
PsiLight: a Lightweight Programming Language to
Explore Multiple Program Execution and Data-binding

in a Web-Client DSL Evaluation Engine

Enrique Chavarriaga
(Universidad Autónoma de Madrid, Madrid, Spain

enrique.chavarriaga@inv.uam.es)

Francisco Jurado
(Universidad Autónoma de Madrid, Madrid, Spain

francisco.jurado@uam.es)

Fernando Díez
(Universidad Autónoma de Madrid, Madrid, Spain

fernando.diez@uam.es)

Abstract: Domain-Specific Languages (DSLs) allow building software applications by
simplifying the labour of both software engineers and domain experts thanks to the abstraction
provided by a high-level code. Introducing a DSL in the software development process requires
the use of technologies and frameworks in the design and implementation activities. If we are
restricted to web-client applications, then XML-based languages and JavaScript frameworks
and widgets are commonly used and combined in order to provide fast, robust and flexible
solutions. Under this scenario, we have developed the PsiEngine, an interpreter able to evaluate
programs coded in high-level XML-based DSLs (XML-DSLs) to provide solutions to domain
specific problems within a web-client application. Thus, the goal of this article is to detail how
we have built PsiLight, a lightweight programming language that runs on web-client. PsiLight
supposes the exploratory case study we have conducted to check some features of PsiEngine,
namely: multiple programs execution and data-binding capabilities in our interpreter.

Keywords: Domain-Specific Language, XML, XML Interpreter, JavaScript, Web Application,
XML Programing Language, Data Access Object
Categories: D.1.5, D.2.3, D.2.6, D.3.3

1 Introduction

Under a standard perspective, XML allows storing auto-documented information as
well as structured data interchange [Fawcett, 12]. As metalanguage, XML provides
elements to enrich the web page presentation model (e.g., SVG, SMIL or MathML).
From a server-side perspective, we can find XML-based solutions that integrate data
models, graphic user interface models, access-control models, etc. (e.g. ASP.NET,
JSP or JSF).

On the other hand, Domain-Specific Languages (DSLs) provide a high-level
abstraction approach in order to model specifications, structures and functionalities to
solve domain-specific problems. The goal of a DSL is to make easier the design, the

Journal of Universal Computer Science, vol. 23, no. 10 (2017), 953-968
submitted: 31/7/17, accepted: 15/10/17, appeared: 28/10/17 © J.UCS

definition and the implementation of systems by allowing domain experts to better
perform their tasks and building high quality and reliable systems in order to provide
domain-specific solutions [Voelter, 13]. In this sense, Fowler [Fowler, 10] describes a
DSL as a Computer Programming Language of limited expressiveness and useful
only if it is focused on a small domain.

If we reduce the scope to build DSL approaches for web-client, we can find
solutions like Jison, which generates JavaScript parsers for text-based DSLs [Carter,
09]. However, the Jison’s main drawback while managing text-based DSLs is that
developers must modify the generated code in order to obtain the final parser.
Another alternative is to use the browser features to create plugins that perform this
task, but it is just a browser-dependent solution.

Opposite to general text-based DSLs, the development and implementation of
DSLs that follows XML-based grammars are easy to handle on a web-client. They are
extensible and combinable, and also they can be processed as a DOM and
manipulated with the JavaScript language. Thus, high-level XML-based languages
that encapsulate a lot of functionality can be built, and we can faster create more
robust and flexible solutions by joining them with other languages, widgets and
frameworks. Furthermore, we can apply security policies and good programming
practices in order to have safer and reliable DSL [Kern, 14][Yue, 13].

Under this context, we developed PsiEngine [Chavarriaga, 17], an evaluation
engine that provides the necessary tools to implement and deploy XML-DSLs on the
web-client. This engine includes the PsiXML Interpreter to evaluate programs written
in DSLs, and also can bind information from either XML or JSON formats, and to
execute inline JavaScript code.

The aim of this work is to detail the exploratory case study we have conducted to
check how the PsiEngine can execute multiple programs and to perform data-binding
with external resources. Thus, we have followed the qualitative case study
methodology suggested in [Yin, 14] and adapted for software engineering [Baxter,
08] to test specific features in our engine. Hence, we will show how we have used the
PsiEngine working methodology for the implementation of an XML-DSL on web-
client. The developed DSL is PsiLight, a lightweight programming language that
allows defining variables, functions, classes, instances and JavaScript blocks code.
This case study combines XML, JavaScript, external resource binding and the
inherent characteristics of the Psi Languages supported by PsiEngine. Also, the
PsiLightWeb application will be presented as a lightweight development environment
for the PsiLight language.

The rest of the paper is organized as follows. In section 2 an overview of the
already existent tools for the development of DSL is introduced. Section 3 provides
the general settings of the Psi Engine Evaluation and the Psi languages and
components family. In section 4, we will formalize and implement the PsiLight
language and also present the PsiLightWeb application. Finally, in the last section,
some concluding remarks will be detailed.

2 Related works

In the literature, the term Domain-Specific Language (DSL) is not rigorously defined.
In [Fowler, 10] describes it as «a computer programming language of limited

954 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

expressiveness focused on a particular domain». On her part, 0 centers on the concept
of abstraction, defining it as «a cognitive process of the human brain that enables us
to focus on the core aspects of a subject, ignoring the unnecessary details».

Briefly, both authors agree that a DSL is a programming language that targets
specific problem domains. In such way, their syntax and semantics contain the same
level of abstraction determined by the problem domain and aims to implement
information systems that provide solutions to that problem.

In [Kosar, 16] we can find a Systematic Mapping Study (SMS) on DSLs to
identify research trends in the period 2006-2012. Their authors looked for possible
open issues and an analysis on what they called demographics of the literature. In
their SMS study, the authors observed that the DSL community appears to be more
interested in the development of new techniques and methods that support the
different phases of the development process (analysis, design and implementation) of
DSLs, rather than researching new tools, and only a small portion of studies focus on
validation and maintenance. In addition, the authors observed that most of the works
do not indicate the tools they utilized for the implementation. In the field of DSLs, we
can mention some impressive works like [Sánchez, 09] ModelSec, a generative
architecture for managing security requirements, from the requirement elicitation to
the implementation stage; and ASD [Vara, 12], a DSL toolkit for modeling the
structural part of Abstract Service Descriptions.

Building a DSL solution involves the use of tools for the implementation of
interpreters and compilers, by using scanners and parsers generators like Lex and
Yacc [Brown, 92] or Flex and Bison [Levine, 09] to create them. However,
nowadays, widely used Integrated Development Environments (IDE) such as Eclipse
and Visual Studio .NET, provide tools and languages specifically designed to
implement DSL. Thus, we can highlight several plugins for the Eclipse environment,
such as Spoofax [Kats, 09], Antlr [Parr, 13], Xtext [Betinni, 13] and Eclipse Modeling
Project [Gronback, 09]. In .NET framework we can mention DSL Tools 0 and Boo
[Rahien, 10]. Additionally, it is also possible to develop DSL languages by taking
advantage of programming language features like in the cases of Groovy [Dearle, 10]
and Clojure [Kelker, 13], or alternative approaches like pyparsing using Python
[McGuire, 07], the C# based Virtual Machine VM framework [Kourie, 08], or
Aspects-oriented programming [Kniesel, 09].

To create DSLs approaches able to run in a web-client, we have solutions like
Jison as well the PsiXML interpreter. Jison generates JavaScript parsers for text-based
DSLs [Carter, 09]. Some examples are CoffeScript [Lee, 12], and js-sequence-
diagrams [Carter, 10]. On the other hand, the PsiXML interpreter [Chavarriaga, 17]
produces parsers directly in the web client for XML-based languages, by using DOM
and the JavaScript language. PsiXML can binding XML and JSON information, and
also executes inline code, i.e., programming statements written in the languages
natively inherited.

3 The PsiEngine for building XML-DSLs

As briefly introduced, our starting point relies on the Programmable Solutions
Interpreter Engine, noted as PsiEngine [Chavarriaga, 17]. PsiEngine implements,
evaluates, interprets and executes XML-DSL code within the web-client. The

955Chavarriaga E., Jurado F., Diez F.: PsiLight ...

PsiEngine uses HTML5, CSS3, JavaScript and DOM together with technologies,
services and tools from Web 2.0 [Anderson, 12] and the specification of XML-DSL
grammars in order to build web components, widgets, and dynamic web sites to give
the solution to specific web application problem or a part of it.

Figure 1 summarizes the main concepts from [Chavarriaga, 17]. As we can see,
the PsiEngine takes as input the source code written in an XML-DSL. These
programs are what we call PsiCode. Then the PsiXML Interpreter (denoted as
PsiXML) evaluates the PsiCode in order to dynamically build a specific kind of
JavaScript object we call PsiObject, which can be used in the web application.

The PsiXML is a generic lightweight JavaScript framework (it works fine in
every web browser device) that process and evaluates programs written in
PsiLanguage [Chavarriaga, 17]. A PsiLanguage is an XML-DSL that has a specific
document structure, i.e. XML tags, and their corresponding associated functionality,
with the ability to bind to XML and JSON information sources natively as well as to
execute inline JavaScript code.

Figure 1: Programmable Solutions Interpreter Engine (PsiEngine) that
allows executing PsiPrograms

PsiLanguages have similarities with other XML-based languages. To specify and
use the different XML-DSLs in the web-client, we follow the same approach of other
XML-based languages, such as XSL, SVG, MathML, etc. In summary, all of them are
intended to enrich the content of web pages by defining an XML grammar, where
each XML element has its own semantic implemented by the corresponding
associated functionality to achieve its objective once interpreted by the web-client.
However, in spite of native code the interpreter into current Web-Browsers or

956 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

utilizing plugins, and PsiEngine perform all the analysis directly using the language
specifications that come from the server, and that can dynamically change. In this
way, the PsiEngine efficiently manages new XML-DSLs, associates the functionality
corresponding to their semantic, and provides a working environment that facilitates
their evaluation.

The PsiEngine launches the PsiXML interpreter and registers the PsiLanguages to
use. The execution of a ௞ܲ program in the PsiEngine consists of parsing the PsiCode
(ܵ௞ source file), fetching the corresponding information sources (e.g. via AJAX) and
evaluating the program in the PsiXML. To evaluate a program in the PsiXML
consists of parsing the source code and evaluate the associated JavaScript code is for
each element in the DOM. In the end, it is obtained a specific ܱ௞ JavaScript object
(PsiObject) is obtained, which provides the solution to a Domain-Specific problem in
a web application. The PsiXML can evaluate multiple programs written in different
PsiLanguages allowing information, functionality and object exchange in a shared
area called PsiData.

A PsiGrammar (see Figure 1), can be regarded as a tuple with the tag set for a
PsiLanguage, the root tag, and the grammatical language structure. Formally, a
PsiGrammar ॳ for an XML-DSL can be defined by a tuple:

 ॳ = (1) ۧ߂|ݐ݋݋ܴ|ॻۦ
where ॻ = ሼܴݐ݋݋, ܶܽ݃ଵ, ܶܽ݃ଶ, … , ܶܽ݃௠ሽ is the tag set for a PsiLanguage, been ܴݐ݋݋
the root tag, and ߂ the grammatical language structure.

A PsiLanguage (see Figure 1), can be considered as a tuple with a PsiGrammar,
a reusable component called PsiComponent and composed by a set of classes that
implement the functionality associated with the tags, and the bindings between tags
and classes. Formally, a Psi Language	ॷ, can be noted as a tuple:

ॷ߂ = 〈ॳ|ॶ|ॻ ↔ ℂ〉 (2)
where Δ௜ ∈ Δ is an object specified by: ߂௜ = ሼTAG: :CHILDREN	,்ݒ :MULTIPLICITY	ு,ݒ :STRICT	ெ,ݒ :VALIDATOR	ௌ,ݒ ௏ሽ (3)ݒ
where	ॳ is the Psi Grammar defined in (1). The reusable PsiComponent ॶ is the
solution to the problem. The classes set ℂ = ሼݏݏ݈ܽܥଵ, … , ௡ሽ contained in ॶ areݏݏ݈ܽܥ
the classes that implement the functionality associated with the language tags, i.e., ॻ ↔ ℂ are bindings between ܶܽ݃௞ and class ݏݏ݈ܽܥ௞, for each ܶܽ݃௞ ∈ ॻ and ݏݏ݈ܽܥ௞ ∈ ℂ. For more details see [Chavarriaga, 17] (please consult
http://www.github.com/echavarriaga/PsiEngine).

Additionally, the PsiLanguage Structure Diagram (PsiLSD), is the graphical
representation of the grammatical structure. In that diagram, it is connected to the root
tag and its corresponding class. For every tag from the PsiGrammar, we have the tag
multiplicity, the associated class, the list of children tags with their corresponding
associated classes; and the strict validation (i.e. other tags are not allowed or not is
required). On the other hand, the PsiGrammar Attributes Validator (PsiGVA)
specifies the attributes validation for every tag. Both PsiLSD and PsiGVA simplify
the specification of language for PsiXML. For more details see [Chavarriaga, 16]
[Chavarriaga, 17].

To simplify the creation of PsiLanguages. We have the PsiModel, which allows
defining PsiGrammars and implementing PsiComponents, as well as other JavaScript

957Chavarriaga E., Jurado F., Diez F.: PsiLight ...

components (please consult http://www.github.com/echavarriaga/PsiModel).
To apply the PsiModel while building PsiLanguages, we have got a lightweight

development environment called PsiEnvironment. This environment implements
several features including code autocompleting for PsiModel, JavaScript, XML,
HTML and CSS languages. It also has a visual component for online display of
PsiLSD diagrams, UML Class diagrams as well as source code. Once the
PsiLanguage is defined and implemented, the PsiEnvironment will automatically
generate all the JavaScript code [Chavarriaga, 17] to evaluate and run the DSL.

The necessary steps to design and implement the PsiComponents can be
summarized according to the following steps:

i. Create the PsiLSD and specify PsiGVA.
ii. Create the UML Class Diagram for the PsiComponent.
iii. Implement the PsiComponent within the PsiEnvironment.
iv. Perform functional tests for the PsiComponent.

Taking advantages of the dynamical nature and features of the PsiEngine and its
PsiModel, in the next section, we will detail two PsiLanguages to build dynamic SVG
diagrams, in order to provide an approach to building solutions for creating DSVL for
web-client.

4 Case study: PsiLight Programing Language

The PsiLight Language is a DSL that follows an XML-based grammar for creating
variables, functions, classes and JavaScript code blocks. FRAGMENT 1 shows an
example of a piece of code written in PsiLight. In this fragment, we can see a program
called hello-program. This program has a variable called hello with a string
associated. Then a function called Greet is defined, with just one argument called
message. The JavaScript code associated with this function is alert(message).
Finally, the program specifies a code block where the Greet function is called with a
specific parameter.

FRAGMENT 1. Example of a piece of code implemented in PsiLight.
<?xml version="1.0" encoding="utf-8"?>
<Program name="hello-program">
 <Var name="hello">"Hello World!!"</Var>
 <Function name="Greet"
arguments="message">alert(message);</Function>
 <Block>Greet(hello);</Block>
</Program>

4.1 PsiLight Specification

Thus, starting from a tuple as previously defined in (1), we can specify the PsiLight
Grammar, as follows: ॳ௉௦௜௅௜௚௛௧ = ൻॻ௉௦௜௅௜௚௛௧หܲ݉ܽݎ݃݋ݎห߂௉௦௜௅௜௚௛௧ൿ
where tags set

958 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

ॻ௉௦௜௅௜௚௛௧ = ൜ Program, Var, Function, Block,Class, Properties,Method, Instanceൠ,
tag root is Program, and Δ௉௦௜௅௜௚௛௧ = ൛ݐ௜: ௜ݐ௜ห߂ ∈ ॻ௉௦௜௅௜௚௛௧ൟ.

Figure 2(a) shows the PsiLSD (graphical representation for Δெ௜௡௜௉௦௜) of the
PsiLight Language and Figure 2(b) shows the PsiGVA of the PsiLight Grammar. In
that figure, we can summarize that the root tag Program is the beginning of the
program. Then, we can define: variables (multiple Var tags), functions (multiple
Function tags), classes (multiple Class tags), class instances (multiple Instance tags)
and JavaScript execution blocks (multiple Block tags). The Class tag can contain a
Properties tag to define the list of properties, and multiple Method tags to define
their methods.

Figure 2: (a) PsiLSD of the PsiLight Language. (b) PsiGVA of the PsiLight
Language

4.2 PsiLight Component

In Figure 3, is shown the class diagram for PsiLight Component. The Program class
defines the body of the program. We can define a module to encapsulate the
definitions of variables, functions, and classes. Thus, Var class defines the behavior
associated with the Var tag. DFunction class defines the functionality related to the
Function and Method tags. Block class has the responsibility to execute the JavaScript
code contained within the Block tag. The Class class defines a JavaScript class and
has properties (an instance of Properties class) and methods (multiple instances of
DFunction class). The Properties class manages the properties, which are the
attributes and their JavaScript values from the Properties tag. The Instance class

959Chavarriaga E., Jurado F., Diez F.: PsiLight ...

represents an instance of the defined class. The reader is encouraged to look up the
detailed implementation of the PsiLight Component in http://hilas.ii.uam.es/psilight or
http://www.github.com/echavarriaga/PsiEngine.

In summary, if ℂ௉௦௜௅௜௚௛௧ = ൜ܲ݉ܽݎ݃݋ݎ, ,ݎܸܽ ,݊݋݅ݐܿ݊ݑܨܦ ,ݏݏ݈ܽܥ,݇ܿ݋݈ܤ ,ݏ݁݅ݐݎ݁݌݋ݎܲ ݁ܿ݊ܽݐݏ݊ܫ ൠ,
such that ॶ௉௦௜௅௜௚௛௧ = ℂெ௜௡௜௉௦௜⋃ሼPsiLightParserሽ.

Moreover, the classes associated set is:

ॻ௉௦௜௅௜௚௛௧ ↔ ℂ௉௦௜௅௜௚௛௧ = ൞ Program ↔ ,݉ܽݎ݃݋ݎܲ Var ↔ Function,ݎܸܽ ↔ ,݊݋݅ݐܿ݊ݑܨܦ Block ↔ Class,݇ܿ݋݈ܤ ↔ ,ݏݏ݈ܽܥ Properties ↔ Method,ݏ݁݅ݐݎ݁݌݋ݎܲ ↔ ,݊݋݅ݐܿ݊ݑܨܦ Instance ↔ ൢ݁ܿ݊ܽݐݏ݊ܫ

By (2), the PsiLight Language it is defined as: ॷ௉௦௜௅௜௚௛௧ = 〈ॳ୔ୱ୧୐୧୥୦୲|ॶ௉௦௜௅௜௚௛௧|ॻ௉௦௜௅௜௚௛௧ ↔ ℂ௉௦௜௅௜௚௛௧〉

Figure 3: Class diagram for the PsiLight Component

4.3 Examples Programming

To better understand the concepts explained above, we contribute a couple of
examples, namely PsiLI and PsiCA languages, featuring a Psi Language. Thus,
suppose we have some information from people like in XML code shown in
FRAGMENT 2, and then we write the code shown in FRAGMENT 3, which defines a
Context that includes information from these people.

960 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

FRAGMENT 2. File “people.xml”
<?xml version="1.0" encoding="utf-8"?>
<People>
 <Person id="p1" first="Luke" last="Skywalker" age="25"/>
 <Person id="p2" first="Obi-Wan" last="Kenobi" age="45"/>
</People>

FRAGMENT 3. Context for people from file “people.xml”
var context = {
 people: PsiXML.loadXMLSync(“people.xml”)
}

Then, FRAGMENT 4 shows a PsiLight Program based on PsiLI and PsiCA
languages. The Var tag sets the psi-context attribute to call the PsiLI language. As a
result, the context object takes the people field, seeking the person identification p1
(jQuery selector Person[id=p1]) and assigns it to the variable data info, adding it to
the instance of the class associated with Var tag. It should be noticed that psi-context
(Context information) and psi-document (Psi Data information) attributes are
reserved, and both are available natively for all tags in any Psi Language.

The attribute value from the Var tag, in FRAGMENT 4, applies the PsiCA, and then
the info is obtained. The value for the variable person would "Luke Skywalker", and
the value for the variable age would be "20". From here, after evaluating the Block
tag a message "Luke Skywalker has 20 years" will be shown.

FRAGMENT 4. Using PsiLI and PsiCA microlenguajes in PsiLight programs
<?xml version="1.0" encoding="utf-8"?>
<Program name="person-program">
 <Var name="person"
 psi-context="people:info=Person[id=p1]"
 value="$='{{info.first}} {{info.last}}'"/>
 <Var name="age"
 psi-context="persons:info=Person[id=p1]"
 value="$@info.age"/>
 <Block>alert(person+" has "+age+" years");</Block>
</Program>

A different application of PsiLI and PsiCA in PsiLight is to specify access to data
from an XML file by using the Data Access Object (DAO) design pattern, so that the
properties of the class can be obtained directly from XML data sources. Hence,
FRAGMENT 5 is the instance class that implements access to XML data and creates an
instance of the class properly.

Just like the class, the variables and functions parameters can be obtained directly
from XML data sources. Examples are shown in “Associating XML data” on
PsiLightWeb application.

961Chavarriaga E., Jurado F., Diez F.: PsiLight ...

FRAGMENT 5. Using PsiLI and PsiCA micro-lenguages for DAO design pattern
<?xml version="1.0" encoding="utf-8"?>
<Program name="person-class" module="MyModule">
 <Class name="Person" arguments="first, last"
 module="Users">
 <Properties first="first|s:@first" last="last|s:@last"
 age="null|i:@age" alias="null|s:@alias"/>
 <Method name="fullName" arguments="">
 return this.first+" "+this.last;
 </Method>
 </Class>
 <Instance psi-name="p2" psi-class="Users.Person"
 data-context="people:info=Person[id=p2]"
 psi-key="info"/>
 <Block>alert("Hello "+p2.fullName()+"!!");</Block>
</Program>

4.4 PsiLightWeb Development Environment

In Figure 4 we can see the web-based application for the PsiLight interpreter that we
have developed. In http://hilas.ii.uam.es/psilight/examples it can be explored some
examples. This page illustrated with examples (fragments including this paper) the
basics elements of PsiLight language and association XML information. Available a
set of classes and implemented in PsiLight language is implemented to create a simple
graphic environment with graphic elements of HTML canvas.

In Figure 4, the “API Documentation” option shows the detailed implementation
documentation PsiLight Language. The “Examples” option is the page in Figure 4
shown, and has the following tabs:
 Files. It contains a list of examples of PsiLight programs grouped in Basic

Examples, Associating XML Data and Figures.
 Program. It is the PsiLight program's editor. The "New" option creates a new

program. The "Execute" option evaluates the program on PsiEngine. And
“Context” option, XML file edit in the context and use in different programs.

 Result Text. This text output for PsiLight programs. The
output.Print(message) JavaScript function is used for this purpose.

 Result Canvas. This graphical output for PsiLight programs (HTML canvas).

962 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

Figure 4: PsiLightWeb Application: examples PsiLight Language

5 PsiLight Project: validation of the implementation

The PsiLight Project define and implement the PsiLight Component in PsiModel
[Chavarriaga, 17]. Table 1 summarizes the PsiEngine project files. There are two files
written in PsiModel Languages, with up to 303 lines of code in Psi Language that
generate a total of 532 lines in JavaScript in the PsiLight.js file. This data means a
conciseness ratio of 1.8. A PsiLight Project viewer is available in
http://hilas.ii.uam.es/project?m=PsiLight.

 PsiModel JS generated code Conciseness
Components MPsi MIPsi PSILOC File SLOC PSILOC/SLOC

PsiLight
73

(1 file)
233

(1 files)
303

(2 files)
PsiLight.js 534 1.8

Note: MPsi: Psi languages specification; MIPsi: Psi component implementation. PSILOC: total Psi lines of code;
SLOC: JavaScript generated lines.

Table 1: Grapher Project components summary

Figure 5 shows a snapshot of the PsiLight Project metrics automatically
generated by the PsiEnvironment. We would like to add that the average cyclomatic

963Chavarriaga E., Jurado F., Diez F.: PsiLight ...

complexity CNN for the functions/methods of the project gives a value of “simple
functionalities” (CNN<10 according to [McCabe, 76]), the Maintainability Index MI
is appropriated (MI>85 according to [Oman, 91]) and the commented lines of code
CLOC are moderate (19.6%). Moreover, the time needed to implement or to
understand a program rounds minor one day (14.3 hours according to Halstead Time
[Halstead, 77]).

Figure 5: PsiLight metrics summary provided by the PsiEnvironment

Finally, in Figure 6 shows the software metrics [McCabe, 76] [Nguyen, 07]
[Tahir, 12] at the elements programming level in the PsiLight Project (7 classes and 1
parser), the results of the metrics are summarized: a good MI, a simple CNN, and the
elements are within the limits of the number of estimated error HB, ie. HB<2. These
results can be seen directly in the PsiLight Project.

Figure 6: Software metrics snapshot for the components of the PsiLight
Project generated by PsiEnvironment

964 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

To conclude, Figure 7 displays the Maintainability Index (MI) for the PsiLight
Component in addition to those components and frameworks used for these
components and PsiLightWeb Application. As can be seen, all components and
frameworks have good Maintainability (>85). The components developed from
PsiModel, such as Graphs and Paint, are at the same level as renowned frameworks
like CKEditor, Codemirror, and PsiEngine. The computing of the MI metric for
different frameworks (CKEditor, Codemirror y jQuery) has been made with the
JSComplexity tool (http://jscomplexity.org).

Figure 7: MI for PsiLight Component and frameworks used in
PsiLightWeb Application

6 Conclusions

Building DSLs to provide abstraction with high-level code involves the use of tools
for the implementation of interpreters and compilers. However, as we have shown,
there are few approaches to build web-client web DSL alternatives.

Along with this article, we have shown the Programmable Solutions Interpreter
Engine (PsiEngine) that allows building web components, web widgets and/or
dynamic web pages that provide solutions to specific problems in web applications.
This engine includes the PsiXML Interpreter, which can evaluate programs coded in
high-level XML-DSLs within a web-client application, and also can bind information
from either XML or JSON formats, and to execute inline JavaScript code.

Thus, to check if the PsiEngine can execute multiple programs and to perform
data-binding with external resources, we have detailed the exploratory case study we
have conducted. To do so, we have shown how we have used the PsiEngine working
methodology for the implementation of PsiLight, an XML-DSL for web-client.
PsiLight is a lightweight programming language that allows defining variables,
functions, classes, instances and JavaScript blocks code. This case study combines
XML, JavaScript, external resource data-binding and the native characteristics of the
Psi Languages supported by PsiEngine. Furthermore, along with the case study, the
PsiLightWeb application has been presented as a lightweight development
environment for the PsiLight language.

As a result, we have probed how our approach allows building XML-DSLs

105

108

115

113

105,5

98,5

104,8

0 10 20 30 40 50 60 70 80 90 100 110 120

Codemirror 5.3

CKEEditor 4.5

jQuery 2.1

jQuery UI 1.10

PsiEngine

PsiModel

PsiLight

Maintainability Index MI Good

965Chavarriaga E., Jurado F., Diez F.: PsiLight ...

solutions for web-client, since the developed engine can execute multiple programs
written in the corresponding DSL, and furthermore it can perform data-binding with
external resources. Also, the languages natively implemented together with its
dynamical nature, makes possible to define and deploy new DSL solutions as required
once the PsiEngine is running.

To facilitate the implementation of Psi Languages in the PsiEngine, we have used
the PsiModel and the PsiEnvironment. The PsiModel is a programming model based
on two Psi Languages: MPsi (specification language) and MIPsi (implementation
language). For its part, the PsiEnvironment is a lightweight development environment
that includes using full features such as code autocompleting, software metrics
computation, diagrams displaying, etc.

Acknowledgments

This work has been partially supported by the DSVL-B2T research and development
department from the B2T-Concept Company (http://www.b2tconcept.com/), and by
the Ministry of Economy and Competitiveness (in Spanish Ministerio de Economía y
Competitividad) through the project Flexible Model-Driven Engineering for Mobile,
Open, Dynamic Data Systems REF: TIN2014-52129-R. The examples shown have
been produced using B2T's technology and are reproduced with the permission of
B2T.

References

[Anderson, 12] Anderson, P.: Web 2.0 and Beyond: Principles and Technologies, Chapman
and Hall/CRC, London 2012.

[Baxter, 08] Baxter, P & Jack, S.; Qualitative Case Study Methodology: Study Design and
Implementation for Novice Researchers, The Qualitative Report, vol. 13(4), 544-599,
December 2014, http://www.nova.edu/ssss/QR/QR13-4/baxter.pdf

[Betinni, 13] Betinni, L.: Implementing Domain-Specific Languages with Xtext and Xtend,
Packt Publishing Ltd, Birmingham, UK, Chapter 1, 2013.

[Brown, 92] Brown, D., Levine, J. & Mason, T., Lex & Yacc (2nd ed.), O'Reilly Media, Inc,
1992.

[Carter, 09] Carter, Z.: Jison, 2009, http://www.json.org/.

[Carter, 10] Carter, Z.: JS sequence diagrams, 2010, http://jison.org/.

[Chavarriaga, 17] Chavarriaga, E., Jurado, F., Díez, F.: An Approach to Build XML-based
Domain Specific Languages Solutions for Client-Side Web Applications, Computer
Languages, Systems & Structures, vol. 49, p. 133-151, 2017,
DOI: https://doi.org/10.1016/j.cl.2017.04.002;.

[Chavarriaga, 16] Chavarriaga, E., Jurado, F., Díez, F.: PsiEngine, March, 2016,
http://hilas.ii.uam.es/api.

[Cook, 10] Cook, S., Jones, G., Kent, S. & James, D.: Domain-Specific Development with
Visual Studio DSL Tools, Addison-Wesley Professional, 1-23, 2010.

966 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

[Dearle, 10] Dearle, F.:. Groovy for Domain-Specific Languages, Packt Publishing Ltd,
Birmingham, UK, Chapter 1, 2010.

[Fawcett, 12] Fawcett, J., Quin, L. & Ayers, D.: Beginning XML (5th. ed.). Wrox Press, Part
III, V and VII, 2012.

[Fowler, 10] Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 21-27,
2010.

[Ghosh, 10] Ghosh, D.: DSLs in Action, Manning Publications, Greenwich, CT, USA, 9-15,
2010.

[Gronback, 09] Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, Addison-Wesley Professional, 2009.

[Halstead, 77] Halstead, M. Elements of Software Science, The Computer Science Library,
New York, 1977.

[Kelker, 13] Kelker, R.: Clojure for Domain-specific Languages, Packt Publishing Ltd,
Birmingham, UK, Chapter 1, 2013.

[Kern, 14] Kern, C.: Securing the tangled web, Commun, ACM vol. 57 (9), 38-47, September
2014.

[Kniesel, 09] Kniesel, G., Winter, V., Siy, H. & Zand, M.: Making aspect-orientation accessible
through syntax-based language composition, IET Software. IEEE, vol. 3(1), 1-13, 2009.

[Kosar, 16] Kosar, T., Bohra, S., Mernik, M.: Domain-Specific Languages: A Systematic
Mapping Study, Information and Software Technology, vol. 71, 77-91, 2016.

[Kourie, 08] Kourie, D.G., Fick, D. & Watson, B.W.: Virtual machine framework for
constructing domain-specific languages, IET Software. IEEE, vol. 3(3), 219-237, 2008.

[Lee, 14] Lee, P.: CoffeeScript in Action, Manning Publications Co., Greenwich, CT, USA,
Chapter 1, 2014.

[Levine, 09] Levine, J.: Flex & Bison, O'Reilly Media, Inc, 2009.

[McCabe, 76] McCabe, T.: A Complexity Measure, IEEE Transactions on Software
Engineering. SE-2:4, 308-320, 1976.

[McGuire, 07] McGuire, P.: Getting Started with Pyparsing, O'Reilly Media Inc, 2007.

[Nguyen, 07] Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A SLOC Counting Standard.
University of Southern California, Center for Systems and Software Engineering, 2007,
http://sunset.usc.edu/csse/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf.

[Oman, 91] Oman, P.W., Hagemeister, J., Ash, D.: A Definition and Taxonomy for Software
Maintainability, Technical Report, University of Idaho, Software Engineering Test Laboratory,
Moscow, 1991.

[Parr, 13] Parr, T.: The Definitive ANTLR 4 Reference (2nd ed.), Pragmatic Bookshelf,
Raleigh, NC, USA, Part 1, 2013.

[Rahien, 10] Rahien, A.: DSLs in Boo: Domain-Specific Languages in .NET. Manning
Publications Co, Greenwich, CT, USA, Chapter 3-4, 2010.

[Sánchez, 09] Sánchez, O., Molina, F., García-Molina, J., Toval, A.: ModelSec: A Generative
Architecture for Model-Driven Security, Journal of Universal Computer Science, vol. 15 (15),
2957-2980, 2009.

967Chavarriaga E., Jurado F., Diez F.: PsiLight ...

[Tahir, 12] Tahir, A., MacDonell, S.G.: A systematic mapping study on dynamic metrics and
software quality, Trento, s.n., 326-335, 2012.

[Vara, 12] Vara, J., Andrikopoulos, V., Papazoglou, M., Marcos, E.: Towards Model-Driven
Engineering Support for Service Evolution, Journal of Universal Computer Science, vol. 18
(17), 2364-2382, 2012.

[Visser, 08] Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering.
Generative and Transformational Techniques in Software Engineering II: Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, 291-373, 2008.

[Voelter, 13] Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser,
E. & Wachsmusth, G.: DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages, Dslbook.org, 23-38, 2013.

[Yin, 14] Yin, R.K.: Case Study Research: Design and Methods (5st ed.), Sage Publications,
Inc, London, United Kingdom, 2014.

[Yue, 13] Yue, C. & Wang, H. (2013). A measurement study of insecure javascript practices on
the web. ACM Transaction Web, vol 7(2), Article 7, 1-39 pages, May 2013.

968 Chavarriaga E., Jurado F., Diez F.: PsiLight ...

