
An Evaluation of Structured Language Modeling for

Automatic Speech Recognition

Johanna Björklund

(Dept. Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden

johanna@cs.umu.se)

Loek Cleophas

(Dept. Information Science, Stellenbosch University

7602 Matieland, Republic of South Africa

loek@fastar.org)

My Karlsson

(Codemill AB, 903 36 Ume̊a, Sweden

my.karlsson@codemill.se)

Abstract: We evaluated probabilistic lexicalized tree-insertion grammars (PLTIGs)
on a classification task relevant for automatic speech recognition. The baseline is a
family of n-gram models tuned with Witten-Bell smoothing. The language models
are trained on unannotated corpora, consisting of 10,000 to 50,000 sentences collected
from the English section of Wikipedia. For the evaluation, an additional 150 random
sentences were selected from the same source, and for each of these, approximately
3,200 variations were generated. Each variant sentence was obtained by replacing an
arbitrary word by a similar word, chosen to be at most 2 character edits from the
original. The evaluation task consisted of identifying the original sentence among the
automatically constructed (and typically inferior) alternatives. In the experiments, the
n-gram models outperformed the PLTIG model on the smaller data set, but as the
size of data grew, the PLTIG model gave comparable results. While PLTIGs are more
demanding to train, they have the advantage that they assign a parse structure to their
input sentences. This is valuable for continued algorithmic processing, for example, for
summarization or sentiment analysis.

Key Words: language modeling, automatic speech recognition, probabilistic lexical-
ized tree-insertion grammars

Category: F.4.2, I.2.7

1 Introduction

Language models form a central concept in natural language processing. At an

abstract level, they are parametrized families of functions that assign probabil-

ities to natural language sentences. A ‘good’ language model should assign a

higher probability to natural-sounding sentences and sentence fragments, com-

pared to unlikely or even ungrammatical alternatives. Language models are com-

monly used in machine translation to rank candidate translations, in automatic

Journal of Universal Computer Science, vol. 23, no. 11 (2017), 1019-1034
submitted: 23/4/17, accepted: 26/11/17, appeared: 28/11/17 © J.UCS

speech recognition (ASR) to narrow the search-space by discarding unlikely tran-

scriptions, and in summarization to shorten text while preserving readability.

The reigning approach to language modeling is to train structure-agnostic n-

grams on large sets of data. In the n-gram model, the likelihood of a sequence of

words s = w1, w2, . . . , wn is the product of the likelihood of every subsequence

of ≤ n consecutive words at the start of s, with respect to some given set of

training data. When greater precision is needed, the size of n can be increased,

or some weighting or smoothing technique can be introduced to better leverage

the training data. These language models have the advantage of being (i) sur-

prisingly powerful considering their simplicity, (ii) easy to train from data, and

(iii) applicable in linear or even log-linear time [Klakow 1998].

On the downside, the size of n-gram models grows exponentially in n. This

means that for large n, only a fraction of all possible n-grams will appear in the

training data, and to keep the model at a reasonable size, only the most frequent

n-grams can be taken into account at any rate. For these reasons, Goodman

[2001] concluded that proceeding beyond 5-grams is unlikely to be practically

motivated. A decade later, this still seemed the case. The flagship of the field,

Google’s n-gram viewer, contained 500 billion words compiled from 20 million

books. In its construction, the value of n was restricted to 5 to limit the model’s

size, and all n-grams encountered fewer than 40 times were discarded without

updating the model [The Google Books Team 2010]. Recently, however, Chelba

et al. [2013] proposed a hybrid approach based on neural networks that uses a

history of up to 9 previous words and additional features of 15 previous words

(taken as an unordered set). Whether this contradicts Goodman’s conjecture

can be argued, but it is clear that with a limited dictionary of 1000 words,

we need a table with one octillion entries, i.e., with 1027 bytes, to do full 9-

grams without back-offs. Even if only a percentage of a percentage of the entries

contain non-zero probabilities, the storage alone requires a cluster of billions of

computers with petabytes of memory each. We conclude that even though the

approach put forth in [Chelba et al. 2013] may handle a large number of 9-grams

explicitly, most of the computations are done on shorter n-grams, and that this

will continue to be the case for a long time to come.

The need to restrict n causes problems. Consider the following two sentence

variations:

She rowed all the way from the excavation site at Yellowknife, to the

base camp Benchoko, in her weathered canoe.

She rowed all the way from the excavation site at Yellowknife, to the

base camp Benchoko, in her weathered car.

The first sentence is arguably more likely due to the semantic relation between

rowed and canoe. However, no n-gram model could make this connection for a

1020 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

value of n less than 18, since no n-gram of shorter length contains the history of

words from rowed up until canoe, or rowed and car. Such simpler models would

instead prefer the second sentence, car being a more common form of transport

than canoe.

Another thing that is missing is a syntactical analysis of the input sentence,

that is, n-grams do not support parsing. Parsing is useful in itself, as it tells us

whether a sentence is likely to be perceived as grammatical. Furthermore, parse

trees are suitable for continued algorithmic processing, for example, to obtain

a semantic analysis. If we want to understand who does what to whom in a

sentence, it helps to know how the sentence is put together, in particular, what

the central verbs and arguments are.

Context-free grammars (CFG) can be used for syntactical analysis, but are

typically worse at predicting word sequences than n-grams, unless they are lexi-

calized. In a lexicalized CFG, each production rule produces at least one lexical

item [Schabes and Waters 1993]. CFGs can be lexicalized using Greibach nor-

mal form, but this skews the syntactical structure. Another alternative is to

use Tree-adjoining Grammars (TAG) [Joshi et al. 1975]. TAGs represent a lan-

guage of parse trees as a set of parse-trees fragments, together with rewrite

rules that regulate how the fragments may be pieced together into larger struc-

tures. TAGs were developed by linguists and have several appealing proper-

ties; they are expressive, straight-forward to lexicalize, and offer parsing [Abeillé

et al.1990)Abeillé Schabes and Joshi; Shieber and Schabes 1990]. However, the

parsing complexity is as high as O
(
n6

)
, which cannot be considered practical.

Aiming for the middle ground, Hwa [2001] suggested the use of probabilistic

lexicalized tree insertion grammars (PLTIGs), a family of TAGs with simplified

rewrite rules. PLTIGs are as good as trigrams at predicting word sequences, but

also offer syntax-aware language modeling. Their parsing complexity is O
(
n3

)
,

equal to that of probabilistic context-free grammars (PCFGs) and a factor n3

faster than TAGs. PLTIGs also have the advantage that their expectation-

maximization training converges faster than for similarly sized PCFGs [Hwa

2001, Ch. 3].

In this article we evaluate PLTIGs as an alternative for n-grams in automatic

speech recognition, more precisely, the translation of spoken words into text. To

allow comparison with previous studies, we focus on the English language. Mod-

ern ASR systems are typically built around an acoustic model, a lexical model,

and a language model. The acoustic one maps utterances into phonemes (of-

tentimes by means of sequential transducers [Mohri 1997]); the lexical one con-

catenates these to match a dictionary of known words; and the language model

combines words into sentences. Today, n-grams and Hidden Markov Models are

commonly used language models in ASR systems, and we are interested to learn

how PLTIGs stand up to these. To isolate the influence of the language models

1021Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

from the ASR system at large, we focus on a classification task in which the

models pick out a sentence s from a set of alternatives, generated from s by

replacing a word by a similar but inappropriate word.

The rest of this article is organized as follows. Section 2 revises the relevant

language models. Section 3 describes the experimental setup, and Section 4 re-

ports and discusses the results. Section 5 concludes the paper and outlines future

work.

2 Theoretical Background

We begin by recalling the definitions of n-grams, TAGs (as an intermediary

step), and finally PLTIGs. Since the theoretical results that support this study

are already in place, including the parsing complexity and the correctness of the

Expectation-Maximization (EM) algorithm, we describe the models at a fairly

high level and refer to [Hwa 1998] for the formal definitions. Those familiar with

n-grams and PLTIGs may want to proceed directly to Section 3.

2.1 n-grams

The likelihood P (w1,n) of a sequence of words w1,n = w1, . . . , wn can be com-

puted using the chain rule of probability

P (w1,n) =

n∏

i=1

P (wi|w1,i−1) . (1)

With n-grams, the likelihood of wi in w1,n is approximated by

P (wi|w1,i−1) ≈ P (wi|wi−n+1,i−1). (2)

Substituting this into Eq. 1, the likelihood of the sequence is approximated by

P (w1,n) ≈
n∏

i=1

P (wi|wi−n+1,i−1) . (3)

For n equal to 1, 2, 3, 4, and 5, the model is often referred to as unigram,

bigram, trigram, quadgram, and quintgram, respectively. It is straight-forward

to learn n-grams from training data through a Maximum Likelihood Estimation

(MLE) process. The probability of a word wi is

PMLE(wi|wi−n+1,i−1) =
c(wi−n+1,i)

c(wi−n+1,i−1)
, (4)

where c(w1,k) counts how often the sequence of words w1,k appears in the data.

However, for larger values of n, the training data cannot be expected to contain

1022 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

DT

his

(a)

DT

her

(b)

NP

NN

car

DT

(c)

NN

NN*JJ

red

(d)

NN

NN*JJ

blue

(e)

Figure 1: Examples of elementary trees in a TAG. Elementary trees (a-c) show

initial trees, while (d-e) are auxiliary trees. The auxiliary trees each have a foot

node marked with a * of the same type as the root node.

all n-grams that will later be encountered in the application data. For this reason,

the MLE learning is usually followed by a round of smoothing ; a redistribution

of the probability mass assigning a non-zero probability also to here-to unseen

n-grams. There are several popular smoothing methods to choose between, for

example, Laplace, Good-Turing, and Kneser-Ney. In this article, we use Witten-

Bell smoothing. At the core of Witten-Bell is the observation that when we see

some words, we can easily guess what the next word will be, whereas for others,

it is more difficult. The word want for instance is followed by to more often than

not, but the word to, in turn, tells us less about the future. With Witten-Bell,

the nth order smoothed model is a linear interpolation between the nth order

unsmoothed model and the (n − 1)th order smoothed model, and the shape of

the interpolation is affected by the predictiveness of the words [Bell et al. 1990].

2.2 Tree Adjoining Grammars

As previously mentioned, tree-insertion grammars are a restricted form of tree

adjoining grammars [Joshi et al. 1975]. In contrast to n-grams, probabilistic

TAGs assign likelihoods to parse trees rather than their surface forms, that

is, the generated sentences. A TAG has rules in form of elementary trees of

which there are two types; elementary initial trees and elementary auxiliary

trees. Each elementary initial tree has a number of nonterminal and terminal

leaf nodes. Auxiliary trees also have a special nonterminal leaf node of the same

type as the root node called the foot node, marked with the special symbol *.

The sequence of nodes on the path from the root node to the foot node is called

the spine. Figure 1 shows a few examples of elementary trees.

If the root node of an initial tree matches a nonterminal leaf node of some

other tree, then the first tree can be substituted into the nonterminal leaf node of

the other tree, corresponding to a context-free derivation step. Figure 2 shows an

example of this. The determiner her in the initial tree in Figure 2a is substituted

1023Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

DT

her

(a)

NP

N

car

DT

(b)

NP

NN

car

DT

her

(c)

Figure 2: The initial tree in (a) is substituted into a nonterminal node of the

initial tree in (b), with the result of the new tree in (c). This is possible since

the root node of (a) is of the same type as the nonterminal leaf node in (b).

NN

NN*JJ

blue

(a)

NP

NN

car

DT

her

(b)

NP

NN

NN*

car

JJ

blue

DT

her

(c)

Figure 3: The auxiliary tree in (a) is adjoined into the tree in (b), with the result

of the new tree in (c). The tree from (a) can be inserted into (b) at the node NN

since (a) has a root and a foot node of that type.

into the leaf node of the initial tree for the noun car in Figure 2b. The result is

the tree in Figure 2c, generating the construct her car.

An auxiliary tree can be inserted into an intermediate node of another tree

through what is called adjunction. Since the root node and the foot node of an

auxiliary tree have to have the same symbol, auxiliary trees can be inserted into

another tree where such a symbol exists. An example of this is shown in Figure 3.

Note that the auxiliary tree in Figure 3a has the same root and foot node as

one of the intermediary nodes in the tree in Figure 3b. This allows the adjective

blue to be inserted into the sentence her car, producing the new sentence her

blue car. TAGs are expressive due to the number of configurations they allow,

but have the drawback of high parsing complexity in the order of O(n6).

More formally, a TAG is a tuple (Σ, V, I, A), whereΣ is a finite set of terminal

symbols, V is a finite set of nonterminal symbols, I is a finite set of initial trees,

and A is a finite set of auxiliary trees. If every elementary tree structure in a

1024 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

TAG has at least one non-empty terminal leaf node with a lexical item, then that

is called a lexicalized TAG (LTAG). There is also a probabilistic version of TAGs

(and hence of LTAGs), in which three probability distributions are included in

the definition. These distributions are defined on the set of initial trees, and on

the finite set Ω of possible substitution and adjunction events. A Probabilistic

TAG is thus a tuple (Σ, V, I, A, PI , PS , PA) where (Σ, V, I, A) is a TAG, PI is a

mapping I → [0, 1] or the probability that an initial tree is used as the start of a

derivation, PS is a mapping Ω → [0, 1] for the probability of a substitution, and

PA is a mapping Ω → [0, 1] for the probability of an adjunction [Resnik 1992].

2.3 Tree Insertion Grammars

Tree insertion grammars (TIGs) are a restricted form of TAG in which the

rewrite steps are more regulated. A TIG is a quintuple (Σ, V, I, A, S) where

(Σ, V, I, A) is a TAG and S is a distinguished nonterminal symbol. The semantics

of TIGs are defined as for TAGs, with the following additions [Schabes and

Waters 1994].

– Every auxiliary tree has to be either a left auxiliary tree or a right auxiliary

tree, i.e., they only have lexical items on the indicated side of the foot node.

Auxiliary trees with lexical items on both sides of the foot node and empty

auxiliary trees are not allowed.

– Left auxiliary trees are not allowed to be adjoined on a node that is on the

path from the root to the foot of a right auxiliary tree, and vice versa.

– No more than one left auxiliary tree and one right auxiliary tree is allowed

to be simultaneously adjoined into the same node. Note that two different

parse trees can be generated when two auxiliary trees are adjoined at the

same node. One where the left auxiliary tree has been applied first, and one

where the right auxiliary tree has been applied first.

– Adjunction on nodes that are to the right of the path from the root node to

the foot node of a left auxiliary tree is not allowed, and vice versa for right

auxiliary trees.

– Adjunction on root nodes and foot nodes of auxiliary trees is not allowed.

– Adjunction on nodes that can be used for substitution is not allowed.

When combined, these restrictions only allow us to express context-free lan-

guages, but they also bring the parsing complexity down to O(n3).

A TIG is lexicalized (LTIG) if each elementary tree carries a lexical item.

A TIG can also be probabilistic (PTIG or PLTIG) if it is parameterized by

1025Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

probabilities that describe how likely it is that operations are applied. A PTIG is

defined as a TIG, with the addition of as many as eight probability distributions,

PI , PS , PL, PR, PNL, PNR, PRL, PLR, defined as follows:

1. The probability PI(t) that the derivation starts with the initial tree t, so

that Σt∈IPI(t) = 1.

2. The probability PS(n, t) that an initial tree t is substituted into a leaf node n,

so that Σt∈IPS(n, t) = 1.

3. The probabilities PL(n, t) that a left auxiliary tree t is inserted into the

internal nonterminal node n, and the probability PNL(n) that n takes no

left adjunction, so that PNL(n) +Σt∈AL
PL(n, t) = 1 where AL is the set of

left auxiliary trees. The distributions PR and PNR are defined analogously

to cover the same situation for the right-hand side.

4. The probabilities PLR(n) and PRL(n) that a simultaneous adjunction into

the internal nonterminal node n makes a left-adjunction first or a right-

adjunction first respectively, so that PLR(n) + PRL(n) = 1.

The configuration of the elementary trees affects the possible parse trees that

can be derived. Figure 4a shows a parse tree where the elementary trees only

allow right-adjunction, which effectively simulates an n-gram. Figure 4b shows

another parse tree where the elementary trees allow both left-adjunction and

right-adjunction. In this case, the tree-insertion grammar is able to represent

hierarchical language structures that n-grams are unable to capture.

3 Method

The experiments were conducted within the ASR framework CMU Pocket-

Sphinx [Lamere et al. 2003]. It was chosen because it is open source, is light-

weight for an ASR system, and supports n-grams up to the level of quintgrams.

In the initial experiments, the language models were trained on an unanno-

tated corpus, consisting of 10, 000 sentences collected from the English section

of Wikipedia. The corpus contains 190, 600 words, divided over 28, 500 unique

tokens. The 100 most common tokens (e.g., the and of) make up half the corpus,

whereas two-thirds of the tokens are seen only once (e.g., sideward and boreal).

In later experiments, a medium-sized corpus of 20, 000 sentences (i.e. an ad-

ditional 10, 000) and a larger corpus of 50, 000 sentences (i.e. 30, 000 sentences on

top of the medium-sized corpus) were similarly collected. The 20, 000 sentence

set used over 44, 000 unique tokens, the 50, 000 sentence one used over 79, 000.

1026 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

X

X

X

X

X

X

X

X

X

X

karnatakain

districts

30

the

of

one

is

district

rural

bangalore

(a)

X

X

X

karnatakain

X

districts30

X

X

X

X

theof

one

is

X

districtX

ruralbangalore

(b)

Figure 4: Two alternative derivations of a structural tree for the sentence “Ban-

galore Rural District is one of the 30 districts in Karnataka.”

3.1 Training

The n-gram models for n ∈ {1, . . . , 5} were read off the corpus by counting

frequencies, and tuned with Witten-Bell smoothing. Inter-sentence punctuation

and capitalisation were discarded, because these cues are not accessible from

the input audio in most speech recognition systems. This means that the words

and abbreviations AU, Au, and au were all represented as au, and the sen-

tence “Guatemala qualified a full team of 4 athletes, 2 men and 2 women.” as

1027Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

“guatemala qualified a full team of 4 athletes 2 men and 2 women”.

X

∅

(a) Initial tree

X

X*X

X

lex

(b) Left-auxiliary tree

X

X

X

lex

X*

(c) Right-auxiliary tree

Figure 5: The main elementary tree types. An initial tree (a) with a single empty

lexical item, a left-auxiliary tree (b) and a right-auxiliary tree (c).

For the PLTIG, we started from a set of prototypical trees. The set contains

a single initial tree connected to the empty lexical, representing the start of a

sentence. For each lexical entry we also included a left-auxiliary and a right-

auxiliary tree (see Figure 5 for an illustration). Like Hwa, we use the left-one

right-two (L1R2) insertion paradigm, permitting (but not enforcing) one left ad-

junction and two right adjunctions into each auxiliary tree [Hwa 2001] (see Fig-

ure 6 for an illustration). The PLTIG was then trained through an Expectation-

Maximization (EM) process. The EM training algorithm [Dempster et al. 1977]

is a hill-climbing algorithm which is used when inducing PLTIGs. The algo-

rithm is based on maximum likelihood estimation (MLE) and determines the

adjunction probabilities of a locally optimal grammar. A parser based on the

Cocke-Younger-Kasami (CYK) algorithm was used to parse the induced gram-

mar.

The EM algorithm has three steps:

Initialization. Create an initial grammar that is able to create any string, with

uniform likelihood of insertion events.

Expectation. Compute the probability that each lexical tree is used when pars-

ing the training sentences.

Maximization. Update parameters based on the outcome of the previous step

to maximize the probability of generating the training sentences.

1028 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

X

X*X

X

lex

RAT

LAT RAT

(a) L1R2 left-auxiliary tree

X

X

X

lex

X*

RAT

LAT RAT

(b) L1R2 right-auxiliary tree

Figure 6: L1R2 insertion allows at most one left and two right adjunctions into

each auxiliary tree. LAT and RAT are short for left- and right-auxiliary tree.

Table 1: The percentage of correctly completed evaluation tasks for differently

sized data sets (measured in no. sentences).

10,000 20,000 50,000

PLTIG 96.6 % 97.2 % 97.8 %

unigram 96.5 % 96.9 % 97.0 %

bigram 97.5 % 97.9 % 98.2 %

trigram 97.4 % 97.8 % 98.3 %

quadgram 97.5 % 97.8 % 98.3 %

quintgram 97.5 % 97.8 % 98.3 %

The expectation and maximization steps are run repeatedly until it converges

on a local maximum, whereupon the resulting model is smoothed through linear

interpolation [Hwa 2001].

3.2 Evaluation

For the evaluation, a fresh set of 150 sentences was randomly selected from

the English Wikipedia. A separate corpus was then created for each sentence

s, containing on average ca. 3, 200 similar sentences (a total of 479, 213). Each

1029Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

alternative was obtained by replacing a word in s with a different word, also in

the original vocabulary and at most two edits (i.e., letter insertions, deletions,

or replacements) from the original. This would e.g. turn the template sentence

guatemala qualified a full team of 4 athletes 2 men and 2 women

into the alternatives

guatemala qualified a mule team of 4 athletes 2 men and 2 women

guatemala qualified 88 full team of 4 athletes 2 men and 2 women

guatemala qualified ham full team of 4 athletes 2 men and 2 women

The corpora were manually checked to make sure that the substituted words

were inappropriate for their context. A few exceptions may have been overlooked,

but in the vast majority of the cases, the alternatives were inferior.

The six language models, i.e. the unigram through quintgram ones and the

PLTIG one, were used to compute the probability of each original sentence and

its alternatives. In the case of PLTIGs, only the most likely parse tree was

considered. The probabilities of the alternatives were then compared against the

probability of the original sentence, and the number of sentences with higher

and lower probability, respectively, were recorded.

4 Results

The first column of Table 1 shows the outcome of the experiments on the 10, 000-

sentence dataset. The number reported for each language model (LM) is the

percentage of correctly completed evaluation tasks. As the reader may recall

from Section 3.2, these consist in selecting the most likely sentence out of a

set of similar but inferior alternatives. The PLTIG language model performs

worse than most n-gram models, achieving 96.6 % correct results compared to

unigrams with 96.5 % and quintgrams with 97.5 % correct results.

As the data set was comparatively small, it cannot be expected to saturate the

more sophisticated language models. In particular the higher-level n-gram mod-

els and the PLTIG model are sensitive to overfitting because of their complexity.

The experiments were therefore repeated for two larger datasets, a medium-sized

one of 20, 000 sentences and the larger one of 50, 000 sentences (described in

Section 3). For the medium-sized dataset, the difference between PLTIGs and

n-grams shrunk to less than one percentage point—97.2 % for PLTIGs versus

97.9 % for the best-performing n-gram model. For the largest dataset, PLTIGs

perform almost as well as the best-performing n-gram model.

The scores of the PLTIG and n-gram models for different training data sets

as given in Table 1 are depicted visually on the left of Figure 7. The right graph

shows the difference between the score of each model and the best-performing

1030 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

P
L
T
IG

u
n
ig
ra
m

b
ig
ra
m

tr
ig
ra
m

q
u
a
d
g
ra
m

q
u
in
tg
ra
m

96.5

97

97.5

98

Model

%
co
rr
ec
tl
y
p
ic
k
ed

se
n
te
n
ce
s

Language-model scores

P
L
T
IG

u
n
ig
ra
m

b
ig
ra
m

tr
ig
ra
m

q
u
a
d
g
ra
m

q
u
in
tg
ra
m

0

0.5

1

Model

%
-p
o
in
t
d
iff
er
en
ce

to
b
es
t
sc
o
ri
n
g
L
M

Difference with best LM score

10,000 20,000 50,000

Figure 7: LM scores picking correct sentence out of test set, and distance of

particular LM’s score to best-scoring LM’s score, for LMs trained on data sets

of 10, 000, 20, 000, 50, 000 sentences.

model trained on the same data set. This graph shows that the bigram model

scores best for the small and medium-sized data set, but that the trigram model

does so for the larger data set. The graphs also suggest that while the PLTIG

LM is initially inferior to the higher order n-gram models, it benefits more from

added data, so the gap to the best-scoring n-gram decreases rather rapidly.

Another way to evaluate the language models is to look at their perplexity

relative to the test sentences. This is simply the cross-entropy between the prob-

ability distributions predicted by the models and those embodied by the test

data. Although perplexity is more loosely correlated with performance in speech

recognition systems, in general lower perplexity implies better prediction. Given

the likelihood P (w) of a sentence w with respect to a language model M , we

compute the perplexity PP (w) of M on w as n

√
1/PM (w) where n = |w|.

The average perplexities of the PLTIG and n-gram models are given in Ta-

ble 2. We see that on average, the ’surprise’ expressed by the PLTIG model is a

factor 25 times higher than expressed by the n-grams models. Despite this, the

PLTIG model performs reasonably well in the sentence-selection test, especially

for the larger data sets. Among the n-gram models, the correlation between per-

plexity and predictive power is stronger, though not perfect: For example, for

the largest data set, the quadgram has the lowest perplexity, but the trigram

the highest accuracy.

1031Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

Table 2: The average perplexities of the n-gram and PLTIG language models on

the sentences in the test set.

PLTIG unigram bigram trigram quadgram quintgram

10,000 sent. 49,787 2,126 1,710 1,809 1,826 1,828
20,000 sent. 50,499 2,096 1,208 1,295 1,320 1,323
50,000 sent. 51,505 2,146 1,013 1,079 1,105 1,109

We must also remember that perplexity is strongly affected by smoothing,

which decides how much probability mass to reserve for unseen constructions.

The n-gram models in CMU sphinx are smoothed with Witten-Bell, but this

method is not applicable to PLTIGs, so linear interpolation is used instead (see

Section 3). We leave it as an open question to investigate what impact different

choices of smoothing have on the perplexity.

In the cases where the models assigned a higher probability to a modified

sentence, it is instructive to look at the words that differed between the sentences,

and which caused the variation to receive a higher probability. We consider

in particular words most often erroneously replaced or substituted in, for the

PLTIG model and the trigram model. The top favored words substituted in are

‘in’, ‘of ’, ‘a’, ‘to’, ‘the’, ‘is’, ‘on’, ‘he’, ‘as’, ‘and’ for the PLTIG model, and for

the trigram model they are ‘a’, ‘in’, ‘of ’, ‘on’, ‘to’, ‘at’, ‘is’, ‘as’, ‘the’, ‘he’. The

top favored words for each consist mostly of common two-letter words, and to a

lesser degree single-letter or three-letter ones. This is because with only two edit

operations, there are more ways of turning short lexical entries into other short

lexical entries, than there are of turning long ones into other valid entries. For

instance, every two-letter word can be turned into every other two-letter word.

The top unfavored words erroneously replaced on the other hand, mostly

consist of short uncommon words. For the PLTIG model, the top unfavored

words erroneously replaced are ‘au’, ‘pan’, ‘fit’, ‘jun’, ‘on’, ‘bit’, ‘mono’, ‘it’,

‘bad’, ‘pit’, for the trigram model they are ‘au’, ‘cpr’, ‘jun’, ‘mono’, ‘bit’, ‘pan’,

‘ani’, ‘pit’, ‘fit’, ‘t’. These are also short, as our generation process puts them

within edit distance two from the original, but most of them are rare in literary

text. Wikipedia is full of acronyms and abbreviations1, but these are typically

much rarer than common short words such as those at the top of the favored

lists, yet often within edit distance two from such words.

1 For example, ’au’ is the name of, or short form for, 70 different entities, including
gold, absorbance unit, and the series “The Age of Ultron” by Marvel Comics.

1032 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

5 Conclusion and future work

In our experiments, the n-gram models out-performed the PLTIG model on the

smaller data set, but as the size of data grew, the PLTIG model gave comparable

results, and its score grew faster with increasing data set size than that of the

n-gram models. A natural question to ask is whether the PLTIG model will

eventually overtake the n-grams. Judging by the rate with which the accuracies

are improving, this will likely happen when the data set contains a couple of

hundred thousand sentences, if it happens at all. As parts of the code base used

for the experiments are old and not very efficient, experiments on this scale will

require a substantial but likely rewarding re-implementation. If it indeed turns

out that PLTIGs surpass n-grams at language modeling, then the fact that they

provide structural information about sentences will make them an attractive

alternative for practical language processing.

The introduction of finite-state machinery has led to improvements in several

NLP tasks [Maletti 2015]. In the current work, all internal nodes are labelled with

the same non-terminal symbol, so the possibility of distinct internal symbols is

not exploited. We are therefore interested in learning strategies that infer richer

auxiliary trees, e.g., through a split and merge approach [Petrov 2012]. One may

also attempt to infer the number of adjunction sites and the insertion-strategy

that offers the best trade-offs between parsing complexity and precision.

References

[Abeillé et al. 1990] Abeillé, A., Schabes, Y., Joshi, A. K.: “Lexicalized tags for

machine translation”; 13th Conf. on Computational Linguistics; 1–6; ACL,

Stroudsburg, PA, US, 1990.

[Bell et al. 1990] Bell, T. C., Cleary, J. G., Witten, I. H.: Text Compression;

Prentice-Hall, Inc., Upper Saddle River, NJ, US, 1990.

[Chelba et al. 2013] Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T.,

Koehn, P., Robinson, T.: “One billion word benchmark for measuring progress

in statistical language modeling”; arXiv preprint arXiv:1312.3005; (2013).

[Dempster et al. 1977] Dempster, A. P., Laird, N. M., Rubin, D. B.: “Maximum

likelihood from incomplete data via the EM algorithm”; Journal of the Royal

Statistical Society; (1977), 1–38.

[Goodman 2001] Goodman, J. T.: “A bit of progress in language modeling”;

Computer Speech & Language; 15 (2001), 4, 403 – 434.

[Hwa 1998] Hwa, R.: “An empirical evaluation of PLTIGs”; 36th Annual Meeting

of the ACL; 557–563; ACL, Stroudsburg, PA, US, 1998.

[Hwa 2001] Hwa, R.: Learning probabilistic lexicalized grammars for NLP; Ph.D.

thesis; Harvard University; Cambridge, MA, US (2001).

1033Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

[Joshi et al. 1975] Joshi, A. K., Levy, L. S., Takahashi, M.: “Tree adjunct gram-

mars”; Journal of computer and system sciences; 10 (1975), 1, 136–163.

[Klakow 1998] Klakow, D.: “Log-linear interpolation of language models”; Int.

Symp. on Chinese Spoken Language Processing; 1695–1698; ISCA, 1998.

[Lamere et al. 2003] Lamere, P., Kwok, P., Walker, W., Gouvea, E., Singh, R.,

Raj, B., Wolf, P.: “Design of the CMU Sphinx-4 decoder.”; 8th European

conference on speech communication and technology; ISCA, 2003.

[Maletti 2015] Maletti, A.: “Finite-state technology in NLP”; 20th Int. Conf. on

Implementation and Application of Automata, Ume̊a, Sweden; Ume̊a, Sweden,

2015.

[Mohri 1997] Mohri, M.: “Finite-state transducers in language and speech pro-

cessing”; Computational Linguistics; 23 (1997), 2, 269–311.

[Petrov 2012] Petrov, S.: Coarse-to-Fine Natural Language Processing; Theory

and Applications of Natural Language Processing; Springer Verlag, Berlin

Heidelberg, 2012.

[Resnik 1992] Resnik, P.: “Probabilistic tags as a framework for statistical nlp”;

14th Conf. on Computational Linguistics; 418–424; ACL, Stroudsburg, PA,

US, 1992.

[Schabes and Waters 1993] Schabes, Y., Waters, R. C.: “Lexicalized context-free

grammars”; 31st Annual Meeting on ACL; 121–129; ACL, Stroudsburg, PA,

US, 1993.

[Schabes and Waters 1994] Schabes, Y., Waters, R. C.: “Tree insertion grammar:

a cubic-time parsable formalism that lexicalizes context-free grammar with-

out changing the trees produced”; Technical Report 13; Mitsubishi Research

Laboratories; Cambridge, MA (1994).

[Shieber and Schabes 1990] Shieber, S. M., Schabes, Y.: “Synchronous tree-

adjoining grammars”; 13th Conf. on Computational Linguistics; 253–258;

ACL, Stroudsburg, PA, US, 1990.

[The Google Books Team 2010] The Google Books Team: “Quantitative analysis

of culture using millions of digitized books”; Science; (2010).

1034 Bjoerklund J., Cleophas L., Karlsson M.: An Evaluation ...

