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Abstract: We propose general rules for higher inductive types with non-dependent
and dependent elimination rules. These can be used to give a formal treatment of data
types with laws as has been discussed by David Turner in his earliest papers on Mi-
randa [Turner(1985)]. The non-dependent elimination scheme is particularly useful for
defining functions by recursion and pattern matching, while the dependent elimina-
tion scheme gives an induction proof principle. We have rules for non-recursive higher
inductive types, like the integers, but also for recursive higher inductive types like
the truncation. In the present paper we only allow path constructors (so there are no
higher path constructors), which is sufficient for treating various interesting examples
from functional programming, as we will briefly show in the paper: arithmetic modulo,
integers and finite sets.

Key Words: Functional Programming, Homotopy Type Theory, Higher Inductive
Types

Category: D.3.1, F.4.m

1 Introduction

Already in the early days of programming it has been observed that type systems

can help to ensure certain basic correctness properties of programs. For example,

type systems can prevent the confusion of an integer value for a string value

inside a memory cell. Much research and literature has since been devoted to

type systems that allow more and more properties of programs to be checked,

while retaining decidability of type checking, see [Pierce(2002), Pierce(2004)].

The very idea of using types to ensure some basic correctness properties

stems from the realm of logic, namely from the monumental project of Russell

and Whitehead [Whitehead and Russell(1912)] to find a logical foundation of

mathematics. Since then, type systems had not been very successful in logic

until Martin-Löf proposed a type system, now called Martin-Löf type theory

(MLTT), that gives a computational reading to intuitionistic higher-order logic
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[Martin-Löf(1975), Martin-Löf(1982), Nordström et al.(1990)] based on Russell’s

theory of types [Russell(1996)]. This turned type systems from tools to merely

ensure correctness properties into first-class logics.

The main idea underlying MLTT is that terms (i.e., programs) can be used

inside types, we say that MLTT has dependent types. For example, given two

terms s, t, one can form a type s = t. Its inhabitants, that is terms of type s = t,

should be thought of as proofs for the identity of s and t. It was then also realized

that dependent types can be used to give even stronger correctness specifications

of programs. For instance, suppose we can form for a type A and natural number

n a type Vec A n, the elements of which are lists over A of length n. This type

allows us, for instance, to write a safe function head: Vec A (n + 1) → A that

returns the first element of a given list. Hence, dependent types allow us to

establish statically verifiable invariants based on runtime data.

Invariants as the one described above are very useful, but we often want to

express more sophisticated invariants through types. An example is the type

Fin(A) of finite subsets of a given type A. Finite sets are generated by the

empty set, the singleton sets and the union of two sets together with a bunch

of equations for these operations. For instance, the empty set should be neutral

with respect to the union: ∅∪X = X = X ∪∅. In many programming languages

this would be implemented by using lists over A as underlying type and exposing

Fin(A) through the three mentioned operations as interface. The implementation

of these operations then needs to maintain some invariants of the underlying

lists, such that the desired equations hold. If these equations are used to prove

correctness properties of programs, then the programmer needs to prove that

the interface indeed preserves the invariants. This is a laborious task and is thus

very often not carried out. So we may ask to what extent data types can be

specified by an interface and invariants.

A possible extension of type systems to deal with this are quotient types.

These are available in a few functional programming languages, for example

Miranda [Turner(1985)], where they are called algebraic data types with associ-

ated laws [Thompson(1986), Thompson(1990)]. On the other hand, in the proof

assistant NuPRL quotient types are implemented using squash types and non-

determinism [Nogin(2002)]. In dependent types they have been introduced in a

limited form in [Barthe and Geuvers(1995)], where they are called congruence

types, and in [Hofmann(1995)]. Quotient types are fairly easy to use but have

a major drawback: quotients of types whose elements are infinite, like general

function spaces, often require some form of the axiom of choice, see for ex-

ample [Chapman et al.(2015)]. Moreover, quotient types detach the equational

specification of a data type from its interface, thus making their specification

harder to read. This is because the type and its equality are defined separately.

Both problems can be fixed through by using of higher inductive types
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[Lumsdaine and Shulman(2012), Lumsdaine(2011), Sojakova(2015)], and some

examples are given in [The Univalent Foundations Program(2013)]. A limited

form of higher inductive types has been proposed in [Altenkirch et al.(2016)]

where they are defined using dialgebras. These are inductively constructed types,

but unlike inductive types, one can also specify propositional equalities in their

definition. So, there are not just term constructors, but also path constructors,

and the elimination rule also depends on the constructors for the path.

In this paper, we propose a general scheme for higher inductive types (HITs)

with non-dependent and dependent elimination rules and associated computa-

tion rules. We demonstrate our scheme through the use of HITs as replacement

for quotient types in programming by studying some illustrative examples. We

begin with arithmetic on integers modulo a fixed number. This example serves

as an introduction to the concept of higher inductive types, and the structures

and principles that are derived from their specification. Next, we give several de-

scriptions of the integers and study their differences. Especially interesting here

is that the elements of two HITs can be the same but the equality of one type

can be decidable whereas that of the other is not. The last example we give are

finite subsets of a given type. We show how set comprehension for finite sets can

be defined. All the examples are accompanied with proofs of some basic facts

that illustrate the proof principles coming with higher inductive types.

The rest of the paper is structured as follows. We first give in Section 2 a

brief introduction to Martin-Löf type theory and the language of homotopy type

theory, as far as it is necessary. Next, we introduce in Section 3 the syntax for

the higher inductive types we will use throughout the paper. This is based on the

Master’s thesis of the third author [van der Weide(2016)], which also discusses

the semantics of HITs that are not recursive in the equality constructors. In

the following sections we study the mentioned examples of modulo arithmetic

(Section 4), integers (Section 5) and finite sets (Section 6). We close with some

final remarks and possibilities for future work in Section 7.

The results have been formalized in Coq using the homotopy type theory

library in [Bauer et al.(2016)].

2 Martin-Löf Type Theory and Homotopy Type Theory

In this section, we introduce the variant of Martin-Löf type theory (MLTT)

[Nordström et al.(1990)] that we are going to use throughout the paper, and we

introduce homotopy type theory [The Univalent Foundations Program(2013)].

This type theory has as type constructors dependent function spaces (also known

as Π-types), dependent binary products (aka Σ-types), binary sum types (co-

products) and identity types. Later, in Section 3, we will extend the type theory

with higher inductive types, which will give us some base types like natural

numbers.
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Next, we will restate some well-known facts about MLTT and the identity

types in particular. The properties of identity types lead us naturally towards

the terminology of homotopy theory, which we discuss at the end of the section.

2.1 Martin-Löf Type Theory

We already argued in the introduction for the usefulness of dependent type

theories, so let us now come to the technical details of how to realize such a

theory. The most difficult part of defining such a theory is the fact that contexts,

types, terms and computation rules have to be given simultaneously, as these

rules use each other. Thus the following rules should be taken as simultaneous

inductive definition of a calculus.

We begin by introducing a notion of context. The purpose of contexts is to

capture the term variables and their types that can be used in a type, which

makes the type theory dependent, or a term. These can be formed inductively

by the following two rules.

� · Ctx

� Γ Ctx Γ � A : Type

� Γ, x : A Ctx

Note that in the second rule the type A may use variables in Γ , thus the order

of variables in a context is important. We adopt the convention to leave out the

empty context · on the left of a turnstile, whenever we give judgments for term

or type formations.

The next step is to introduce judgments for kinds, types and terms. Here,

the judgment Γ � A : Type says that A is a well-formed type in the context Γ ,

while Γ � t : A denotes that t is a well-formed term of type A in context Γ . For

kinds we only have the following judgment.

� Γ Ctx

Γ � Type : Kind

To ease readability, we adopt the following convention.

Notation 1. If we are given a type B with Γ, x : A � B : Type and a term

Γ � t : A, we denote by B[t] the type in which t has been substituted for x. In

particular, we indicate that B has x as free variable by writing B[x].

The type formation rules for dependent function spaces, dependent binary

products and sum types, and the corresponding term formation rules are given

as follows. To avoid duplication of rules, we use � to denote either Type or
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Kind. Thus, we write Γ �M : � whenever M is a type or the universe Type.

Γ, x : A �M : �

Γ � (x : A)→M : �

Γ, x : A � B : Type

Γ � (x : A)×B : Type

Γ � A,B : Type

Γ � A+B : Type

Γ, x : A �M : � Γ, x : A � t :M

Γ � λx.t : (x : A)→M

Γ, x : A �M : � Γ � t : (x : A)→M Γ � s : A

Γ � t s :M [s]

Γ � t : (x : A)×B[x]

Γ � π1 t : A

Γ � t : (x : A)×B[x]

Γ � π2 t : B[π1 t]

Γ � t : A Γ � s : B[t]

Γ � (t, s) : (x : A)×B[x]

j ∈ {1, 2} Γ � t : Aj

Γ � inj t : A1 +A2

Γ, z : A+B �M : � Γ, x : A � t :M [in1 x] Γ, y : B � s :M [in2 y]

Γ � {in1 x �→ t ; in2 y �→ s} : (z : A+B)→M

If Γ � A,B : Type, then we write A → B and A × B instead of (x : A) → B

and (x : A)×B, respectively.

Note that we can obtain two kinds of function spaces: A → B for a type

B and A → Type. The latter models families of types indexed by the type A.

Also note that the elimination rule for the sum type gives us what is called large

elimination, in the sense that we can eliminate a sum type to produce a new

type by case distinction. For instance, later we can define the unit type 1 as an

inductive type and then a type family

X = {in1 x �→ A ; in2 y �→ B} : 1+ 1→ Type,

such that X t reduces to either A or B, depending on t.

Next, identity types and their introduction and elimination terms are given

by the following rules.

Γ � A : Type Γ � s, t : A

Γ � s = t : Type

Γ � t : A
Γ � refl t : t = t

Γ, x : A, y : A, p : x = y � Y : Type Γ � t : (x : A)→ Y [x, x, refl x]

Γ � Jx,y,p(t) : (x y : A)→ (p : x = y)→ Y [x, y, p]

Higher inductive types will allow us to add more constructors, besides refl, to

identity types. This will, surprisingly so, not affect the elimination principle

given by J . The J-rule does not imply uniqueness of identity proofs, so it is also

valid if there are other equality proofs. We discuss as part of the introduction to

homotopy type theory.
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To be able to evaluate computations in MLTT, we introduce a rewriting

relation −→ on terms and types [Nordström et al.(1990)]. This rewriting relation

is given on terms as the compatible closure of the following clauses.

(λx.t)s −→ t[s/x]

πk (t1, t2) −→ tk

{in1 x1 �→ t1 ; in2 x2 �→ t2} (ink s) −→ tk[s/xk]

Jx,y,p(t) s s (refl s) −→ t s

On types, the reduction relation is obtained as the compatible closure of

s −→ t
Y s −→ Y t

Let us denote the relation for reductions in either direction by←→:=←− ∪ −→.

That is to say, we have s ←→ t if either s −→ t or t −→ s. Moreover, we

obtain definitional equivalence, denoted by ≡, as the equivalence closure of the

rewriting relation. Since definitionally equal terms are considered to carry the

same information, we use the following conversion rule that allows us to mix

rewriting steps in types with type checking.

Γ � X,Y : Type Γ � u : X X ←→ Y

Γ � u : Y
(1)

By repeatedly applying this rule, we can also replace X ←→ Y by X ≡ Y in it.

Let us now establish some facts about identity types, which will prove very

useful later and are also relevant to the discussion of homotopy type theory.

First of all, we can prove that the identity is symmetric and transitive, thus an

equivalence relation. In type theoretical terms we establish that for each type

A there are terms symmA and transA, as indicated below. We also say that the

corresponding types are inhabited.

symmA : (x y : A)→ (x = y)→ (y = x)

transA : (x y z : A)→ (x = y)→ (y = z)→ (x = z)

Proof. To demonstrate a typical use of the J-rule, let us prove transitivity by

giving the corresponding term transA. We put

Y [x, y, p] := (z : A)→ (y = z)→ (x = z)

t := λx z q.q,

so t : (x : A)→ (z : A)→ (x = z)→ (x = z), hence t : (x : A)→ Y [x, x, refl x].

These definitions give us then that

Jx,y,p(t) : (x y : A)→ (x = y)→ (z : A)→ (y = z)→ (x = z),

thus

transA := λx y z q.Jx,y,p(t) x y q z

is of the correct type. 
�
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In a similar spirit, one can use the J-rule to also prove the following facts

about identity types.

Proposition 2. Let X � Type : and x : X � Y [x] : Type be types. There are

terms of the following types.

� ap : (f : X → Y )→ (x y : X)→ x = y → f x = f y

� transport : (x y : X)→ x = y → Y [x]→ Y [y]

The latter we abbreviate to

p∗ := transport x y p.

This allows us to define a term

� apd : (f : (x : X)→ Y [x])→ (x y : X)→ (p : x = y)→ p∗(f x) = f y.

We also can derive the following definitional equivalences for these terms

ap f t t (refl t) ≡ refl (f x)

transport t t (refl t) s ≡ refl s

apd f t t (refl t) ≡ refl (f x)

Note that the names “ap” and “apd” stand for “apply” and “dependent

apply”, respectively. Also, note that transport is Leibniz’ law.

Since the kind of equality that occurs in the type of apd appears frequently

in the following, we use the more symmetric notation

s =Y
p t := (p∗ s) = t,

where x : X � Y [x] is a type, x, y : X, s : Y [x], t : Y [y] and p : x = y, so this

denotes an equality in the type Y [y].

Using this notation, apd has the following type.

� apd : (f : (x : X)→ Y [x])→ (x y : X)→ (p : x = y)→ f x =Y
p f y

We abbreviate ap f x y p by ap(f, p) and apd f x y p by apd(f, p).

2.2 Homotopy Type Theory

We have discussed several types now, and most of these have a clear meaning.

For example, product types should be seen as the type of pairs. For the identity

type, however, it is more complicated. An inhabitant p : a = b is supposed to be

a proof that a and b are equal.
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In homotopy type theory types T are seen as spaces X, inhabitants x : X

are seen as points of X, and inhabitants p : a = b are seen as paths between the

points a and b. The path refl a is interpreted as the constant path. For example,

the type N is the space with points xn for every natural number n, and the only

paths are constant paths. But we could also look at types in which there are

more paths from a to b. For example, we could look at the interval which has

two points 0 and 1 and a path seg between 0 and 1. Now there are two paths

from 0 to 0, namely the constant path, but we can also first go from 0 to 1 via

seg and then go back.

This seems rather boring now, because the most common types in type theory

just have a trivial interpretation. They just consist of points, and we cannot find

any non-constant path. However, one of the important features of homotopy

type theory is higher inductive types which allow us to add paths to types.

Even though new paths are added, the J-rule will still hold. For normal spaces

this is not strange: the J-rule says how every constant path is mapped which is

sufficient to define a map.

There are also two other features of homotopy type theory, but they do not

play a major role in this paper. These are function extensionality and univalence.

Univalence roughly says that isomorphic types are equal, and using this axiom

one can prove function extensionality.

Before studying higher inductive types in Section 3, we first need to introduce

some preliminary facts. For given s, t, u : A, p : s = t and q : t = u we denote

the corresponding symmetry and transitivity proofs by

p−1 := symmA s t p

p • q := transA s t u p q.

These can be interpreted as operations on paths. The path p−1 is made by

reversing p, and the path p • q is the path which starts by walking along p and

then q. Again we abbreviate apd(f, x, y, p) by apd(f, p).

It is often required in homotopy type theory to compute the map p∗ more

concretely, and we shall do so as well. For a proof, we refer the reader to The-

orem 2.11.3 in [The Univalent Foundations Program(2013)]. It is expressed as a

composition of paths which is easier to determine in concrete situations.

Proposition 3. Let A and B be types and f, g : A → B be function terms.

Furthermore, suppose that we have inhabitants a, a′ : A and paths p : a = a′ and

q : f a = g a. There is a path of type

p∗(q) = ap(f, p)−1 • q • ap(g, p),

where p∗ transports along Y := f x = g x.
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3 Higher Inductive Types

Regular inductive types are usually specified by their constructors, which then

give rise to canonical elimination principles, in the form of recursion or induction,

and the corresponding computation principles. A higher inductive type (HIT)

can additionally be equipped with path constructors for that type. The examples

discussed in this paper just require paths between points, so our syntax will be re-

stricted to this case and will not allow constructors for paths between paths. A se-

mantical justification of this syntax has been proposed in [van der Weide(2016)].

There, the semantics is given for non-recursive higher inductive types, that is,

HITs in which the path constructors do not quantify over the HIT that is being

defined.

As already mentioned, a higher inductive type T can have regular data con-

structors and path constructors. Data constructors can take as argument a poly-

nomial over T , which is the first notion we introduce in this section. Afterwards,

we introduce a special kind of terms, called constructor terms, that will be al-

lowed in the path constructors. These two definitions will then allow us to give

(dependent) elimination principles and well-behaved computation rules for HITs.

The syntax of higher inductive types consists of two parts. First, we have the

standard inductive type with a number of point constructors. On top of that,

higher inductive type allow the specification of paths between elements of that

type. Thus, we need to devise a syntax for adding path constructors between

two elements of the type at hand.

We begin by introducing polynomial type constructors that allow us to give

well-behaved constructor argument types. They ensure that a (higher) inductive

type given in our syntax is strictly positive. To ease readability in the following

definitions, we use the following notations for terms t : A→ C and s : B → D.

idA := λx.x : A→ A

t× s := λx.(t (π1 x), s (π2 x)) : A×B → C ×D

t+ s := {in1 x �→ in1 (t x) ; in2 y �→ in2 (s y)} : A+B → C +D

Definition 4. Let X be a variable. We say that F is a polynomial (type con-

structor) if it is given by the following grammar.

F,G ::= A : Type | X | F ×G | F +G

For a type B, we denote by F [B] the type that is obtained by substituting B

for the variable X and interpreting × and + as type constructors. Let H be a

polynomial and f : B → C be a term. We define a term H[f ] : H[B] → H[C],

the action of H on f , by induction in H as follows.

A[f ] := idA (F ×G)[f ] := F [f ]×G[f ]

X[f ] := f (F +G)[f ] := F [f ] +G[f ] �
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Remark. The notion of polynomial could be generalized to that of contain-

ers [Abbott et al.(2005)] or in the sense of [Gambino and Kock(2013)]. However,

we stick to the above simple definition to make the development, especially the

lifting to type families, more accessible.

To give the dependent elimination principle for higher inductive types, we

need to be able to lift polynomials to type families (predicates) and maps between

them. This is provided by the following definition.

Definition 5. Suppose F is a polynomial type constructor. We define a lifting

of F to type families as follows. Let � U : B → Type be a type family, then we

can define � F (U) : F [B]→ Type by induction:

A(U) := λx. A (F ×G)(U) := λx. F (U)(π1 x)×G(U)(π2 x)

X(U) := U (F +G)(U) := {in1 x �→ F (U)x ; in2 y �→ G(U) y}

Moreover, given a term f : (b : B) → U b → V b we define another term

H(f) : (b : H[B])→ H(U) b→ H(V ) b again by induction in H:

A(f) := λb. idA (F ×G)(f) := λb. F (f)(π1 b)×G(f)(π2 b)

X(f) := f (F +G)(f) := {in1 x �→ F (f) x ; in2 y �→ G(f) y}

A special case that we will use frequently is the choice U = 1, which allows us

to obtain H(f) : (b : H[B])→ H(V ) b from f : (b : B)→ V b. �

The correctness of this definition, that is, the typings announced in Defini-

tion 5 are valid, is proved by induction in the polynomial H[X].

Next, we give a preparatory definition for path constructors that allow us

to specify paths between two terms of the type at hand. To be able to give

type-correct computation rules, these terms must be, however, of a special form,

called constructor terms. Such constructor terms are built from a restricted

term syntax, possibly involving the data constructors and an argument for the

corresponding path constructor. We introduce constructor terms in the following

definition, for which we assume the type theory introduced in Section 2.1 to be

extended by the variable X as base type.

Definition 6. Let k be a positive natural number, and let H1, . . . , Hk be poly-

nomials and c1 : H1[X] → X, . . . , ck : Hk[X] → X be constants. We say that r

is a constructor term (over c1, . . . , ck), if there is a context Γ in which no type

uses X, a variable x that does not occur in Γ , and polynomials F [X] and G[X],
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such that x : F � r : G can be derived using the following rules.

� t : A X does not occur in A
x : F � t : A x : F � x : F

x : F � r : Hi[X]

x : F � ci r : X

j ∈ {1, 2} x : F � r : G1 ×G2

x : F � πj r : Gj

j = 1, 2 x : F � rj : Gj

x : F � (r1, r2) : G1 ×G2

j ∈ {1, 2} x : F � r : Gj

x : F � inj r : G1 +G2

If x does not occur in r, we say that r is a non-recursive constructor term. �

Remark. We could have extended the type theory in Section 2.1 with constants

c1, . . . , ck and use restricted terms of that theory as constructor terms. Again,

to make the following development more accessible, we stick to the explicit def-

inition given above.

We now extend MLTT with higher inductive types. To this end, we devise a

scheme, whose syntax is similar to the syntax for inductive types in Coq, that

allows us to introduce a new type with data constructors and path constructors.

For this type we then have an elimination rule in form of dependent iteration

(induction) and the corresponding computation rules. Higher inductive types

that can be introduced through this scheme are of a restricted form, in that

we only allow data and path constructors, but no constructors for higher paths.

These are sufficient for the present exposition.

Definition 7. A higher inductive type is given according to the following scheme.

Inductive T (B1 : Type) . . . (B� : Type) :=
| c1 : H1[T B1 · · ·B�] → T B1 · · ·B�

. . .
| ck : Hk[T B1 · · ·B�] → T B1 · · ·B�

| p1 : (x : A1[T B1 · · ·B�]) → t1 = r1
. . .
| pn : (x : An[T B1 · · ·B�]) → tn = rn

Here, all Hi and Aj are polynomials that can use B1, . . . , B�, and all tj and rj
are constructor terms over c1, . . . , ck with x : Aj � tj , rj : T . If X does not occur

in any of the Aj , then T is called non-recursive and recursive otherwise. �

We now give the rules that extend the type theory given in Section 2.1 with

higher inductive types, according to the scheme given in Definition 7.

Definition 8 (MLTT with HITs, Introduction Rules). For each instance

T of the scheme in Definition 7, we add the following type formation rule to

73Basold H., Geuvers H., van der Weide N.: Higher Inductive Types ...



those of MLTT.

Γ � B1 : Type · · · Γ � B� : Type

Γ � T B1 · · ·B� : Type

For the sake of clarity we leave the type parameters in the following out and

just write T instead of T B1 · · ·B�. The introduction rules for T are given by the

following data and path constructors.

� Γ Ctx

Γ � ci : Hi[T ]→ T
� Γ Ctx

Γ � pj : Aj [T ]→ tj = rj
�

The dependent elimination rule for higher inductive types provides the in-

duction principle: it allows to construct a term of type (x : T ) → Y x for

Y : T → Type. In the hypothesis of the elimination rule we want to assume

paths between elements of different types: the types Y (tj) and Y (rj). Concretely

we will assume paths q as follows

q : (x : A)→ t̂ =Y
p x r̂

where p is the path constructor of T meaning that p : (x : A)→ t = r and t̂ : Y t

and r̂ : Y r. We need to define t̂ by induction on t to state this hypothesis in the

elimination rule. This is done in the following definition.

Definition 9. Let ci : Hi[X] → X be constructors for T with 1 ≤ i ≤ k as in

Definition 7. Note that each constructor term x : F � r : G term immediately

gives rise to a term x : F [T ] � r : G[T ]. Given a type family U : T → Type and

terms Γ � fi : (x : Hi[T ])→ Hi(U)x→ U(ci x) for 1 ≤ i ≤ k, we can define

Γ, x : F [T ], hx : F (U) x � r̂ : G(U) r

by induction in r as follows.

t̂ := t x̂ := hx ĉi r := fi r r̂

π̂j r := πj r̂ ̂(r1, r2) := (r̂1, r̂2) ̂inj r := r̂ �

It is straightforward to show that this definition is type correct.

Lemma10. The definition of r̂ in Definition 9 is type correct, that is, we indeed

have Γ, x : F [T ], hx : F (U) x � r̂ : G(U) r under the there given assumptions.

We are now in the position to give the (dependent) elimination rule for higher

inductive types.
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Definition 11 (MLTT with HITs, Elimination and Computation). For

each instance T of the scheme in Definition 7, the following dependent elimina-

tion rule is added to MLTT.

Y : T → Type

Γ � fi : (x : Hi[T ])→ Hi(Y ) x→ Y (ci x) (for i = 1, . . . , k)

Γ � qj : (x : Aj [T ])→ (hx : Aj(Y ) x)→ t̂j =
Y
(pj x) r̂j (for j = 1, . . . , n)

Γ � T -rec(f1, . . . , fk, q1, . . . , qn) : (x : T )→ Y x

Note that t̂j and r̂j in the type of qj depend on all the fi through Defini-

tion 9. If all the fi and qj are understood from the context, we abbreviate

T -rec(f1, . . . , fk, q1, . . . , qn) to T -rec.

For every 1 ≤ i ≤ k we have a term computation rule for each t : Hi[T ]

T -rec (ci t) −→ fi t
(
Hi(T -rec) t

)
, (2)

and for every 1 ≤ j ≤ n we have a path computation rule for each a : Aj [T ]

apd(T -rec, pj a) −→ qj a
(
Aj(T -rec) a

)
. (3)

This has to be understood in the sense that we extend the reduction relation

introduced in Section 2.1 with the clauses in (2) and (3), then take the compatible

closure, and allow this extended reduction relation in the conversion rule (1). �

We can derive some simplifications of this definition for special cases of higher

inductive types. First of all, if a higher inductive type T is non-recursive, then

the elimination rule in Definition 11 can be simplified to

Y : T → Type

Γ � fi : (x : Hi[T ])→ Hi(Y ) x→ Y (ci x) (for i = 1, . . . , k)

Γ � qj : (x : Aj)→ t̂j =
Y
pj x r̂j (for j = 1, . . . , n)

Γ � T -rec(f1, . . . , fk, q1, . . . , qn) : (x : T )→ Y x

and the path computation rule becomes then

apd(T -rec, pj a) −→ qj a.

Second, if Y is also constant, that is, if there is D : Type with Y t ≡ D for all

t, then we obtain the non-dependent elimination or (primitive) recursion.

Γ � fi : Hi[T ]→ Hi[D]→ D (for i = 1, . . . , k)

Γ � qj : (x : Aj)→ t̂j = r̂j (for j = 1, . . . , n)

Γ � T -rec(f1, . . . , fk, q1, . . . , qn) : T → D

In this case, the path computation rules simplifies even further to

ap(T -rec, pj a) −→ qj a.
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An important property of reduction relations in type theories is that com-

putation steps preserve types of terms (subject reduction). To be able to show

subject reduction for MLTT + HIT presented here, we need the following lemma.

Lemma12. Let T be a higher inductive type and T -rec an instance of Defini-

tion 11. For all constructor terms x : F � r : G and terms a : F [T ] we have

G(T -rec) (r[a/x]) −→ r̂ [a/x, F (T -rec) a/hx].

Proof. This is proved by induction in r. 
�

Proposition 13. The computation rules in Definition 11 preserve types.

Proof. That the computation rules on terms preserve types can be seen by a

straightforward application of the typing rules on both sides of (2). For the

computation rules on paths, on the other hand, one can derive that

Γ � apd(T -rec, pj a) : T -rec (tj [a]) =
Y
pj a T -rec (rj [a])

and

Γ � qj a
(
Aj(T -rec) a

)
: t̂j [a,Aj(T -rec) a] =

Y
pj a r̂j [a,Aj(T -rec) a].

Using F = Aj and G = X, we obtain from Lemma 12 that

t̂j [a,Aj(T -rec) a] −→ T -rec (tj [a]).

Thus, by the conversion rule, we find that qj a
(
Aj(T -rec) a

)
actually has the

same type as apd(T -rec, pj a). 
�

4 Modular Arithmetic

Modular arithmetic is not convenient to define using inductive types. One would

like to imitate the inductive definition of N by means of constructors 0 for zero

and S for the successor. However, that will always give an infinite amount of

elements. If one instead defines N/mN by taking m copies of the type  with

just one element, then the definitions will be rather artificial. This way the usual

definitions for addition, multiplication or other operations, cannot be given in

the normal way. Instead one either needs to define them by hand, or code the

N/mN in N and make a map mod m : N→ N/mN.

For higher inductive types this is different because one is able to postulate

new identities. This way we can imitate the definition N, and then add an equality

between 0 and Sm 0. However, our definition for higher inductive types does not

allow dependency on terms. We can define N/2N, N/3N, and so on, but we

cannot give a definition for (m : N) → N/mN. Instead of defining N/mN in

general, we thus define N/100N which is not feasible to define using inductive

types. For other natural numbers we can give the same definition.
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Inductive N/100N :=
| 0 : N/100N
| S : N/100N → N/100N

| mod : 0 = S100 0

This is a nonrecursive higher inductive type, because the path 0 = Sn 0 does not

dependent on variables of type N/100N. The definition of N/100N gives us the

constructors 0 : N/100N, S : N/100N→ N/100N and mod : 0 = S100 0. Further-

more, we obtain for all type families Y : (x : N/100N) → Type the following

dependent recursion principle, which we refer to as induction to emphasize the

relation to induction on natural numbers.

z : Y 0 s : (x : N/100N)→ Y x→ Y (S x) q : 0̂ =Y
mod Ŝ

100 0

N/100N ind(z, s, q) : (x : N/100N)→ Y x

Remember 0̂ =Y
mod Ŝ

100 0 is defined by mod∗ 0̂ = Ŝ100 0 where we define the

transport mod∗ using Proposition 2.

We note that, with this z and s, 0̂ ≡ z and Ŝ100 0 ≡ s 99 (s 98 · · · (s 0 z) · · · )),

where n denotes Sn 0. Finally, we have the following computation rules

N/100N ind(z, s, q) 0 −→ z,

N/100N ind(z, s, q) (S x) −→ s x (N/100N ind(z, s, q) x),

apd(N/100N ind(z, s, q),mod) −→ q.

We will now demonstrate the use of the recursion principle by defining addi-

tion. To do so, we will need an inhabitant of the type (n : N/100N)→ n = S100n,

which means that for every n : N/100N we have an equality of type n = S100 n.

This can be derived from the definition of N/100N , as we demonstrate now.

Proposition 14. There is a term gmod: (n : N/100N)→ n = S100 n.

Proof. We define the type family Y : N/100N → Type by λn.n = S100 n.

To apply induction, we first need to give an inhabitant z of type Y 0 which is

0 = S100 0. Since mod is of type 0 = S100 0, we can take z := mod.

Next, we have to give a function s : (n : N) → Y n → Y (S n), hence s

must be of type (n : N) → n = S100 n → S n = S100 (S n). Thus, we can take

s := λnλq. ap(S, q).

Finally, we need to give an inhabitant of z =Y
mod Ŝ

100 0. To do so, we first

note that there is a path

Ŝ100 0 ≡ s 99 (s 98 · · · (s 0 z) · · · ) ≡ ap(S, ap(S, · · · ap(s,mod) · · · ))

= ap(λn.S100 n,mod),
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where we used that for all f, g, p there is a path ap(f ◦ g, p) = ap(f, ap(g, p)).

We can now apply Proposition 3 to f := id, g := λn.S100 n and p := q := mod

to obtain a path

mod∗(mod) = ap(id,mod)−1 •mod • ap(λn.S100 n,mod).

Since there is a path ap(id,mod) = mod, we thus obtain a path q

mod∗(mod) = ap(id,mod)−1 •mod • ap(λn.S100 n,mod)

= mod−1 •mod • ap(λn.S100 n,mod)

= ap(λn.S100 n,mod)

= Ŝ100 0,

so that q : z =Y
mod Ŝ

100 0, and gmod is given by N/100N ind(z, s, q). 
�

Using this proposition and recursion on N/100N, we can define addition as

function term + : N/100N→ N/100N→ N/100N . The recursion principle is, as

we have shown in Section 3, a special case of induction and amounts here to

z : Y s : Y → Y q : z = s100 z

N/100N-rec(z, s, q) : N/100N→ Y

with computation rules

N/100N-rec(z, s, q) 0 −→ z,

N/100N-rec(z, s, q) (S n) −→ s (N/100N-rec(z, s, q) n) and

ap(N/100N-rec(z, s, q), p) −→ q.

To define addition, we give for every n : N/100N a function fm, which represents

λx.x+m. So, letm : N/100N be arbitrary, and next we define fm using recursion.

For the inhabitant z of type N/100N we take m. Next we give a function s :

N/100N → N/100N which will be S. Lastly, we need to give a path between

m and S100 m, for which we can take gmod m by Proposition 14. This gives

us the desired function fm = N/100N(m,S, q m) : N/100N → N/100N. By the

computation rules we have

fm 0 = m, fm (S x) = S (fm x), ap(fm, p) = q m.

Hence, we can define + : N/100N→ N/100N→ N/100N by the function

λm : N/100Nλn : N/100N.fm n.
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5 Integers

Another interesting data type, which we will study, are the integers. These can

be defined as a normal inductive type, but also as a higher inductive type.

Both representations have their advantages and disadvantages. To define it as

an inductive type, we can do the same as in [Licata and Shulman(2013)]. We

first need to define an inductive type for the positive natural numbers. This

type is called Pos and has a constructors one : Pos and S : Pos→ Pos.

The inductive typed definition is the same as for the natural numbers (one

constant and one unary constructor), but we interpret it differently. For example,

for the type Pos we define addition in a different where one+one would be S one.

To clarify the distinction between the inductive types N we will sometimes write

SN for the successor of N and SPos for the successor of Pos. We have a function

i : Pos → N that reflects the semantics of Pos, sending one to SN 0 and SPos n

to SN (i n). In the reverse direction we have a function j : N→ Pos that reflects

the semantics of Pos, sending 0 and SN 0 to one and SN (SN n) to SPos (j (SN n)).

Now we can define the integers. We need a constructor for zero, and we need

constructors plus and minus which turn a positive number into an integer. All

in all, we get the following definition.

Inductive Z1 :=
| Z : Z1
| plus : Pos → Z1
| minus : Pos → Z1

We also have a recursion rule.

zY : Y plusY : Pos→ Y minusY : Pos→ Y

Z1-rec(z, plusY ,minusY ) : Z1→ Y

If we define the integers this way, then it is possible to define functions like

addition, and show that every number has an inverse. We can also show that

equality is decidable.

Definition 15. A type A is said to have decidable equality, if the type

(x y : A)→ (x = y) + ¬(x = y)

is inhabited, where as usual ¬T := T → 0 and 0 is the type with no constructors.

Proposition 16. The type Z1 has decidable equality.

The disadvantage of this definition is that we have to redefine everything

from the natural numbers to the positive numbers. Instead, one would like to

define the constructors plus and minus using natural numbers. This means that

we replace plus : Pos → Z1 by a constructor plus′ : N → Z2. However, if we
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define it this way, then the number 0 will be added twice. To solve this, we use

higher inductive types, because then we can add equalities as well. We use almost

the same definition, but in addition, we add an equality plus′ 0 = minus′ 0.

Inductive Z2 :=

| plus′ : N → Z2

| minus′ : N → Z2

| zero : plus′ 0 = minus′ 0

For this type we have two constructors, namely plus′ : N→ Z2 and minus′ :

N→ Z2. We also have a recursion rule.

plus′Y : N→ Y minus′Y : N→ Y zeroY : plus′ 0 = minus′ 0

Z2-rec(plus′Y ,minus′Y , zeroY ) : Z2→ Y

The computation rules say that

Z2-rec(plus′Y ,minus′Y , zeroY ) (plus
′ n) −→ plus′Y n,

Z2-rec(plus′Y ,minus′Y , zeroY ) (minus′ n) −→ minus′Y n,

ap(Z2-rec(plus′Y ,minus′Y , zeroY ), zero) −→ zeroY .

Now we have two types which should represent the integers, namely Z1 and

Z2. These types are related via an isomorphism.

Theorem17. We have an isomorphism Z1 � Z2.

Proof. We just show how to make the map g : Z2 → Z1. To make the function

g : Z2 → Z1, we use the map j : N → Pos defined before and the recursion

principle of the higher inductive type Z2. We need to say where plus′ n and

minus′ n are mapped to, and for that we define two functions. For the positive

integers, we define ϕ : N → Z1 which sends 0 to Z and SN n to plus (j (SN n)).

For the negative integers we define the map ψ : N→ Z1 which sends 0 to Z and

SN n to minus (j (SN n)). Finally, we need to give a path between ϕ 0 and ψ 0.

Note that by definition we have ϕ 0 ≡ Z and ψ 0 ≡ Z, and we choose refl Z. So,

we define g to be the map Z2-rec(ϕ, ψ, refl Z). 
�

The definition of Z2 also has a disadvantage, and to illustrate it, we try

to define + : Z2 × Z2 → Z2. To do so, we use induction on both arguments.

Now we need to give a value of +(plus′ n, plus′m) which is plus′(n +m). The

case +(minus′ n,minus′m) is easy as well, because this is just minus′(n + m).

However, defining +(plus′ n,minus′m) and +(minus′ n, plus′m) requires more

work. We need to compare the values of n and m in order to give this. In an

expression it would look like

+(plus′ n,minus′m) = if n > m then plus′(n−m) else minus′(m− n),
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+(minus′ n, plus′m) = if n > m then minus′(n−m) else plus′(m− n).

There is also another way to represent the integers as a higher inductive

type, which makes defining addition easier. The previous data types encoded

the integers by partitioning them into positive and negative numbers. However,

we can try to imitate the definition of the natural numbers. These have two

constructors, namely 0 and the successor function S. The integers should instead

have three constructors, namely 0, the successor S, and predecessor P . On top,

we need to ensure that S and P are inverses, which can be achieved by using

a higher inductive type as follows. As a matter of fact, this is basically the

treatment of the integers that Turner gives in [Turner(1985)].

Inductive Z3 :=
| 0 : Z3
| S : Z3 → Z3
| P : Z3 → Z3
| inv1 : (x : Z3) → P (S x) = x
| inv2 : (x : Z3) → S (P x) = x

For this type we have three constructors 0 : Z3, S : Z3→ Z3, and P : Z3→

Z3 for points, and we have two constructors inv1 : (x : Z3) → P (S x) = x and

inv2 : (x : Z3)→ S (P x) = x for paths. We also have a recursion rule

0Y : Y

SY : Y → Y

PY : Y → Y

invY,1 : (x : Y )→ PY (SY x) = x

invY,2 : (x : Y )→ SY (PY x) = x

Z3-rec(0Y , SY , PY , invY,1, invY,2) : Z3→ Y

This rule is derived from dependent elimination by taking the type family Y

to be constant, see the discussion after Definition 11. We also get the following

computation rules, where we denote Z3-rec(0Y , SY , PY , invY,1, invY,2) by Z3-rec:

Z3-rec 0 −→ 0Y , Z3-rec (S x) −→ SY (Z3-rec x),

Z3-rec (P x) −→ PY (Z3-rec x), ap(Z3-rec, inv1 x) −→ invY,1 (Z3-rec x),

ap(Z3-rec, inv2 x) −→ invY,2 (Z3-rec x).

One of the interesting features of homotopy type theory is proof relevance: not all

proofs of equality are considered to be equal. Let us look at the term P (S (P 0))

to demonstrate this. There are two ways to prove this term equal to P 0. We can

use that P (S x) = x, but we can also use that S (P x) = x. Hence, we have two

paths from P (S (P 0)) to P 0, namely inv1 (P x) and ap(P, inv2 (S (P 0))). Since

higher inductive types are freely generated from the points and paths, there is no

reason why these two paths would be the same. As a matter of fact, one would

expect them to be different which is indeed the case.

Proposition 18. The paths inv1 (P (S (P 0))) and ap(P, inv2 (S (P 0))) are not

equal.
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Before we give the proof, let us start with a proof sketch. In type theory

one can prove that the empty type 0 and the type 1 with just one element, are

different types. (That is, one can prove 0 �� 1.) One can also define a type family

(n : N)→ Y n sending 0 to 0 and S n to 1. This proves that 0 and S n are not

equal. More generally, this allows us to prove that different constructors of an

inductive type are indeed different.

However, for path constructors we cannot copy this argument. If we make a

family of types on Z3, then the paths inv1 and inv2 do not get sent to types.

Hence, the induction principle cannot be used in this way to show that inv1 and

inv2 are different. Instead we rely on the univalence axiom to prove this.

First we need a type for the circle. The definition can be given as a higher

inductive type.

Inductive S1 :=

| base : S1

| loop : base = base

The main ingredient here is that loop and refl are unequal. One can show this

by using the univalence axiom [Licata and Shulman(2013)]. To finish the proof

of Proposition 18, we define a function f : Z3 → S1 where the point 0 is sent

to base, the maps S and P are sent to the identity. Furthermore, we send the

path inv1 to refl and inv2 to loop. Using the elimination rule, we thus define f

as Z3-rec(base, id, id, refl, loop). Note that by the computation rules, f satisfies

f 0 −→ base, f (S x) −→ id (f x), f (P x) −→ id (f x),

ap(f, inv1) −→ refl, ap(f, inv2) −→ loop .

Now we can finish the proof of Proposition 18.

Proof. Our goal is to show that inv1 (P (S (P 0))) and ap(P, inv2 (S (P 0))) are

not equal, for which it is sufficient to show that ap(f, inv1 (P (S (P 0)))) and

ap(f, ap(P, inv2 (S (P 0)))) are not equal. From the computation rules we get

that ap(f, inv1 (P (S (P 0)))) ≡ refl. One can prove by path induction that there

is a path from ap(f, ap(g, p)) to ap(f ◦ g, p) for any f and g, thus the type

ap(f, ap(P, inv2 (S (P 0)))) = ap(f ◦ P, inv2 (S (P 0)))

is inhabited. Using the computation rules, we see that f ◦ P is just f , and thus

ap(f ◦P, inv2 (S (P 0))) is ap(f, inv2 (S (P 0))). Again we can use the computation

rules, and this time it gives that ap(f, inv2 (S (P 0))) ≡ loop. Hence, the paths

inv1 (P (S (P 0))) and ap(P, inv2 (S (P 0))) cannot be equal, because f sends

them to refl and loop respectively. 
�

Proposition 18 might not seem very interesting at first, but it actually has

some surprising consequences. For that we need to use Hedberg’s Theorem which
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says that in types with decidable equality there is only one proof of equality

[Hedberg(1998)].

Theorem19 Hedberg’s Theorem. If a type X has decidable equality, then

we have a term

s : (x y : X) (p q : x = y)→ p = q.

Using the contraposition from this theorem, we can thus immediately con-

clude that Z3 cannot have decidable equality.

Theorem20. The type Z3 does not have decidable equality.

This sounds odd at first sight, but all it means is that we cannot decide

equality just by using the induction scheme of Z3. There are two, quite similar

ways, to deal with this. We can either weaken the notion of decidable equal-

ity or we enforce that all the HITs, that are introduced through our scheme,

are sets [The Univalent Foundations Program(2013)]. Let us start with the first

possibility: weakening the notion of decidable equality. In (homotopy) type the-

ory, proofs of propositions are in general relevant, in the sense that we do not

just care about the existence of a proof but we are actually interested in the

witness. Recall from Proposition 18 that there are two different proofs of equal-

ity between P (S (P 0)) and P 0. Thus, proof relevance prevents equality to be

decidable on Z3. However, if we reason in a proof irrelevant way by neglecting

the fact that there might be several proofs for the same equality, then we obtain

merely decidable equality. To do so, we need the so-called truncation, which is

given by the following higher inductive type.

Inductive || || (A : Type) :=
| ι : A → ||A||
| p : (x y : ||A||) → x = y

The truncation comes with the recursion rule

ιY : A→ Y pY : (x, y : Y )→ x = y

||A||-rec(ιY , pY ) : ||A|| → Y

and computation rules

||A||-rec(ιY , pY ) (ι x) −→ ιY x,

ap(||A||-rec(ιY , pY ), p x y) −→ pY (|A||-rec(ιY , pY ) x) (|A||-rec(ιY , pY ) y).

In the truncation every element is equal, because we add for each x, y a path

p x y between them. Instead of the proposition x = y, we can now talk about

||x = y||. In the first type there are different proofs of equality, but in the second

every element is considered to be the same. We can solve the fact that Z3 does

not have decidable equality by truncating the identity type for Z3, as in the

following theorem.
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Theorem21. The type Z3 has a merely decidable equality, that is: the following

type is inhabited:

(x y : Z3)→ ||x = y||+ ||¬(x = y)||.

Thus, if we want to consider the proofs of identities in Z3 to be irrelevant, we

have to replace the type s = t by its truncation ||s = t|| everywhere. There are

two problems with that. First, this is very verbose, in that we need to introduce

the truncation everywhere, and maps out of Z3 with the truncated identity types

are given in terms of the recursion principles of both Z3 and the truncation.

Second, if we want to map Z3 with the truncated identity type to another type

A, then that type must also be a set, that is, also the identity types of A may

have at most one inhabitant.

Let us now study a different approach to solve the problem of decidability for

Z3. Since we do not consider higher inductive types with higher path constructors

in the present setting, we are morally just dealing with quotients. However, this

is not quite true, due to the fact that two paths might not be the same. For

example, Theorem 20 tells us that Z3 and Z2 are not isomorphic. To obtain

actual quotients, we need to require that each HIT definable in our setting is a

set, c.f. [The Univalent Foundations Program(2013), Sec. 11.3.1]. Thus, for every

HIT T defined by the scheme in Definition 7, we add a constructor

isSetT : (x y : T )→ (p q : x = y)→ p = q. (4)

Note that we would also need to extend the recursion scheme for HIT in Defini-

tion 11 to account for this new constructor, since the constructor isSetT needs

to be mapped to a corresponding term in the target type. If we add for each

HIT a constructor isSetT though, then every type is a set and we can keep the

original recursion scheme.

Lemma22. If for every higher inductive type T introduced by the scheme in

Definition 7 there is a constructor isSetT as in (4), then every type is a set.

Proof. The important property of sets is that they are preserved under the type

constructors in Section 2.1, see [The Univalent Foundations Program(2013), Sec

3.1 & Exerc. 3.2]. 
�

Forcing every HIT to be a set allows us to show that Z3 has decidable equality.

This theorem has been proved in the Coq formalization [van der Weide(2016)].

Theorem23. If every type is a set, then Z3 � Z2 and Z3 has decidable equality.

6 Finite Sets

The last type we study here is a data type for finite sets. In functional pro-

gramming it is difficult to work with finite sets. Often one represents them as
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lists on which special operations can be defined. This gives some issues in the

implementation, because different lists represent the same set and the definition

of a set-operation depends on the choice of the representative. For example, one

could remove the duplicates or not, and depending on that choice, functions on

the type will be different.

The use of higher inductive types allows to abstract from representation

details. The difference between sets and lists is that in a list the order of the

elements and the number of occurrences of an element matter, which does not

matter for sets. Higher inductive types offer the possibility to add equalities that

ignore the order of the elements and the number of occurrences. To demonstrate

this, let us start by defining Fin(A) in a similar way as [Bauer(2016)].

Inductive Fin( ) (A : Type) :=
| ∅ : Fin(A)
| L : A → Fin(A)
| ∪ : Fin(A)× Fin(A) → Fin(A)
| assoc : (x, y, z : Fin(A)) → x ∪ (y ∪ z) = (x ∪ y) ∪ z
| neut1 : (x : Fin(A)) → x ∪ ∅ = x
| neut2 : (x : Fin(A)) → ∅ ∪ x = x
| com : (x, y : Fin(A)) → x ∪ y = y ∪ x
| idem : (x : A) → L x ∪ L x = L x

Summarizing, the type of finite sets on A is defined as the free join-semilattice

on A. We abbreviate La to {a}. The constructors can be read from the definition,

but we give the recursion rule and the computation rules.

∅Y : Y

LY : A→ Y

∪Y : Y × Y → Y

aY : (x, y, z : Y )→ x ∪Y (y ∪Y z) = (x ∪Y y) ∪Y z

nY,1 : (x : Y )→ x ∪Y ∅Y = x

nY,2 : (x : Y )→ ∅Y ∪Y x = x

cY : (x, y : Y )→ x ∪Y y = y ∪Y x

iY : (x : A)→ LY x ∪Y LY x = LY x

Fin(A)-rec(∅Y , Ly,∪Y , aY , nY,1, nY,2, cY , iY ) : Fin(A)→ Y

In the following, we abbreviate Fin(A)-rec(∅Y , Ly,∪Y , aY , nY,1, nY,2, cY , iY ) to

Fin(A)-rec. The computation rules are as follows.

Fin(A)-rec ∅ −→ ∅Y , Fin-rec (L a) −→ LY a,

Fin-rec (x ∪ y) −→ ∪Y (Fin-rec x) (Fin-rec x).

To demonstrate the possibilities of this definition, we define the comprehen-

sion and intersection of sets. We first define “element of a set” as a relation

∈: A × Fin(A) → Bool. For this relation, we need to be able to compare el-

ements of A. This means that A must have decidable equality, so we assume

that there is a term of type (x y : A) → x = y + ¬x = y. By sending every

inhabitant of x = y to True and every inhabitant of ¬x = y to False, we get a
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function ==: A×A→ Bool which decides the equality. Using this notation we

can define ∈ (a, s) for a : A and s : Fin(A).

Definition 24. Let A be a type with decidable equality. We define the function

∈: A× Fin(A)→ Bool by recursion on Fin(A) as follows.

∈ (a, ∅) ≡ False, ∈ (a, {b}) ≡ a == b,

∈ (a, x ∪ y) ≡ ∈ (a, x) ∨ ∈ (a, y)

In the notation of the recursion principle, given a : A we define the function

Fin-rec : Fin(A) → Bool, where we use in the recursion scheme the auxiliary

functions ∅Bool := False, ∪Bool := ∨, and LBool := λb.a == b.

To finish the recursion, we need to give images of the paths assoc, neut1,

neut2, com, and idem. This is not difficult to do, and we demonstrate how to do

it for neut1. We need to give an inhabitant of type (x : Bool)→ x ∨ False = x.

That term can be given by using properties of Bool, and thus the path we choose

is refl. For neut2 we can do the same thing, and for the images of assoc, com, and

idem we use that ∨ on Bool is associative, commutative, and idempotent. �

We will denote ∈ (a, x) by a ∈ x. As seen in Definition 24, to make a map

Fin(A) → Y , we need to give images of ∅, L, and ∪, and then verify some

equations. Briefly said, we need to give a join semilattice Y and a map A→ Y .

This way we also define the comprehension.

Definition 25. We define { | } : Fin(A) × (A → Bool) → Fin(A). Let

ϕ : A→ Bool. We define {S | ϕ} : Fin(A) by recursion on S : Fin(A).

{∅ | ϕ} ≡ ∅, {{a} | ϕ} ≡ if ϕ a then {a} else ∅,

{x ∪ y | ϕ} ≡ {x | ϕ} ∪ {y | ϕ}.

Thus we use the recursion rule with ∅Y := ∅, LY a := if ϕ a then {a} else ∅,

and ∪Y := ∪. Moreover, we to check that ∪Y ≡ ∪ is associative, commutative,

has ∅Y ≡ ∅ as neutral element, and is idempotent. This is not difficult to check,

because we have all these equalities from the constructors. �

Using the comprehension, we can define more operators. For example, we can

define x ∩ y as {x | λa.a ∈ y}, and x \ y := {x | λa.¬(a ∈ y)}.

7 Conclusion

We have given general rules for higher inductive types, both non-recursive and

recursive, where we have limited ourselves to higher inductive types with path

constructors. This provides a mechanism for adding data-types-with-laws to
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functional programming, as it provides a function definition principle, a proof

(by induction) principle and computation rules. This fulfills at least partly the

desire set out in [Turner(1987)] to have a constructive type theory where compu-

tation rules can be added. The use of higher inductive types and their principles

was then demonstrated for typical examples that occur in functional program-

ming. Especially the case of finite sets usually requires a considerable amount of

book-keeping, which is lifted by the use of higher inductive types.

We believe that our system can be extended to include higher path construc-

tors. This requires extending the notion of constructor term and extending the t̂

construction. It would be interesting to see which examples that arise naturally

in functional programming could be dealt with using higher paths. Furthermore,

it also remains to establish whether these rules are strongly normalizing, satisfy

Church-Rosser and canonicity. The current definition defines HITs in type the-

ory rather than languages like Haskell and Miranda. Hence, an open problem is

incorporating HITs in Turing complete functional programming languages.

The system we have may seem limited, because we only allow constructor

terms t and r in the types of equalities t = q for path constructors. On the

other hand, for these constructor terms we can formulate the elimination rules

in simple canonical way, which we do not know how to do in general. Also, the

examples we have treated (and more examples we could think of) all rely on

constructor terms for path equalities, so these might be sufficient in practice.
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