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Abstract: Up to recently the majority of applications of the Abstract State Machines
method for design and verification of computational systems used the shared variable
approach. However in particular with distributed systems only various forms of com-
munication may be available to share information. We define communicating ASMs by
using instead of shared locations an explicit, abstract concept of Sending/Receiving
messages which can be added to existing ASM execution engines. We aim to provide
a definition which is a conservative extension of traditional ASMs, uniformly captures
synchronous and asynchronous communication and is not bound to any specific mes-
sage passing mechanism but can be instantiated to the major communication concepts
in the literature. We illustrate the concept by an application to synchronous and asyn-
chronous networks of communicating processes.
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1 Introduction

Communication plays a major role for the design and verification of distributed

algorithms. In state-based approaches it comes in handy to specify abstract

communication schemes using shared variables; we mention some examples in the

section on related work. Abstract State Machines (see [Börger and Stärk(2003)])

offer also a simple way to deal with communication using no shared functions,

read: possibly parameterized variables which can be read and written by multiple

processes. The only functions used are input (also called monitored) functions,

output functions and local (private, also called controlled) functions (see Sect. 2).

In this paper we define in Sect. 2 communicating ASMs as ASMs with only

internal actions (using only local functions) and Send/Receive actions affect-

ing mailboxes. In this way we separate local (internal) computation steps of

processes from their interaction behavior. We define these ASMs as a conser-

vative extension of traditional ASMs (as defined in [Börger and Stärk(2003)]).

As a consequence communicating ASMs could be implemented as instances of a

CoreASM [CoreASM(2015)] extension which communicate through an appropri-

ate API; see [Rothstein and Schreckling(2016)] for a project description (where
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communicating ASMs appear under the name Abstract State Interaction Ma-

chines) and [Schreckling and Rothstein(2016)] for the code and some examples.

We keep the communication actions abstract so that they can be instanti-

ated to common communication concepts in the literature. See the section on

related work for details. We illustrate the expressiveness and flexibility of com-

municating ASMs by a mathematically precise formulation of the synchronous

(Sect. 3.2,3.3) and the asynchronous (Sect. 3.4) network execution models on

which the investigation of distributed algorithms is based in [Lynch(1996)]. We

then use these models to rigorously prove (Sect. 4) the correctness of the local

synchronization scheme defined in [Lynch(1996), 16.2]. If this scheme is applied

to a set of algorithms which are designed to be executed in the synchronous

network model, then it allows one to run them with the same local behavior in

the asynchronous network model. The abstractions ASMs offer for doing this

simplify the construction itself as well as the correctness proof.

2 Communication in ASMs

In ASMs as defined in [Börger and Stärk(2003)] communication can and has

been dealt with as particular form of interaction of processes using no shared

function but only monitored (i.e. input), output and controlled (private, local)

functions. A function that is output function for (i.e. only written by) a process

p and monitored (i.e. only read) by each process q in a set of processes acts like

a common mailbox location. In this location all those q simultaneously receive

the value written by (i.e. sent from) p so that they can read it as input for their

next step. The resulting model of what one could call directly communicating

ASMs abstracts completely from any specific communication medium and works

particularly well for the synchronous computation model; for details see the

section on related work.

However, to model this way communication mechanisms with asynchronous

Send/Receive actions or where messages may get lost one has to consider in ad-

dition when the processes q which monitor an output location of a sender process

p receive the output value produced by p (or whether they receive it at all). To

avoid such complications we define and analyze in this paper communicating

ASMs as a class of multiple agent ASMs where machines perform only internal

actions (read: ASM steps using only local functions to perform actions on their

pairwise disjoint local states). Communication happens only via Send/Receive

actions affecting mailboxes. We keep the mailbox concept and the Send/Receive

actions abstract so that they can be instantiated to the main communication

concepts used in the literature (see the section on related work). As will become

clear below the definition works for both synchronous communication (typically

in the context of synchronized parallel ASM runs like in Sect. 3.2,3.3) and asyn-
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chronous communication (typically in the context of concurrent ASM runs as

defined in [Börger and Schewe(2016)], see for example Sect. 3.4).

Definition. Communicating ASMs (processes) are defined as families of

single-agent ASMs p = (ag(p), pgm(p),mailbox (p)), consisting of

an agent ag(p) that executes step by step

a program pgm(p), called the rule(s) of the ASM, and is equipped with

a mailbox (p) for incoming messages

with disjoint signatures, read: private (also called internal) state and the follow-

ing abstract communication actions and predicates besides the usual internal

ones:

Send(m, to(q)) // deliver (m, from(self)1, to(q)) to mailbox (q)

Received(msg) = (msg ∈ mailbox (self )) // msg has been delivered

Consume(msg) = Delete(msg,mailbox (self ))

The abstract view of the Send(m, to(q)) action assumes that the sender

process p knows the (address of the) receiver process q and triggers the (agent

of the) communication medium to try to Insert the message (m, from(p), to(q))

into the mailbox of the destination process. The delivery can happen in various

ways, depending on the properties of the communication medium. We mention

as outstanding examples:

immediately: in the synchronous model with reliable communication where

every message sent in one ‘step’ (synchronous round) is in the receiver’s

mailbox at the beginning of the next step,

eventually: in the asynchronous model with reliable communication (where

no message is lost) or with multiple delivery attempts (message repetition)

such that at least one succeeds,

maybe eventually (possibly never): in the asynchronous model with unreli-

able communication where messages can get lost, also called at-most-once

delivery.

Thisabstracts fromintroducingexplicitcommunicationchannels (seeSect. 3.1).

Unless otherwise stated we treat mailbox as a set, but the following alternatives

are also possible:

mailbox couldbeaFIFO-queueorapriorityqueueas inAkka [Akka(2011-2016)];

mailbox could be a FIFO-queue, where however the Receive action may

ignore or defer certain messages in the mailbox (as it happens in the P ma-

chines [Gupta et al.(2012)]);

mailbox could be a multiset to distinguish among multiple occurrences of

identicalmessageswith same sender, receiverandmessagecontent (payload)—

a set will do if sender timestamps are added to messages.

1 self denotes the executing agent
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When speaking about ‘eventually’ in the asynchronous model we refer to a

logical time model as defined in [Lamport(1978)] and adopted by the “happens

before” actor send rules in Akka [Akka(2011-2016)].

The above definition provides a conservative extension of traditional ASMs.

One can interprete the communication related abstractions as update instruc-

tions (in the sense of CoreASM [CoreASM(2015)]. These are instructions which

are defined to generate genuine ASM updates, depending on the intended kind

of message delivery.

For the sake of generality we add sender resp. receiver to the message payload

(content) m to form a complete message (m, from(p), to(q)). We use the nota-

tion payload(msg), sender(msg) and receiver(msg) for the message components.

When it is clear from the context we omit notationally the sender or receiver of

messages or write (m, p, q) instead of (m, from(p), to(q)). Often we notationally

omit also agents and mailboxes, focussing on the ASM program.

The disjoint signature assumption guarantees that processes have no shared

locations, differently from traditional ASMs (see [Börger and Stärk(2003)]). This

does not exclude that two ASMs (a,M ,mailbox (a)), (b,N ,mailbox (b)) have the

same program M = N with the same function symbols; we simply assume all

function symbols f as implicitly parameterized (‘instantiated’) by the execut-

ing agents a, b in the form fa , fb , thus guaranteeing disjoint locations (read:

local states). It is also possible that communicating ASMs have input or out-

put locations, but those are used only for providing input or output from/to

the environment (if any) and not for interprocess communication (in case the

environment is not seen as an additional process).

Remark on receive actions. The predicate Received(msg) can be in-

terpreted as signalling that a Receive(msg) event has happened at the re-

ceiver. Receive is considered as an action processes can execute besides inter-

nal actions and the Send action (see for example [Lamport(1978), Lynch(1996),

Riccobene and Scandurra(2014)]). The predicate notation allows one to consider

Receive as an action of the communication medium affecting the receiver’s mail-

box and to abstractly describe when and how the receiver retrieves messages from

its mailbox; see the section on related work for some examples.

Numerous concrete examples of communicating ASMs (without being named

so) can be found in [Börger(2016)] and are not repeated here.

3 Network Computation Models

To test applying the concept of communicating ASMs we formulate in this sec-

tion in terms of communicating ASMs the two principal execution models for

networks of processes which are used in [Lynch(1996)] to describe distributed

algorithms, namely:
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the synchronous network execution model (with message loss (Sect. 3.3) or

without (Sect. 3.2) message loss),

the asynchronous network execution model (including its variation with

shared memory), see Sect. 3.4.

For each of these execution models examples for communicating ASMs exe-

cuting distributed algorithms from [Lynch(1996)] can be found in [Börger(2016)].

As an illustration for a general relation between the synchronous and the asyn-

chronous execution model we analyse in Sect. 4 the local synchronizer defined

in [Lynch(1996), 16.2]. When it is applied to a set of algorithms which are de-

signed to be executed in the synchronous network model, it allows one to run

them with the same local behavior in the asynchronous network model.

3.1 Explicit notation for process mailboxes

Networks of processes are in general defined as directed graph (Process ,E ) whose

nodes are (labeled by) processes which Send messages only to their neighbors,

a frequent case for distributed algorithms:

inNeighb(p) = {q | (q, p) ∈ E}: neighbors from which p receives messages

outNeighb(p) = {q | (p, q) ∈ E}: neighbors to which p outputs messages

• when it is clear from the context what is meant, for example when

Sending from p or when the graph is undirected, we write neighb(p)

instead of outNeighb(p), similarly for inNeighb(p)

in [Lynch(1996)] for each edge (p, q) ∈ E a channel chanp,q is assumed to

contain messages (usually at most one per state)2 sent by p to q

• abstracting from the details of the communication medium one can treat

(in particular the singleton set view of) chanp,q as an output location of

the sender p and an input location of the receiver q

we abstract from such channels by using for each agent p a mailbox contain-

ing all messages which have been received by p on any channel via which it

is connected to any of its inNeighb(p):

mailbox (p) = chanq1,p , . . . , chanq(in(p) ,p

where inNeighb(p) = {q1, ..., qin(p)}
Because of the abstraction from the details of the communication medium there

seems to be no need to define separate notions inMailbox (p) resp. outMailbox (p)

for incoming resp. outgoing messages.

2 Analogously to mailbox also channels can be treated as sets, multisets, lists, etc.,
depending on what kind of communication mechanism one has to deal with.
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3.2 Synchronous network system without message loss or delay

Let a network of processes (Process ,E ) be given. In the synchronous network

model of [Lynch(1996), Ch.2] a network execution is a sequence

(Stater , SentMsgr ,ReceivedMsgr )r=1,2,...

of states—comprising the individual states of all processes—in ‘round’ r and of

all messages sent resp. received in ‘round’ r by any process; here a ‘round’ leading

from Stater to Stater+1 consists of the following successive lock-step actions:

each process in Stater generates and sends messages to its (outgoing) neigh-

bors in E ,3 followed by

each process performs an action (considered as not furthermore analysed

(atomic) internal computation step) using the messages just generated by

and received from its (incoming) neighbors in E . These are the sent messages

if no message is lost, otherwise it is a subset of the sent ones. As a result

Stater+1 is obtained.

Representing the processes as communicating ASMs one can treat received

messages as part of their state and sending messages as part of their action. In

this way each process in each round performs the following three actions as one

abstract step (NB. with ASMs a round consists of one step):

ReceiveMsgs: read and possibly Consume some messages delivered to

mailbox , a special case of reading a monitored location,

ComputeNextState: update some controlled locations,

SendMsgs: a special case of updating some output locations.

To follow the notation in [Lynch(1996)] we write a step as composed of sep-

arate internal and communication (Send/Receive) actions. Therefore we define

for a set Process of communicating ASMs SyncNet(Process ,E ) as an ASM

with reliable immediate message delivery and the following rule. For the sake

of comparison to the rounds needed in [Lynch(1996)] we include the ASM step

counter curRound , assuming that initially curRound = 0.

SyncNet(Process ,E ) =

forall p ∈ Process // all processes perform simultaneously one step

ReceiveMsgsp // read/consume messages in mailbox (p)

ComputeNextStatep

SendMsgsp

IncreaseRound // i.e. curRound := curRound + 1

We often write SyncNet(Process) instead of SyncNet(Process ,E ) if the

graph structure E is clear from the context. Note that SyncNet(Process) is a

3 A null message is assumed to represent that no message (content) is sent.
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single-agent ASM whose notion of run (see [Börger and Stärk(2003), Sect.2.4.3])

accurately defines ‘executions’ in the synchronous networkmodel of [Lynch(1996),

Ch.2]. Each single step of SyncNet(Process) models a ‘round’ of the syn-

chronous network of Processes (assuming reliable communication with imme-

diate delivery). For the sake of precision we mention that the model defined

in [Lynch(1996), Ch.2] is deterministic, whereas using ASMs with the choose

construct also a non-deterministic version is covered.

3.3 Synchronous network system with message loss but no delay

The notion of ASM run as defined in [Börger and Stärk(2003), Sect.2.4.3] sup-

ports also the variation of SyncNet(Process) where the communication is not

reliable so that messages may get lost. In fact one can view the loss of mes-

sages as result of an environment action which happens between ASM steps

(read: rounds) so that some messages sent by SendMsgsp may not appear in

mailbox (q) of destination processes q.

One can easily make the effect of this environment action explicit in the ASM

rule by splitting chanp,q into two versions: an outChanp,q location of p where p

via SendMsgsp places messages sent in round r to q and an inChanp,q location

of q where q receives in round r + 1 some (maybe all) messages sent by p in

the preceding round r .4 This allows one to define LossySyncNet(Process ,E )

as SyncNet(Process) followed by a TransmitMsgsp rule. This rule uses an

abstract NoLoss predicate to describe that after all processes have performed

their SendMsgs the communication medium (acting as synchronized environ-

ment) may deliver (only) some of the involved messages. Here seq denotes the

turbo ASM sequentialization operator which turns two successive ASM steps P

followed by Q into one atomic step P seq Q .

LossySyncNet(Process ,E ) =

SyncNet(Process) seq

forall p ∈ Process TransmitMsgsp // synchronized env action

where

TransmitMsgsp = forall q ∈ outNeighbp
if NoLoss(outChanp,q , curRound)

then DeliverMsgFromTo(p, q)

DeliverMsgFromTo(p, q) =

inChanp,q := (m, from(p)) where outChanp,q = (m, to(q))

4 As a consequence mailbox(q) becomes inChanp1,q , . . . , inChanpin(q),q for

inNeighb(q) = {p1, ..., pin(q)}.
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3.4 Asynchronous network system

In [Lynch(1996)] the essential difference between the synchronous and an asyn-

chronous network model is that in the latter ‘there are no synchronous rounds

for communication’ but instead ‘asynchrony in both the process steps and the

communication’ [Lynch(1996), pg.458]. Both process and communication chan-

nel components of an asynchronous send/receive network system are modeled

in [Lynch(1996), Ch.14] as I/O automata. The network is modeled by their

I/O composition where outputs of one component can be matched with (same-

named) inputs of another component. Except for same-named actions in different

components, which in any execution are always executed simultaneously by all

those components, the model is based upon the interleaving assumption that

‘actions are performed one at a time, in an unpredictable order’ [Lynch(1996),

p.201].

We generalize this concept in two directions. First we replace I/O automata

by communicating ASMs. Their parallelism covers the concept of simultaneous

execution of same-named actions in the composition of I/O automata. The con-

cept of monitored and output locations covers the concept of input resp. output

actions by which processes communicate with the environment, e.g. with an ex-

ternal user. Second we replace the interleaving assumption by concurrency. Thus

for a set Process of communicating ASMs, nodes of a directed graph with edge

set E , we define AsyncNet(Process ,E ) as concurrent (multi-agent) ASM in the

sense of [Börger and Schewe(2016)] whose components are the communicating

ASMs in Process .

By this definition an execution (a concurrent run) of AsyncNet(Process ,E )

is a sequence S0, S1, . . . of states—one may think of it as the union of the observed

snapshots of the states of all processes—together with a sequence P0,P1, . . . of

subsets of Process such that each state Sn+1 is obtained from Sn as follows:

applying to it all the updates computed by the processes p ∈ Pn . Each of

them performs its current internal step on the basis of its current input (i.e.

its current mailbox and if present the values of its monitored environment

locations) in its current local state, i.e. the restriction of Sn to the signature

of p,

applying the delivery of messages by the communication medium (read: plac-

ing messages into the mailbox of their destination process) and in case ap-

plying the updates of monitored locations by the environment.5

The interleaving case is characterized by singleton sets Pn . We remind the

5 Note that by asynchrony the communication medium acts as an additional inde-
pendent process, appearing to each p in Process as part of the environment. In
fact a Send(m, from(p), to(q) performed by process p in state S may later change
mailbox(q) via message delivery and thereby q ’s substate in S without q performing
a step in between.
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reader that by asynchrony the messages any p finds in its mailbox in state Sn

must have been sent by some other process in a preceding state Sj (j < n).

As the communicating ASMs in Process are assumed to have disjoint sig-

natures, there is an alternative representation of AsyncNet(Process ,E ) exe-

cutions, which reflects the cartesian product structure defined in [Lynch(1996),

Ch.8.2.1] for the composition of I/O automata to (a)synchronous network sys-

tems. Here executions are sequences Fn of families (SstepsOf (p),p)p∈Process of local

states SstepsOf (p),p process p reaches after stepsOf (p) steps where stepsOf (p) ≤
n (initially stepsOf (p) = 0) for each p. Fn+1 is obtained from Fn by a) some

processes p—in the general case each process in Pn , exactly one process in the

interleaving case—performing one step in Fn , thereby updating stepsOf (p) to

stepsOf (p) + 1, and b) message delivery by the communication medium and (if

any) updates of monitored locations by the environment.

The above definition of AsyncNet(Process ,E ) is easily adapted to the asyn-

chronous shared memory system variation considered in [Lynch(1996), Ch.9]. It

suffices to let the processes have shared locations (and use communication only

for interaction with the environment), a property which is covered in ASMs by

shared locations. In fact the definition in [Lynch(1996), Ch.9] is even more re-

strictive since to avoid inconsistency it allows in each step at most one process

to update one shared location.

4 Local synchronization pattern

It is usually easier to design and verify distributed algorithms for execution in

synchronous networks than in asynchronous networks, due to the characteristic

common clock (‘round’) concept of synchronous process networks. One can ex-

ploit this experience by defining schemes for the synchronization of distributed

network algorithms, as done in [Lynch(1996), Ch.16]. They allow algorithms

defined for the synchronous model to be executed in an asynchronous network

where the synchronization scheme maintains the intended local behavior of each

algorithm.

In this section we generalize the local synchronizer of distributed network

algorithms found in [Lynch(1996), Ch.16] to communicating ASMs. The syn-

chronization is ‘local’ because it involves synchronization only among neighbor

processes in the given network. To ’synchronize’ a process p with its neighbors

each step of p (read: curRound step) is executed one by one by a syncShell(p)

component with slightly modified program retainMsgsExecuting(pgm(p)) (see

below). This component after each curRound p-step suspends executing p-steps

until all messages sent in this round to p have been collected by a synchronizer(p)

component. This synchronizer(p) component then transmits the messages to

the mailbox of p and wakes up syncShell(p) to execute the next p-step. The
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intended effect we prove below is that ‘running p’ in the resulting asynchronous

network LocSyncPattern(Process ,E ) and running it in the synchronous net-

work SyncNet(Process ,E ) yields for each p the same (local) behavior.

For a network (Process ,E ) of communicating ASMs we define for each p ∈
Process two components of LocSyncPattern(Process ,E ), an asynchronous

network we use to simulate SyncNet(Process ,E ):

a synchronization shell syncShell(p) with program SyncShell(p) to execute

p-steps under a ReadyForNxtRound(p)-constraint,

a local synchronizer synchronizer(p) with program Synchronizer(p).

In LocSyncPattern(Process ,E ) each p is linked (read: via communication

channels in both directions) to its synchronizer(p), each synchronizer(p) is linked

to the synchronizer(q) of each neighbor q of p in E . Each syncShell(p) has

a local (Boolean valued) flag WaitingForNxtRoundTickp it Resets and

a local ‘round’ counter curRoundp it Increases

to Suspend(p) after the execution of one step of p, together with informing the

synchronizer of each neighbor of p and of p itself by a stepInfo(p) message that

it has MadeOneStep of p in the curRoundp . Performing a step of p under the

supervision of the syncShell(p) has for message sending the effect to temporar-

ily retain messages. The retainMsgsExecuting(pgm(p)) is the transformation of

pgm(p) where each

Send(m, to(q)) is replaced by Send((m, curRoundp), to(synchronizer(q)))

Received(m, from(q)) is replaced by

ASMReceived((m, curRoundp − 1, from(q)), from(synchronizer(p)))

In other words the round information is added to the message payload and

the neighbor q destination is replaced by the synchronizer(q), thus deviating the

message to mailbox (synchronizer(q)).6 SyncShell(p) does Resume(p) when a

resume message from the synchronizer(p) is Received .

SyncShell(p) =

if ReadyForNxtRoundp then

retainMsgsExecuting(pgm(p))

Suspend(p)

elseif Received(resume, from(synchronizer(p))) then Resume(p)

where

Suspend(p) =

Reset(p)

6 We simplify the exposition by condensing the two-step message passing from p via
its synchronizer(p) to synchronizer(q) of all q ∈ neighb(p) into one communication
step.
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InformAboutStep(p)

Increase(curRoundp)

Reset(p) = (WaitingForNxtRoundTickp := true)

InformAboutStep(p) =

forall q ∈ neighb(p) ∪ {p}
Send((stepInfo(p, curRoundp ), from(p)), to(synchronizer(q)))

Increase(l) = (l := l + 1)

Resume(p) =

WaitingForNxtRoundTickp := false

Consume((resume, from(synchronizer(p)))

ReadyForNxtRoundp iff

Resumed(p) and ReceivedAllMsgsFor(curRoundp , p)

Resumed(p) iff WaitingForNxtRoundTickp = false

ReceivedAllMsgsFor(r + 1, p) iff

forall q ∈ Neighb(p) forsome m // msg sent in round r

Received((m, r , from(q)), from(synchronizer(q)))

The synchronizer(p) waits until p and each q ∈ neighb(p) has MadeOneStep

in the to be synchronized curRoundsynchronizer(p), waiting for a stepInfo message

with payload curRoundsynchronizer(p) from each of those.7 Then synchronizer(p)

will TransferMsgsTo(p), Send a resume-message to WakeUp(p) and last

but not least Increase its curRound .8

Synchronizer(p) =

let r = curRoundsynchronizer(p)
if forall q ∈ neighb(p) ∪ {p} MadeOneStep(q, r)

and ReceivedAllMsgsToPassTo(p, r)

then

TransferMsgsTo(p, r)

WakeUp(p)

Increase(curRoundsynchronizer(p))

where

MadeOneStep(q, r) = Received(stepInfo(q, r), from(q))

TransferMsgsTo(p, r) =

forall q ∈ neighb(p)

forall ((m, r), from(q)) ∈ ProcessMsgs ∩mailboxsynchronizer(p)

7 For notational convenience we assume the set of such messages to be disjoint from
the set ProcessMsgs of messages in mailboxes of synchronizers which record messages
exhanged between Processes, e.g. appearing in a Send(msg) of some pgm(p) with
p ∈ Process.

8 A garbage collector would add a ClearSyncMailbox(p, curRound) component to
delete from mailboxsynchronizer(p) all round messages ((m, r), from(q)) ∈ ProcessMsgs
and all step info messages (r , from(q)) it contains.
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Send(m, from(q), to(p))

WakeUp(p) = Send(resume, to(syncShell(p)))

ReceivedAllMsgsToPassTo(p, r) =

forall q ∈ Neighb(p) forsome m

Received((m, r , to(p)), from(synchronizer(q)))

All Send actions are assumed to be reliable. For SyncNet it is also assumed

that Sending has immediate effect, i.e. messages sent in round r are Received

and thereby in the mailbox of their destination in the next round.9 A run Rs of

SyncNet(Process ,E ) is called properly initialized if initially curRound = 0 and

mailbox (p) = ∅ for each p ∈ Process ; a run Ra of LocSyncPattern(Process ,E )

is called properly initialized if initially for each component c curRoundc = 0,

mailbox (c) = ∅ and for each p ∈ Process ReadyForNxtRoundp = true. For each

round number r and each process p the round r of p consists in Rs of the one

step p performs when curRound = r ; in Ra its critical steps are the following

three successive ones:

a syncShell(p) step when curRoundp = r and ReadyforNxtRoundp = true,

a synchronizer(p) step when curRoundsynchronizer(p) = r and forall q ∈
neighb(p) ∪ {p} MadeOneStep(q, r) and ReceivedAllMsgsToPassTo(p, r),

a syncShell(p) step after having Received(resume, from(synchronizer(p))) to

Resume(p) (whereafter eventually it will become again ReadyforNxtRoundp .

For simplicity of exposition we assume that in each round each process sends

to each of its neighbors a (possibly empty) message.

Local Synchronization Correctness Property. Let Rs , Ra be any prop-

erly initialized runs of SyncNet(Process ,E ), LocSyncPattern(Process ,E )

started with equal values in same-named locations. For every process p and ev-

ery round number r the following holds: when p starts its round r in Rs resp. in

Ra the values of same-named p-locations are the same in the two runs and the

payload and destination of messages p sends in round r to its neighbor processes

(where they appear as Delivered from p in round r + 1) are the same.10

Formally the equality of values of same-named p-locations at the beginning

of round r can be expressed as StateEquality(p, r):

stateRs (r) ↓ Σp = stateRa (p, r) ↓ Σp

where r = curRound
SyncNet(Process,E) = curRoundp , stateRs (r) denotes the

state of SyncNet(Process ,E ) in which p starts its r -th round in Rs , stateRa (p, r)

denotes the state of syncShell(p) in which p starts its round r in Ra , S ↓ Σp

denotes the restriction of state S to the signature Σp of p.

9 For LocSyncPattern this additional assumption is not needed.
10 For each action Send((m, curRoundp ), to(synchronizer(q))) in Ra we call (m, to(q))

a message sent by p in curRoundp .
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Proof by induction on r . From StateEquality(p, r) (which for r = 0 is true

by the initialization condition) and the first SyncShell(p)-step in round r it

follows that the p-locations are updated the same way in both runs, without

further updates until p becomes again ReadyForNxtRound r + 1 by a Resume

step and the arrival of the messages sent in round r . Also for each message

(m, from(p), to(q)) sent by p in round r in SyncNet(Process ,E ) to neighbor

q, by the first SyncShell(p)-step the message

((m, r), from(p), to(synchronizer(q)))

is sent in Ra to mailbox (synchronizer(q)). From there (m, from(p), to(q)) is

transfered to mailbox (q) in the round r step of p performed by synchronizer(p)

when all neighbors of p have MadeOneStep in round r . This establishes the mes-

sage claim of the Local Synchronization Correctness Property. The last round r

step of p in Ra performed by syncShell(p) prepares making p ReadyForNxtRound

r + 1, namely when from its synchronizer(p) it ReceivedAllMsgsFor(r + 1, p).

5 Related work

We mentioned in the introduction that in state-based approaches it comes in

handy to specify abstract communication schemes using shared variables. An

example is the communication mechanism between abstract machines in the

B-method [Abrial(1996)]: synchronous communication can happen among ma-

chines which are in the containment relation (with variable sharing governed

by visibility rules), asynchronous communication via some component that pro-

vides variable sharing among one writer and possibly multiple reader compo-

nents. Also the extension of synchronous communication between abstract B

machines to dynamically created component machines (machines ‘instances’)

in [Aguirre et al.(2005)] uses variable sharing, namely in synchronous calls of

parameterized operations using connectors as communication links. For action

systems asynchronous communication is defined in [Plosila et al.(2002)] using

communication channels, each composed of a shared request/acknowledgement

variable and a data variable to define a submachine call/return mechanism that

allows the designer to compose abstract machines out of library components; the

scheme is an instance of the composition of Abstract State Machines (ASMs)

out of FSM-like control-state ASMs [Börger(1999)] where a separate submachine

is executed in each control (for Finite State Machines called ‘internal’) state.

In the introduction we also mentioned that the ASM function classification

offers in addition a simple way to deal with communication without using shared

functions. This has been exploited in numerous applications of the ASM method.

As example is [Barros and Börger(2005)] where various ASM interaction pat-

terns have been defined based upon a few basic forms of bilateral and multilat-

eral Send/Receive actions. They have been implemented within the ASM-based
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framework described in [Riccobene and Scandurra(2014)] for modeling and pro-

totyping service-oriented applications.

As our definition keeps the the Send, Receive and mailbox concepts ab-

stract, communicating ASMs can be instantiated to models of a large variety

of common communication concepts. Each of the just mentioned communica-

tion patterns (see [Barros and Börger(2005)]) and their implementation (see

[Riccobene and Scandurra(2014)]) are instances of communicating ASMs. An

example in specification languages is the communication concept used in the

ITU-T language SDL-2000 where signals are transported over possibly delaying

channels which connect agents via gates; see [Glässer et al.(2003), 3.2.1] for an

ASM specification of the SDL-signal-flow communication model. Other instances

of communicating ASMs can be found in the communication concept of concur-

rent programming languages, e.g. Erlang [Erlang(1999-2016), Larson(2008)] or

Akka [Akka(2011-2016)] which use an Actor Model [Hewitt et al.(1973)]. The

concept of a dynamic set of agents which execute each some (possibly changing)

ASM allows us to abstract from particular features actors come with. In fact

the set of ASM agents can be instantiated to the specific hierarchical features in

Akka [Akka(2011-2016)]—Children and Supervisor Strategy—or the worker pro-

cess concept in Erlang [Erlang(1999-2016), Larson(2008)]. In those languages

they are used to implement the creation and supervision of agents for (sub-)

task delegation.

The definition of communicating ASMs abstracts from the specifics of the

reliable Send and of the pattern-matching-based (possibly blocking) Receive

actions in Erlang [Larson(2008), Fig.2] and from the functional and sequential

specifics of Erlang programs.

A similar remark applies to the control-state ASM [Börger(1999)] like compo-

nent machines of P programs [Gupta et al.(2012)] and their interesting respon-

siveness concept: message delivery is immediate and reliable but to a mailbox

queue with a possibly delayed Receive action (read: retrieving events for pro-

cessing from the input queue).

Also concrete mailbox concepts like input-pools in the business process mod-

eling method S-BPM turn out to be specifiable by instances of communicat-

ing ASMs. This concerns in particular the input-pool-configuration-dependent

Receive actions in S-BPM [Fleischmann et al.(2012), pg.335-337]. Another ex-

ample is in the area of message routing in networks. In [Glässer et al.(2004)] the

authors define an ASM to model the routing of messages through a network.

They use an abstract encoding of the network topology by a routing table to

specify how messages are transferred between processes which are connected to

the network.

Our definition is influenced by the abstract way communication is treated

in [Lynch(1996)] within a state-based specification framework. However by choos-
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ing ASMs as programs with which agents are equipped we generalize the notion

of programs used in [Lynch(1996)] and abstract from their sequential nature.

Directly communicating ASMs mentioned in the introduction work particularly

well for the synchronous computation model. See for example CSP [Hoare(1985)],

where all processes which are linked by the producer/consumer relation—between

processes which output to a function f and those which monitor f—are synchro-

nized by a common clock and communication does not fail. A similar remark

applies to CCS [Milner(1982)] and the π-calculus [Milner(1999)] (see the ASM

model for it in [Glavan and Rosenzweig(1993)]).

6 Conclusion

We have equipped traditional ASMs with an abstract form of the three ba-

sic communication constructs (mailbox, Send and Receive actions). We briefly

pointed out by refering to the related literature that the resulting class of commu-

nicating ASMs permits uniform descriptions of common synchronous and asyn-

chronous communication concepts. We have illustrated the concept by defining

rigorous models for synchronous and asynchronous networks of communicating

processes and proving the correctness of a local synchronization scheme for such

networks.
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