w > 32U) w = 32U; // max-length
N1 = 0xFFFFFFFF >> (32 - (int)w); / max-number
x0=N1/7U; // sequence beginning

}

public void SetA(double sab, double sae)
{ abf= Math.Abs(sab);

aef = Math.Abs(sae);

if (abf> 1.0) abf = 1.0;

if (aef > 1.0) aef = 1.0;

if (abf > aef) aef = abf;

369



370

Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

/!
void DeonYuli_SetA()
{ alb = (uint)(N1 * abf); // bottom edge for al
alb=DeonYuli_PlusA(alb); //beginning for al
a2e = (uint)(N1 * aef); // top edge for a2
a2e = DeonYuli MinusA(a2e); // ending for a2
uint r = a2e - alb;
if (alb >= a2e) // interval for a as a point
{ ale=alb; // al is a one point
a2b=alb; // interval a2 as al
a2e = a2b; // a2 is a one point
return;

}

if (r ==4U) // one point al and a2

{ ale=alb; //'al is one point
a2b = ale; // a2 is one point
return;

if (r ==8U) // al has 2 points, a2 — one point

{ ale=alb+4U; // ending of al
a2b =a2le; // beginning of a2
return;

ale=(alb +a2e)/2U; // middle for a

ale =DeonYuli_ MinusA(ale); //left from middle

a2b=ale + 4U; // right from middle

}

/!

uint DeonYuli_PlusA(uint a)

{ if(a<1U) {a=1U;return a; }
uint z = a; // bottom edge for a
for (uint i = 0U; i < 3U; i++)

if (a % 4U !=0U) a--; // uniform condition
else break;
at++; // true value for constant a
if (a<z)a+=4U; // right from bottom edge
if(a>=N1-1)a-=4U; // left from top edge
return a;
H
/!

uint DeonYuli_MinusA(uint a)
{ if(a<1U) {a=1U;return a; }

uint z = a; // bottom edge for a
for (uint i = 0U; i < 3U; i++)
if (a % 4U !=0U) a--; // uniform condition
else break;

at++; // true value for constant a



Deon AF., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 371

if (a>z) a -=4U; // left from top edge
return a;

}

public void SetC(double scb, double sce)
{ cbf=Math.Abs(scb);

cef = Math.Abs(sce);

if (cbf> 1.0) cbf=1.0;

if (cef > 1.0) cef = 1.0;

if (cbf > cef) cef = cbf;
H

void DeonYuli_SetC()

{ cb = (uint)(N1 * cbf); // bottom edge for ¢
if (cb % 2U == 0U) cb += 1; // only odd value for ¢
if (cb>N1) cb =NI; // max-value
ce = (uint)(N1 * cef); // top edge for ¢
if (ce % 2U==0U) ce = 1U; // only odd
if (ce > N1 - 1) ce =NI,; // max-value
if (cb > ce) ce = cb;

c =cb; // beginning of congruential constant ¢

}

public void SetX0(double xs)
{ x0 = (uint)(N'1 * Math.Abs(xs));
H

1

/1

/1

In class cDeonYuliTwist32D several variables are reserved. They can be tuned
with the help of encapsulated functions. As a first example let’s use the values for
default settings to generate several random numbers having w = 16 bits length and
belonging to interval [0: 2% — 1] = [0: 276 — 1] = [0: 65535]. The program code for
this task is below. The names P0O30401 and cP030401 are chosen by chance.

using nsDeonYuliTwist32D; // twister generator class
namespace P030401
{ class cP030401
{ static void Main(string[] args)
{ cDeonYuliTwist32D CT =
new cDeonYuliTwist32D ();

CT.Start();

for (intj=0;j<8;j++)

{ uint z = CT.Next (); // random number
Console.Write ( "{0,7} ", z); // monitor

}

Console.ReadKey (); // result viewing



372 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

}
}
}

After execution the following result appears:
9362 36699 52924 2805 8774 14575 51504 13129

These random numbers are equal to the other ones under the same conditions but
with help of twisting array in program P020401 [Deon and Menyaev 2016].

Now let’s look at another variant in which there is no possibility to use the
congruential twisting array for computers having 32 bits of common data bus because
of a lack of memory space for the program. The next program P030402 can generate
random numbers with a length of 32 bits using technology without congruential
twisting array. Program names P030402 and cP030402 are chosen by chance.

using nsDeonYuliTwist32D,; /I twister generator class
namespace P030402
{ class cP030402
{ static void Main(string[] args)
{ cDeonYuliTwist32D CT =
new cDeonYuliTwist32D ();
CT.SetW (32); // number bit length
CT.Start(); // generator starts
Console.WriteLine(
"CT.x0={0} CT.a={1} CT.c={2}",
CT.x0, CT.a, CT.c);
for (intj=0;j<8;j++)

{ uint z = CT.Next (); // random number
Console.WriteLine ( "{0,10} ", z); // monitor
}
Console.ReadKey(); // result viewing
H
}
H

The result of execution is the following:

CT.x0=613566756 CT.a=5 CT.c =429496729
613566756
3767299885
3711097170
85104163
2840182256
2787589065
706196094
2953448863

In the next code let’s consider complete automatic tuning of parameters for



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 373

generator. Below is the program code, which allows tuning of the generator to
different values of w, X0, alb, a2e. As an example, the values are taken as: w = 4,
N =2% =16, alb=1, a2e =13, x0 =1.0- (N — 1) = 15. For each meaning of
constant a =5,9,1,13 and constant ¢=1,3,5,7,9,11,13,15. Program names
P030403 and cP030403 are chosen by chance.

using nsDeonYuliTwist32D; // twisting generator
namespace P030403
{ class P030403
{ static void Main(string[] args)
{ cDeonYuliTwist32D CT =
new cDeonYuliTwist32D();

CT.SetW(4); // number bit length
CT.SetA(0.0, 1.0); // all of a
CT.SetC(0.0, 1.0); // all of ¢
CT.SetX0(1.0); // sequence beginning
CT.Start(); // generator starts
int N = (int)CT.N1 + 1; // sequence length

Console.WriteLine("w = {0} N={1}", CT.w, N);
Console.WriteLine("alb = {0} ale= {1}",
CT.alb, CT.ale);
Console.WriteLine("a2b = {0} a2e= {1}",
CT.a2b, CT.a2e);
Console.WriteLine("cb = {0} ce = {1}",

CT.cb, CT.ce);
Console.WriteLine("x0 = {0}", CT.x0);
intk =0; // sequence number
int NN = 0; /I quantity of random numbers

for (int nw = 0; nw < CT.w; nw++)
for (int nt = 0; nt < N; nt++)
for (int na = 1; na <= 4; na++)
for (int nc = 1; nc <= §; nc++)
{
Console.Write("k={0,4} | ", ++k);
for (inti=0; 1 <N; i++)
{
Console.Write("{0,3}", CT.Next());
NN++;
H
Console.WriteLine(" a={0,2} ¢ ={1,2}",
CT.a, CT.c);
if (k % 250 == 0) Console.ReadKey();
}
Console.WriteLine("Finish");
Console.WriteLine("NN = {0}", NN);
Console.ReadKey(); // result viewing
H
H



374 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

}

The listing below is the result of program execution; it is presented with
abridgements where dash lines are for skipped strings.

w=4 N=16

alb=1 ale=5

a2b=9 a2e=13

cb=1 ce=15

x0=15

k= 1 151213211 8914745103016 a=5c¢c=
k= 21591057 131214811 460213 a=5¢c¢=

k=1900 8 513 610 715012 1 9214311 4 a=13 c=11
k=2048 79410111 61231301451528 a=13 c=15
Finish

NN = 32768

A total of 4-16-4-8 = 2048 sequences have been received. Since each
sequence contains 16 non-repeatable random values, the total amount of generated
numbers is 2048 - 16 = 32768. This result is equal to that one which was received
with help of twisting array under the same conditions in program P020403 [Deon and
Menyaev 2016].

5 Discussion

Presented in the previous section, generator nsDeonYuliTwist32D is able to create
random numbers having accidental bit length in diapason 3 <w < 32. These
numbers are distributed uniformly in the interval [0: 2% — 1]. Among other things, the
uniformity U(w) for any number can be either unique U(w) = 1, or multivariate
U(w) > 1. If all the complete sequences are generated, the uniformity U(w) for all
the numbers in all of them is the same. If single complete sequence is generated and it
has 2" numbers, that means each number may appear only once in this sequence, i.e.
U(w) = 1. The difficulty, as it’s mentioned above, is that computers with 32 bits of
common data bus can’t provide the array capable to contain 2% = 232 elements due to
a lack of memory space for the computer program in this case. The external hard drive
might help, but that solution is limited by slow processes. So, let’s try to use RAM
only.

Below is the program code in which the array of counters cX is used; it contains
ncX = 228 = 268,435,456 elements. Based on this array, the generator creates a
single complete sequence with a length of 2% = 232 = 4,294,967,296 elements.
Each element is w = 32 bits long. Therefore, any generated random number X



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 375

belongs to interval x € [0:2% — 1] = [0:232 — 1] = [0:4,294,967,295]. For each
element in array cX let’s count the amount of same values for which the index j is
used. Because the generator creates all the numbers in complete sequence it means
that counters in the beginning add up the quantity of elements x € [0: 268,435,456].
If the meaning of each element in CX is equal to 1, it means the generator at the initial
iteration has created the random numbers from interval [O: 268,435,456] which may
be found once only. This also corresponds to the statement that in a complete
sequence there are 268,435,456 initial numbers from the interval of complete
sequence[0: 4,294,967,296].

By organizing the program code so it performs 2* = 16 iterations for 2*
intervals; and with the total amount of elements being 228, which are then sorted out
successively and fully within complete sequence [0: 232 — 1], now it is possible to
find out the answer to the question about unique properties of the numbers in a single
complete sequence. This statement has to correspond with the uniform unique
distribution U(w) = 1, which is provided by nsDeonYuliTwist32D generator for the
initial complete twister 0. Next program names PO30511 and cP0O30511 are chosen by
chance.

using nsDeonYuliTwist32D; /I twister generator class
namespace P030511
{ class cP030511
{ static void Main ( string[] args )
{ cDeonYuliTwist32D CT =
new cDeonYuliTwist32D();

CT.SetW (32); // set a number bit length
CT.Start (); // generator starts
uint w = CT.w; // number bit length
uint N1 = CT.N1; // max-number
Console.WriteLine ( "w = {0} N1={1}", w,N1);
uint N28 1 = OxFFFFFFF; // work max
uint N28 =N28 1+ 1; // work interval length
Console.WriteLine ( "N28 1= {0:X} N28 = {1}",
N28 1,N28);
uint[] ¢cX = new uint[N28]; // repeating counter
uint Totall =0; // total quantity of single numbers
uint q1 = 0U; /I quantity of one time numbers
uint g2 = 0U; /I quantity of two times numbers
uint cXD =N28 1; // last index in ¢X
uint ¢cXB = 0U; // beginning of interval
uint ¢cXE = ¢XB + cXD; // ending of interval

Console.WriteLine ("m c¢cXB c¢XE ql q2”);
for (uint m = 1U; m <= 16U; m++ ) //with intervals
{ Console.Write ("{0,2}", m);
Console.Write (" {0,10} {1,10}", c¢XB, cXE);
for (uint i = 0U; i <= cXD; i++ ) cX[i] = 0U;
uint n = QU; // number counter inside interval
while (true)



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

376

{ uint x = CT.Next(); // random number
if (cXB <=x && x <= cXE) cX[x - cXB]++;

if (n==N1 ) break; // end of interval
nt+; /I quantity of created numbers
b
ql =0U; // quantity of one time numbers
q2 =0U; // quantity of two times numbers

for (uint i = 0; i <N28; i++)
if (cX[i] ==1) ql++; // one time numbers
else if (cX[i] == 2) q2++;// two times numbers
Console.WriteLine(" {0} {1}", ql, q2);
if (m == 16) break;
Totall +=ql;
cXB=cXE+1;
cXE =cXB + ¢XD;

// total of one time numbers
// the next interval

Totall =(ql - 1) + Totall;
Console.WriteLine("Total = {0} + 1", Totall);
Console.ReadKey(); // result viewing

After the program execution the listing below appears on monitor.

w =32 N1 =4294967295
N28 1=FFFFFFF N28 =268435456

m cXB cXE ql q2
1 0 268435455 268435456 O
2 268435456 536870911 268435456 0
3 536870912 805306367 268435456 0
4 805306368 1073741823 268435456 0
5 1073741824 1342177279 268435456 O
6 1342177280 1610612735 268435456 O
7 1610612736 1879048191 268435456 O
8 1879048192 2147483647 268435456 O
9 2147483648 2415919103 268435456 O
10 2415919104 2684354559 268435456 0
11 2684354560 2952790015 268435456 0
12 2952790016 3221225471 268435456 0
13 3221225472 3489660927 268435456 0
14 3489660928 3758096383 268435456 0
15 3758096384 4026531839 268435456 0
16 4026531840 4294967295 268435456 0

Totall = 4294967295 + 1

These received results show that in the general interval of generation [0: 232 — 1]
all subintervals with length of 228 numbers are passed 16 times. Parameters cXB and



Deon AF., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 377

CXE point out the beginning and the ending of each subinterval. Values for counters
g1, which are for momentary observation of random numbers, are equal for all the
subintervals and was determined as 268435456. That is equal to the subinterval length
228 = 268,436,456 which means each random number was definitely observed once.
The values q2 = 0 demonstrate that no unique number is generated twice or more
times. It means the generator indeed exhibits properties of uniform generation of
random numbers.

The total amount of bits N, (w, N) for the sequence consisting in N numbers, with
them being w bits long, may be found as:

N,(w,N) =w-N. “4)

Let’s consider the proposed generator hsDeonYuliTwist32D in comparison with
the well-known generator MT19937 [Matsumoto and Nishimura 1998], which uses a
congruential twisting array having 624 elements, and each element is 32 bits long. In
this case the bit length of sequence is the following: MT,(w,N) = MT,(32,624) =
32-624 — 31 = 19968 — 31 = 19937. Diminution of value 31 is because the
generator MT19937 doesn’t take into account the circle of needless bits. In MT19937
only the transformation of the next congruential twisting number with a length of 32
bits happens. That means, a recurrence interval in this case is Ryr19937 = 219737 — 1.

In the generator nsDeonYuliTwist32D considered here, the maximal sequences are
created with the values having length of 32 bits. In this case the bit length of sequence
is determined as follows: N,(w,N) = N,(32,23%) = 324294967296 = 237 =
137,484,953,472. In turn, a recurrence interval is defined as Ry,speonyvulitwistzzp =
22" — 1. This value is extremely big, and in general it means that potency (or
computational capability) of generator nsDeonYuliTwist32D is in excess of generator
MT19937 due to Ryspeonvutirwistazp > Rmr19937-

The complete twister consists of the initial congruential sequence and the
sequences which are received by single circular bit shifts N, = w+ N — 1 times. Thus,
total amount N;(w, N;) of sequences of complete twister contains the sum of single
congruential sequence, i.e. twister 0, and all other twisting sequences:

N;(w,N)=1+N,=1+wW-N—-1)=w-N=w-2". (%)

From the definitions of Np(w,N;) and N,(w,N) it follows that for complete
sequences they are equal Np(w,N;) = Np(w,N). For the case of no twisters the
equation is Ny(w,N, =0)=1+0=1, i.e. only a single complete congruential
sequence is generated. Each number in it is presented once, and level of uniformity or
repentances in this case is Ur(w, N, = 0) = 1.

The previous result confirms the fact that the generation of 2% numbers creates
single complete congruential sequence having a momentary uniform distribution of
random numbers Uy (w, N, = 0) = 1. However, in complete twister there is a total
amount of Np(w, N;) = w- N = w - 2% sequences. In this case the level of uniformity
is equal to the amount of twisting sequences because each number in single complete
sequence is presented once:

UT(W,Nt) ZNT(W,Nt) =W'N:W'2W. (6)

Let’s take the benefits from the previous program PO30511 in which the array of



378 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

counters having 228 = 268,435,456 elements was used. Because the quantity of
twisters is equal to the amount of unique complete sequences, that means a uniformity
of distribution is defined by the level of Up;(w = 28,N,) = Ny(w = 28,N,) = w -
2% = 28228 =7,516,192,768. However, this value is bigger than maximum for 32
bits number which is 232 — 1 = 4,294,967,295.

To define a permissible amount of bits w, it is required to take into consideration
the maximal value of repentances for counter, i.e. solving the equation w - 2% = 232
is needed. By using binary logarithm it is obvious that for w < 32 this equation has
no integer number solution. Thus, the testing of complete twister for the single pair of
congruential constants a and c should be done for the numbers having w = 27 bit
length. In this case the uniformity is Up(w = 27,N;) = Ny(w = 27,N;) =w - 2% =
27 +2%7 = 3,623,876,656 and it complies with a range of values 23! < Up(w =
27,N; + 1) < 232,

Below is the program code which performs the complete generation of twisting
sequences for the random numbers having w = 12 bit length. Each random number
has to be appeared the same amount of times as the twisting sequences because in
each sequence it may be found once. Program names P030512 and cP030512 are
chosen by chance.

using nsDeonYuliTwist32D; // twister generator class
namespace P030512
{ class cP030512
{ static void Main(string[] args)
{ cDeonYuliTwist32D CT =
new cDeonYuliTwist32D();

CT.SetW (12); // set a number bit length
CT.SetA (0.3,0.3); // single constant a
CT.SetC (0.2,0.2); // single constant ¢
CT.Start (); // generator starts
uint w = CT.w; // number bit length
uint N =CT.N1 + 1; // sequence length
Console.WriteLine ( "w= {0} N={1}",w, N);

uint[] ¢cX = new uint[N]; // repeating counter

for (uinti=0U; i <N; i++) cX[i] = 0U;
int mStart = DateTime.Now.Minute;
int sStart = DateTime.Now.Second;
for (uint nW = 0U; nW < w; nW++) // twisters
{
/! Console.WriteLine ( "nW = {0}", nW );
for (uint nT = 0U; nT <N; nT++)  // twisters
for (uinti=0U;1<N;it+)
{ uint x = CT.Next (); // random numbers
cX[x]++; // number X counter

}
}

int sFinish = DateTime.Now.Second;
int mFinish = DateTime.Now.Minute;



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 379

Console.WriteLine(
"mStart = {0,2} sStart = {1,2}",
mStart, sStart);
Console.WriteLine (
"mFinish = {0,2} sFinish = {1,2}",
mFinish, sFinish);
uint nwN = w * N; // quantity of twisters
Console.WriteLine ( "nwN = {0}", nwN );
uint countX = 0;
for (uinti=0;1<N;it++)

if ( cX[i] == nwN ) countX++; // one time
Console.WriteLine ( "countX = {0}", countX );
Console.ReadKey (); // result viewing

After execution the result appears as the following:

w=12 N=4096

mStart = 8 sStart = 1
mFinish = 8 sFinish=16
nwN = 49152

countX = 4096

This listing suggests that length of random numbers is 12 bits; each complete
sequence contains 4096 random numbers; duration of generation lasts Ty(w = 12) =
15 seconds; a total of 49152 complete twisting sequences are created, and that is
maximum of unique sequences in which it is possible to generate for the single pair of
constants a and c. Therefore, all 4096 numbers have the same amount of repentances
with a level of distribution uniformity Ur(w,w *N,) =w-N = 124096 = 49152.
And they cover uniformly the interval of random numbers x € [0:2W — 1] =
[0:4095].

Besides this, the next step is to estimate the time period required for generation of
single number. Because each complete sequence contains N = 2% random numbers,
that means a total amount N¢(w, N) of them could be found as multiplication of all the
numbers in single sequence by amount of twisting sequences:

N;w,N)=N-Ny(w,w-N)=N-w-N=2%-w:2"=w-22". (7)

For the previous example it is Ng(w,N)=w:-22% =12-2212=12.
16,777,216 = 201,326,592 of random values. So, the generation time for the single
random number is:

— Ts(w)
Ng(W,N)

®)

1

Substituting into this formula the values from the previous example, the generation
time can be estimated as 15/201,326,592 = 0.0000000745s = 0.0745ps. In Table



380 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

1 there are results of generation of the random numbers having different bit length w.

w N=2v Ny =w-22% T, t, - 1076 (us)
12 4,096 201,326,592 15” 0.0745
13 8,192 872,415,232 1°04” 0.0734
14 16,384 3,758,096,384 4°36” 0,0734
15 32768 16,106,127,360 19°42” 0,0734
16 65,536 68,719,476,736 1h24°04” 0,0734
17 131,072 292,057,776,128 5h57°17” 0,0734
18 264,144 1,263,950,581,248 25h13°12” 0,0734
19 524,288 5,222,680,231,936  106h29°05” 0,0734
20 1,048,576 21,990,232,555,520  448h21°23” 0,0734

Table 1: Generation time of complete twister for different bit length

The calculations considered above are directed to single pair of congruential
constants a and ¢, but nsDeonYuliTwist32D generator allows tuning of the generation
for different combinations of pairs a and c. For the complete sequences the constant a
has to satisfy the condition (a — 1) mod 4 = 0. Due to a € [1,N] = [1:2¥ — 1], the
number of different values N, is defined as:

N 2V

Ny=2=2=2"72 ©9)

When generating complete sequences the value of constant C has to be odd.
Therefore, the total number of values for C is defined as:

N 2¥ w-1
NCZEZ_:W .

(10)
Thus, last two formulas allow defining the total number N, of pairs of a and c:
Nge = Ny - N, = 2W=2.2w-1 = p2w=3, (11)

Taking into consideration the quantity of generations in all possible cases for
sequences of twisters and congruential constants, the final estimation Nr(w, N,.) of
amount of created non-repeatable twisting complete sequences looks like:

Np(w,Nge) = Ny » Nge = w22 - 22W73 =y . 243, 12
T ac T ac

Because each sequence contains unique non-repeatable whole numbers it means
the absolute level of uniform distribution coincides with a total amount of twisters:

Ur(w,Nge) = Np(w, Nge) = w - 243, (13)
At the same time, amount of random numbers Ng(w, N,.) having w bit length is:
N,(W,Ng) = N -Np(w,N,) = 2% -w - 243 = - 25%3, (14)

So, if random values with a length of 32 bits are created, the repeated generation



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 381

of complete twisting sequence will occur after generation of Ny(w = 32, N,.) = 32+
253273 = 25.2157 = 2162 numbers. This will require plenty of time for the
computers having generation time period for the single number as 0.0734 ps.

We have demonstrated that object twisting generator nsDeonYuliTwist32D is
capable to create sufficiently long sequences of random numbers having absolute
level of uniform distribution. More importantly, this generator does not use an
additional array for storing of transitional congruential twisting sequences, and thus it
takes the minimum possible memory of computer RAM.

6 Conclusion

Analysis of sources shows that algorithms of modern twisting generators are mainly
based on the initial congruential array which is limited by the size. This kind of
technology uses a bit shifting inside the array and resulted in the appearance of new
twisting sequences. However, the problem is that the limited size of arrays may be
unacceptable for some practical implementations. Increasing the length of sequences
requires an enlarging of amount of elements in an array. It has been proven previously
that only complete sequences satisfy the properties of absolute uniformity, but their
longitude depends on a bit length of generated random numbers. If the bit length is
very large it will limit the available memory to place the application program. To
overcome this kind of limitation, in this paper we have proposed an algorithm in
which no congruential twisting array is used. This solution allows generation of very
large sequences. In this case they are restricted by permissible bit length of numbers
to be processed directly by the commands of the computer processor. Presented
results of testing confirm these statements and demonstrate the proved uniform
distribution of generated numbers. The using of an automatic tuning of congruential
parameters allows a controlled level of repetition for generating uniform distribution.
In general, all the aspects disclosed herein may be used for a large number of
application tasks.

Ethic, Contribution, Funding and Acknowledgments

This article is original and contains unpublished material. The authors equally
contributed in this work, and they have no support or funding to report. The authors
are thankful to Matthew Vandenberg, Robert Weingold, Walter Harrington,
Jacqueline Nolan and Julia Alex Watts (University of Arkansas for Medical Sciences,
Little Rock, USA) for the proofreading.

References

[Applebaum 2012] Applebaum B. (2012). Pseudorandom generators with long stretch and low
locality from random local one-way functions. STOC '12. Proceedings of the 44" annual ACM
symposium on theory of computing. May 19-22, New York, pp:805-816. DOI:
10.1145/2213977.2214050

[Bos et al. 2011] Bos J.W., T. Kleinjung, A.K. Lenstra, and P.L. Montgomery. (2011). Efficient
SIMD Arithmetic Modulo a Mersenne Number. ARITH '11. Proceedings of the 2011 IEEE 20"
Symposium on Computer Arithmetic. July 25-27, Tubingen, pp:213-221. DOIL:



382 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

10.1109/ARITH.2011.37

[Cai et al. 2016] Cai C., K.A. Carey, D.A. Nedosekin, Y.A. Menyaev, and M. Sarimollaoglu, et
al. (2016). In Vivo Photoacoustic Flow Cytometry for Early Malaria Diagnosis. Cytometry A,
89A:531-542. DOI: 10.1002/cyto.a.22854

[Cai et al. 2016] Cai C., D.A. Nedosekin, Y.A. Menyaev, M. Sarimollaoglu, and M.A.
Proskurnin, et al. (2016). Photoacoustic Flow Cytometry for Single Sickle Cell Detection In
Vitro and In Vivo. Anal. Cell. Pathol., 2642361:1-11. DOI: 10.1155/2016/2642361

[Carey et al. 2016] Carey K.A., Y.A. Menyaev, C. Cai, J.S. Stumhofer, and D.A. Nedosekin, et
al. (2016). Bioinspired hemozoin nanocrystals as high contrast photoacoustic agents for
ultrasensitive malaria diagnosis. J. Nanomed. Nanotechnol., 7(3):49. DOI: 10.4172/2157-
7439.C1.031

[Chapman et al. 2015] Chapman K.R., J.G. Burdon, E. Piitulainen, R.A. Sandhaus, and N.
Seersholm, et al. (2015). Intravenous augmentation treatment and lung density in severe al
antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet,
386(9991):360-368. DOI: 10.1016/S0140-6736(15)60860-1

[Claessen and Palka 2013] Claessen K. and M.H. Palka. (2013). Splittable pseudorandom
number generators using cryptographic hashing. Haskell '13. Proceedings of the 2013 ACM
SIGPLAN symposium on Haskell. Sept. 23-24, Boston MA, pp:47-58. DOIL
10.1145/2503778.2503784

[Deon and Menyaev 2016] Deon A. and Y. Menyaev. (2016). The Complete Set Simulation of
Stochastic Sequences without Repeated and Skipped Elements. J. Univers. Comput. Sci.,
22(8):1023-1047.

[Deon and Menyaev 2016] Deon A. and Y. Menyaev. (2016). Parametrical Tuning of Twisting
Generators. J. Comput. Sci., 12(8):363-378. DOI: 10.3844/jcssp.2016.363.378

[Eichenauer-Herrmann and Niederreiter 1994] Eichenauer-Herrmann J. and H. Niederreiter.
(1994). Digital inversive pseudorandom numbers. ACM TOMACS, 4(4):339-349. DOLI:
10.1145/200883.200896

[Gopalan et al. 2011] Gopalan P., R. Meka, O. Reingold, and D. Zuckerman. (2011).
Pseudorandom generators for combinatorial shapes. STOC '11. Proceedings of the 43™ annual
ACM symposium on theory of computing. June 6-8, San Jose CA, pp:253-262. DOL:
10.1145/1993636.1993671

[Hellekalek 1995] Hellekalek P. (1995). Inversive pseudorandom number generators: concepts,
results and links. WSC '95. Proceedings of the 27" conference on winter simulation. Dec. 3-6,
Washington DC, pp:255-262. DOI: 10.1145/224401.224612

[Juratly et al. 2015] Juratly M.A., E.R. Siegel, D.A. Nedosekin, M. Sarimollaoglu, and A.
Jamshidi-Parsian, et al. (2015). In vivo long-term monitoring of circulating tumor cells
fluctuation  during medical interventions. PLoS  One, 10(9):e0137613. DOI:
10.1371/journal.pone.0137613.

[Juratly et al. 2016] Juratly M.A., Y.A. Menyaev, M. Sarimollaoglu, E.R. Siegel, and D.A.
Nedosekin, et al. (2016). Real-Time Label-Free Embolus Detection Using In Vivo
Photoacoustic Flow Cytometry. PLoS One, 11(5):e0156269. DOLI:
10.1371/journal.pone.0156269

[Langdon 2009] Langdon W.B. (2009). A fast high quality pseudo random number generator
for nVidia CUDA. GECCO '09. Proceedings of the 11" annual conference on genetic and
evolutionary computation. July 8-12, Quebec, pp:2511-2514. DOI: 10.1145/1570256.1570353

[Leva 1992] Leva J.L. (1992). A fast normal random number generator. ACM TOMS,
18(4):449-453. DOI: 10.1145/138351.138364



Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences 383

[Lewko and Waters 2009] Lewko A.B., and B. Waters. (2009). Efficient pseudorandom
functions from the decisional linear assumption and weaker variants. CCS '09. Proceedings of
the 16™ ACM conference on computer and communications security. Nov. 9-13, Chicago IL,
pp:112-120. DOI: 10.1145/1653662.1653677

[Li 2010] Li M. (2010). Generation of teletraffic of generalized Cauchy type. Phys. Scr.,
81(2):025007. DOI: 10.1088/0031-8949/81/02/025007

[Li 2017] Li M. (2017). Record length requirement of long-range dependent teletraffic. Physica
A, 472:164-187. DOL: 10.1016/j.physa.2016.12.069

[Mandal et al. 2016] Mandal K., X. Fan, and G. Gong. (2016). Design and Implementation of
Warbler Family of Lightweight Pseudorandom Number Generators for Smart Devices. ACM
TECS, 15(1): Article No.1. DOIL: 10.1145/2808230

[Matsumoto and Nishimura 1998] Matsumoto M. and T. Nishimura, (1998). Mersenne twister:
a 623-dimensionnally equidistributed uniform pseudorandom number generator. ACM
TOMACS, 8(1):3-30. DOI: 10.1145/272991.272995

[Matsumoto et al. 2006] Matsumoto M., M. Saito, H. Haramoto, and T. Nishimura. (2006).
Pseudorandom Number Generation: Impossibility and Compromise. J. Univers. Comput. Sci.,
12(6):672-690. DOI: 10.3217/jucs-012-06-0672

[Matsumoto et al. 2007] Matsumoto M., I. Wada, A. Kuramoto, and H. Ashihara. (2007).
Common defects in initialization of pseudorandom number generators. ACM TOMACS, 17(4):
Article No.15. DOI: 10.1145/1276927.1276928

[Meka and Zuckerman 2010] Meka R. and D. Zuckerman. Pseudorandom generators for
polynomial threshold functions. STOC '10. Proceedings of the 42™ ACM symposium on theory
of computing. June 5-8, Cambridge MA, pp:427-436. DOI: 10.1145/1806689.1806749

[Menyaev and Zharov 2005] Menyaev Y.A. and V.P. Zharov. (2005). Phototherapeutic
technologies for oncology. Proceedings of SPIE, 5973:271-278. DOI: 10.1117/12.640217

[Menyaev and Zharov 2006] Menyaev, Y.A. and V.P. Zharov, (2006). Experience in
Development of Therapeutic Photomatrix Equipment. Biomedical Engineering, 40(2):57-63.
DOI: 10.1007/s10527-006-0042-6

[Menyaev and Zharov 2006] Menyaev, Y.A. and V.P. Zharov, (2006). Experience in the Use of
Therapeutic Photomatrix Equipment. Biomedical Engineering, 40(3):144-147. DOI:
10.1007/510527-006-0064-0

[Menyaev and Zharova 2006] Menyaev, Y.A. and 1.Z. Zharova. (2006). A technique for
surgical treatment of infected wounds based on photodynamic and ultrasound therapy.
Biomedical Engineering, 40(6):284-290. DOI: 10.1007/s10527-006-0102-y

[Menyaev et al. 2013] Menyaev, Y.A., D.A. Nedosekin, M. Sarimollaoglu, M.A. Juratli, and
E.l. Galanzha, et al. (2013). Optical clearing in photoacoustic flowcytometry. Biomed. Opt.
Express, 4(12):3030-41. DOI: 10.1364/BOE.4.003030

[Menyaev et al. 2016] Menyaev Y.A., K.A. Carey, D.A. Nedosekin, M. Sarimollaoglu, and E.I.
Galanzha et al. (2016). Preclinical photoacoustic models: application for ultrasensitive single
cell malaria diagnosis in large vein and artery. Biomed. Opt. Express, 7(9):3643-58. DOI:
10.1364/BOE.7.003643

[Niederreiter 1992] Niederreiter H. (1992). New methods for pseudorandom numbers and
pseudorandom vector generation. WSC '92. Proceedings of the 24th conference on winter
simulation. Dec. 13-16, Arlington WV, pp:264-269. DOI: 10.1145/167293.167348

[Saito and Matsumoto 2008] Saito M. and M. Matsumoto. (2008). SIMD-oriented Fast
Mersenne Twister: a 128-bit Pseudorandom Number Generator. In: Monte Carlo and Quasi-
Monte Carlo Methods 2006, Keller, A., S. Heinrich, and H. Niederreiter, (Eds.), Springer Berlin



384 Deon A.F., Menyaev Y.A.: Twister Generator of Arbitrary Uniform Sequences

Heidelberg, pp:607-622. ISBN: 978-3-540-74496-2. DOI:10.1007/978-3-540-74496-2_36

[Sarimollaoglu et al. 2014] Sarimollaoglu M., D.A. Nedosekin, Y.A. Menyaev, M.A. Juratly,
and V.P. Zharov. (2014). Nonlinear photoacoustic signal amplification from single targets in
absorption background. Photoacoustics, 2(1):1-11. DOI: 10.1016/j.pacs.2013.11.002

[Shamir 1983] Shamir A. (1983). On the generation of cryptographically strong pseudorandom
sequences. ACM TOCS, 1(1):38-44. DOI: 10.1145/357353.357357

[Sussman et al. 2006] Sussman M., W. Crutchfield, and M. Papakipos. (2006). Pseudorandom
number generation on the GPU. GH '06. Proceedings of the 2Ist ACM
SIGGRAPH/EUROGRAPHICS symposium on graphics hardware. Sept. 3-4, Vienna, pp:87-
94.DOI: 10.1145/1283900.1283914

[Tong et al. 2014] Tong Y., J. Sun, S.S. Chow, and P. Li. (2014). Cloud-assisted mobile-access
of health data with privacy and auditability. IEEE J. Biomed. Health. Inform., 18(2):419-429.
DOI: 10.1109/JBHI.2013.2294932

[White et al. 2008] White D.R., J. Clark, J. Jacob, and S.M. Poulding. (2008). Searching for
resource-efficient programs: low-power pseudorandom number generators. GECCO
'08. Proceedings of the 10th annual conference on genetic and evolutionary computation. July
12-16, Atlanta GA, pp:1775-1782. DOI: 10.1145/1389095.1389437

[Zharov et al. 2001] Zharov V.P., Y.A. Menyaev, Y.Y. Gorchak, K.V. Utkina, and Y.A.
Menyaev. (2001). Methods for photoultrasonic treatment of festering wounds in oncological
patients. Crit. Rev. Biomed. Eng., 29(1):111-124. DOI: 10.1615/CritRevBiomedEng.v29.i1.50

[Zharov et al. 2001] Zharov V.P., Y.A. Menyaev, R.K. Kabisov, S.V. Al’kov, and A.V.
Nesterov et al. (2001). Design and application of low-frequency ultrasound and its combination
with laser radiation in surgery and therapy. Crit. Rev. Biomed. Eng., 29(3):502-519. DOI:
10.1615/CritRevBiomedEng.v29.i3.130



