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1 Introduction

To iterate is human, to recurse divine.

L Peter Deutsch

In 1968, K.E. Batcher introduced two related schemes for merging networks: the

bitonic merger and the merge exchange network. The former method requires

more comparisons but appears to be the more popular of the two [Batcher 1968].

Both are instances of comparison networks, which can only perform comparisons

between single pairs of inputs, but these operations can be executed in parallel.

The concept was originally devised for describing hardware implementations in

the 1950’s [Knuth 1998, OConnor and Nelson 1962] but is equally applicable

to parallel algorithms on multiple processors. The model has a rich underlying

theory and has become an active topic of research since its introduction. Pro-

cedures presented in this model are oblivious in the sense that the comparisons

they perform are independent of the input data.

The aim of this paper is to explore the design space for oblivious merging

systematically, starting from minimal assumptions. So, whilst most other formal

treatments of these algorithms have focused on correctness proofs, the emphasis

here is on derivation from first principles, with simultaneous verification. The
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result is a comprehensive overview of various schemes and presentations, with

the connections between them made precise.

In particular, our contribution is to show explicitly how the two mergers of

Batcher are derived by similar calculations from identical assumptions, differ-

ing only in one initial design decision. The effect of using different strategies to

divide the input are also explored and used to relate various rearrangements of

Batcher’s methods. Correctness proofs are often expressed in terms of the zero-

one principle [Knuth 1998]. The style adopted here favours the fundamental

monotonicity property of comparison networks instead, as the resulting proofs

and derivations are more enlightening. On a related note, we also find Batcher’s

notion of bitonicity dispensable—both mergers can be derived using monotonic-

ity alone. In summary, we show how the remarkable intuition of Batcher can be

explained in a methodical way through the judicious use of algebraic manipula-

tion.

Batcher’s mergers have been presented in a variety of sometimes compet-

ing styles. These can be roughly categorized along the following dimensions:

algebraic versus diagrammatic, imperative versus functional, recursive versus it-

erative, and sequential versus parallel. For this enterprise—deriving the mergers

from first principles—we found that an algebraic or functional style using recur-

sion equations as implementable specifications of the algorithms worked best.

This practice, now so routine for functional programmers, is part of the abun-

dant legacy of David Turner [Turner 1982]. His language designs, SASL, KRC,

and Miranda, emphasized elegance and clarity. We hope that our derivations

are in his spirit, conveying the beauty of the equational approach to algorithm

design.

We begin with some preliminary notation and background in Section 2. Then

we explore the design space for oblivious merging in Sections 3 and 4, deriving

two mergers in the process. We claim that the first is Batcher’s bitonic merger,

and Sections 5 and 6 are devoted to proving this claim. The second merger is

instantly recognizable from previous work [Hinze and Martin 2017a] as the merge

exchange scheme. Building on these mergers, Section 7 explores the design space

for oblivious sorting and relates the resulting schemes to the literature. Section 8

continues to review related work and, finally, Section 9 concludes.

2 Preliminaries

2.1 Lattices and order

Sorting networks work well if the underlying structure is a distributive lattice

instead of a total order. The output is not necessarily a permutation of the

input in this setting, but it is still an ordered, generalized permutation [Bove

and Coquand 2006]. We assume only the existence of a fixed partial order �
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and lattice operators meet ↓ and join ↑, which distribute over each other and are

defined by:

x � a ∧ x � b ⇐⇒ x � a ↓ b (1a)

a ↑ b � x ⇐⇒ a � x ∧ b � x (1b)

If a and b are comparable, then these operators are simply the minimum and

maximum. It is also useful to postulate that our lattices are bounded by a bottom

element ⊥ and a top element �:

⊥ � a ∧ a � � (2)

Algebraically, bottom is the unit of join and, dually, top is the unit of meet.

2.2 Sequences

We write sequences using angle brackets, e.g. 〈1〉 is a singleton sequence and

〈1, 3, 1, 2, 6, 4〉 is a sequence of length 6. For readability, we shall omit the angle

brackets on the singleton sequences 〈⊥〉 and 〈�〉. We construct sequences in two

ways: using concatenation and interleaving. In the former case, we have:

〈x0, . . . , xm−1〉 · 〈y0, . . . , yn−1〉 = 〈x0, . . . , xm−1, y0, . . . , yn−1〉

For emphasis, we write x ‖ y for x · y if both arguments have the same length

(or, are implicitly required to have the same length). Interleaving is defined for

equal-length arguments only:

〈x0, . . . , xn−1〉� 〈y0, . . . , yn−1〉 = 〈x0, y0, . . . , xn−1, yn−1〉

Together, these operators satisfy the following interchange law:

(u ‖ v)� (x ‖ y) = (u� x) ‖ (v � y) (3)

We also use both ‖ and � as patterns on the left-hand side of definitions: x ‖ y

is halving, dividing an input sequence into a lower half x and an upper half y ,

while x � y is uninterleaving, unzipping the input into the sub-sequence x of

elements at even positions and the sub-sequence y of elements at odd positions

(assuming sequence indexing starts from 0 not 1).

The first element of a sequence is denoted by head , and dually for the last

element, with tail and init the remaining parts respectively:

〈head x 〉 · tail x = x = init x · 〈last x 〉

For convenience, the lifting of binary relations, such as �, and functions, like

↓ and ↑, to sequences, is denoted by the same symbol as the original:

〈x0, . . . , xn−1〉R 〈y0, . . . , yn−1〉 ⇐⇒ x0 Ry0 ∧ · · · ∧ xn−1 Ryn−1

〈x0, . . . , xn−1〉 ⊕ 〈y0, . . . , yn−1〉 = 〈x0 ⊕ y0, . . . , xn−1 ⊕ yn−1〉
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Liftings interact with concatenation according to another interchange law:

(u⊕ v) · (x⊕ y) = (u · x)⊕ (v · y) (4)

provided that u has the same length as v , and x has the same length as y .

2.3 Ordered sequences

We can use the lifted order to capture that a sequence is ordered :

x ordered ⇐⇒ ⊥ · x � x · � (5)

Notice that if x is non-empty, then condition (5) is equivalent to init x � tail x .

Concatenations of non-empty sequences enjoy the split property :

x · y ordered ⇐⇒ x ordered ∧ last x � head y ∧ y ordered (6)

while interleavings enjoy the zig-zag property, so-called because of its pictorial

representation, see [Hinze and Martin 2017a]:

x � y ordered ⇐⇒ x � y ∧ ⊥ · y � x · � (7)

2.4 Comparison Networks

Merging and sorting networks are data oblivious algorithms in the sense that

the comparisons used to merge or sort a sequence are the same regardless of the

input data. Both are instances of comparison networks. The primary component

of such a network is a comparator, depicted as a box by Batcher, but more

commonly as a so-called Knuth diagram like that below, where horizontal lines

represent wires, and comparators are vertical connections. Data flows from left

to right along the wires. Each comparator outputs the smaller of its two input

values on the lower wire, and the larger value on the upper one:

a

b

a ↓ b

a ↑ b

In general, a comparison network consists of a number of horizontal wires, which

are vertically connected using comparators. Below are some examples of small

sorting networks for four inputs 〈a1, a2, a3, a4〉:

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4
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Note that many of the comparators can operate in parallel. Consider the second

diagram. From the layout we can easily infer that the first two and the last two

comparators can act in parallel. Perhaps less obviously, the same holds for the

two comparators in the middle. They are only drawn beside each other to avoid

overlapping wires. The diagrams below are alternative drawings of the second

and third network.

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4

We identify two diagrams if one can be transformed into the other by sliding

comparators horizontally, without moving connectors (depicted by filled circles)

past each other.

To illustrate the use of the combinators introduced in Section 2.2, we de-

fine two fundamental building blocks of merging and sorting networks: low-high

cleaners (also known as half-cleaners) and even-odd cleaners.

000

001

010

011

100

101

110

111

low-high–clean (x ‖ y)

=

(x ↓ y) ‖ (x ↑ y)

even-odd-clean (x � y)

=

(x ↓ y)� (x ↑ y)

000

001

010

011

100

101

110

111

Notice that the two cleaners are in a sense dual to each other: numbering the

inputs in binary (most significant digit first), the low-high cleaner connects in-

puts 0w and 1w, while the even-odd cleaner connects inputs w0 and w1.

Comparator networks enjoy a fundamental monotonicity property [Knuth

1998, Hinze and Martin 2017a] that is central to all of our correctness proofs:

every network nw transforms greater inputs to greater outputs.

x � y =⇒ nw x � nw y (8)

3 Deriving Batcher’s Bitonic Merger

Given these prerequisites, let us now explore the design space for oblivious merg-

ing, starting from first principles. A merging network � takes two ordered inputs

to an ordered output, as formalized by the specification:

x ordered ∧ y ordered =⇒ x � y ordered (9)
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Although this does not state explicitly that the output is a permutation of the

two inputs, any network consisting solely of comparators does indeed produce a

permutation in a generalized sense [Bove and Coquand 2006].

Now, applying an inductive approach to problem solving, the first question is

how to reduce a given merging problem to simpler sub-problems. For simplicity,

we restrict attention to input sequences with length an exact power of two. There

are many ways to divide the input, including two principled approaches: each

sequence can either be halved or uninterleaved. We choose the latter option,

as the former seems to go nowhere; roughly speaking, the zig-zag property (7)

is more pleasant to use than the split property (6). This may also explain the

observation [Misra 1994] that most discussions of the principles of parallel sorting

prefer interleaving to halving. So, the first assumption is that the inputs to be

merged are treated as interleaved sequences, say s � t and u � v .

The next choice is how to combine the sub-sequences in the recursive calls.

There are two options: given the inputs s� t and u�v , we can either recursively

combine s with u or with v , partnering t with the remainder. We pursue the first

route in Section 4; the second is explored below. We obtain as an initial sketch:

〈a〉 � 〈b〉 = 〈a ↓ b, a ↑ b〉

(s � t) � (u � v) = (s � v) ? (t � u)

The base case is uncontentious: if both input sequences are singletons, then

the network is a single comparator. For the inductive step, we observe that the

merge of interleavings is not quite the same as the interleaving of the merges, for

example, (〈3〉� 〈4〉)� (〈1〉� 〈2〉) = (〈3〉� 〈2〉)� (〈4〉� 〈1〉). In other words, the

placeholder ‘?’ above is not just �. But perhaps we can clean things up using a

few additional comparators? The goal of the subsequent calculations is to derive

the additional circuitry denoted by ‘?’.

We can assume that the recursive invocations are proper mergers. In particu-

lar, we make use of the fact that their output is ordered (10b), and that bottom

and top elements are propagated to the front and to the rear respectively (10c).

For reference, the pre-condition of (9) is also reiterated in (10a):

s � t ordered ∧ u � v ordered (10a)

s � v ordered ∧ t � u ordered (10b)

(⊥ · w) � z = ⊥ · (w � z ) ∧ (w · �) � z = (w � z ) · � (10c)

for all ordered sequences w and z . In case you find the last property unmotivated,

recall that the definition of ‘x ordered’ (5) involves both bottom ⊥ and top �.

Property (10c) makes precise how merge interacts with them.

Since the arguments of merge are given as interleavings, we begin by applying

the zig-zag property (7) to the pre-condition of merge (10a):

s � t ordered ∧ u � v ordered
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⇐⇒ { zig-zag property (twice) (7) }

s � t ∧ ⊥ · v � u · � ∧ ⊥ · t � s · � ∧ u � v

=⇒ { monotonicity of comparison networks (twice) (8) }

s � (⊥ · v) � t � (u · �) ∧ (⊥ · t) � u � (s · �) � v

⇐⇒ { property of merge (10c) }

⊥ · (s � v) � (t � u) · � ∧ ⊥ · (t � u) � (s � v) · �

Abbreviating s � v by x and t � u by y , our goal is to establish ‘x ? y ordered’,

deriving the placeholder ‘?’ in the process. It stands to reason that the unknown

circuitry is some interleaving; so we work towards a situation where we can

apply the zig-zag property (7). Introducing the induction assumption (10b), we

continue:

x ordered ∧ ⊥ · x � y · � ∧ ⊥ · y � x · � ∧ y ordered

⇐⇒ { definition of ordered (twice) (5) }

⊥ · x � x · � ∧ ⊥ · x � y · � ∧ ⊥ · y � x · � ∧ ⊥ · y � y · �

⇐⇒ { characterization of minimum (1a) and maximum (1b) }

(⊥ · x ) ↑ (⊥ · y) � (x · �) ↓ (y · �)

⇐⇒ { interchange law (4) }

(⊥ ↑ ⊥) · (x ↑ y) � (x ↓ y) · (� ↓ �)

⇐⇒ { idempotence: a ↓ a = a and a ↑ a = a }

⊥ · (x ↑ y) � (x ↓ y) · �

⇐⇒ { minimum is smaller than maximum: a ↓ b � a ↑ b }

x ↓ y � x ↑ y ∧ ⊥ · (x ↑ y) � (x ↓ y) · �

⇐⇒ { zig-zag property (7) }

(x ↓ y)� (x ↑ y) ordered

So the additional circuitry is just a single column of comparators: the even-

odd cleaner of Section 2.4. It is convenient to introduce an infix operator for

the circuitry: x � y = even-odd-clean (x � y). We can then substitute this new

operator for the placeholder in our original sketch of the merger and by the

preceding calculation we guarantee that the output is sorted.

〈a〉 � 〈b〉 = 〈a ↓ b, a ↑ b〉 (11a)

(s � t) � (u � v) = (s � v) � (t � u) (11b)

x � y = (x ↓ y)� (x ↑ y)

We claim that this is Batcher’s bitonic merger. This assertion is verified in Sec-

tions 5 and 6, but first let us explore the second design option mentioned at
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the start of this section. Batcher called his second arrangement the “odd-even

merger”, but it is also known as the merge exchange network [Knuth 1998].

4 Deriving Batcher’s Merge Exchange Network

The bitonic merger “mixes” even and odd sub-sequences in the recursive calls.

The only other option is to recurse on the even sequences and on the odd ones:

〈a〉 � 〈b〉 = 〈a ↓ b, a ↑ b〉

(s � t) � (u � v) = (s � u) ? (t � v)

We aim to derive a circuit to substitute for the placeholder in this specification

in a similar way as we did in Section 3. Now that s is combined with u instead

of v , the inductive assumption (10b) becomes:

s � u ordered ∧ t � v ordered (12)

The derivation then proceeds as before. First we massage the pre-condition of

merge (10a). A similar calculation to that in Section 3 produces:

s � u � t � v ∧ ⊥ · ⊥ · (t � v) � (s � u) · � · �

Let us again introduce some shortcuts for the results of the recursive calls. This

time we choose to replace s�u by 〈a〉·x and t�v by y ·〈b〉. The reason for picking

this generalization instead of simply x and y as in Section 3 is that head (s � u)

is the overall minimum and, dually, last (t � v) the overall maximum. This fact

actually drops out naturally from the final calculation. Using these shortcuts the

pre-condition can be further simplified.

〈a〉 · x � y · 〈b〉 ∧ ⊥ · ⊥ · y · 〈b〉 � 〈a〉 · x · � · �

⇐⇒ { pointwise ordering, bottom and top (2) }

〈a〉 · x � y · 〈b〉 ∧ ⊥ · y � x · �

⇐⇒ { pointwise ordering }

a � head y ∧ init x � tail y ∧ last x � b ∧ ⊥ · y � x · �

⇐⇒ { init x � tail y ⇐⇒ ⊥ · x � y · � }

a � head y ∧ ⊥ · x � y · � ∧ last x � b ∧ ⊥ · y � x · �

Next we introduce the induction assumption (12).

〈a〉 · x ordered ∧ a � head y ∧ ⊥ · x � y · � ∧ last x � b

∧ ⊥ · y � x · � ∧ y · 〈b〉 ordered

⇐⇒ { split property (twice) (6) }

a � head x ∧ x ordered ∧ a � head y ∧ ⊥ · x � y · �

∧ last x � b ∧ ⊥ · y � x · � ∧ y ordered ∧ last y � b
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⇐⇒ { see last calculation in Section 3 }

a � head x ∧ a � head y ∧ x � y ordered

∧ last x � b ∧ last y � b

⇐⇒ { characterization of minimum (1a) and maximum (1b) }

a � head x ↓ head y ∧ x � y ordered ∧ last x ↑ last y � b

⇐⇒ { head and tail distribute over lifted operations }

a � head (x ↓ y) ∧ x � y ordered ∧ last (x ↑ y) � b

⇐⇒ { head (x � y) = head (x ↓ y) and last (x � y) = last (x ↑ y) }

a � head (x � y) ∧ x � y ordered ∧ last (x � y) � b

⇐⇒ { split property (6) }

〈a〉 · (x � y) · 〈b〉 ordered

Again, a single column of comparators does the job. However, one less com-

parator is used than in Section 3 as a is the overall minimum and b the overall

maximum. The resulting circuit is called an odd-even cleaner, denoted by �.

Substituting this operator for the placeholder in our original sketch, we obtain:

〈a〉 � 〈b〉 = 〈a ↓ b, a ↑ b〉

(s � t) � (u � v) = (s � u) � (t � v)

(〈a〉 · x ) � (y · 〈b〉) = 〈a〉 · (x � y) · 〈b〉

This is identical to the definition of Batcher’s exchange merger from previous

work [Hinze and Martin 2017a]. Quite amazingly, by systematically exploring

the design space, we claim to have obtained both of Batcher’s mergers. It is

also crystal clear that the exchange merger requires fewer comparators than the

bitonic merger as it builds on the odd-even cleaner � rather than the even-odd

cleaner �. It now remains to confirm that the bitonic merger really is the same

as that invented by Batcher. This is the subject of the next two sections.

5 Deriving the Bitonic Sorter

Batcher did not introduce a bitonic merger in his seminal paper [Batcher 1968],

but what he called a bitonic sorter. This is actually something of a misnomer,

since such networks do not sort arbitrary inputs. Instead they sort only bitonic

sequences: ones that first increase then decrease, or can be circularly shifted to

such.

We will now show how the definition of the merger calculated in Section 3 is

related to Batcher’s bitonic sorter, taking two steps to do so. We start with

a recap of Batcher’s construction in Section 5.1, as presented, for example,

in [Cormen et al. 2001]. Next in Section 5.2 we derive an algebraic definition of
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the bitonic sorter from our merger, further simplifying the design in the process.

Finally in Section 6, we show that the two definitions do indeed coincide.

5.1 Cormen et al.’s diagrammatic presentation

Of Batcher’s two designs, the bitonic merger seems to be the more popular

one, perhaps because it enjoys an attractive diagrammatic decomposition, see

diagram on the left below.

The circuit is composed of several stages, each corresponding to a low-high-

cleaner, as defined in Section 2.4. For example, the leftmost 4 comparators in

the left-hand diagram above constitute the cleaner for 8 inputs. When applied

to a bitonic input sequence, the cleaner produces output with smaller numbers

in the bottom half and larger ones in the top, and both halves bitonic. (The

original name for the low-high-cleaner, half-cleaner, stems from the fact that if

the input contains only zeros and ones, at least one half of the output will be

clean: consisting solely of either zeros or ones.)

The shading in the diagram on the left above indicates how low-high-cleaners

are combined recursively to create a bitonic sorter:

bisort 〈a〉 = 〈a〉

bisort (x ‖ y) = bisort (x ↓ y) ‖ bisort (x ↑ y)

The merger is then defined in terms of the bitonic sorter. The result is illustrated

in the network on the right above, formed by modifying that on the left. It is

based on the intuition that two ordered sequences x and y can be merged by

applying a bitonic sorter to the first concatenated to the reverse of the second:

x � y = bisort (x ‖ rev y) (14)

This reversal of the second half of the input can be performed implicitly, hence

the rearrangement of the leftmost 4 comparators in the diagram on the right.

5.2 Misra’s algebraic presentation

Misra uses relationship (14) to apply a correctness proof of the bitonic sorter

to the merger [Misra 1994]. Here we do the opposite. We derive the bitonic
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sorter from the bitonic merger, simultaneously establishing its correctness. This

order reversal leads us to question the necessity for the very existence of the

misleadingly named bitonic sorter or the associated notion of bitonicity.

Rearranging (14), the bitonic sorter is specified as a one-argument version of

the bitonic merger, with the twist that the second argument is reversed:

bisort (x ‖ y) = x � rev y (15)

In the following derivation we distinguish between a base case, two wires,

and an inductive case, more than two wires. For reasons that become clear from

the calculation, the point of departure is in both cases an interleaving:

bisort (〈a〉� 〈b〉)

= { singletons }

bisort (〈a〉 ‖ 〈b〉)

= { specification (15) }

〈a〉 � rev 〈b〉

= { definition of reverse }

〈a〉 � 〈b〉

= { definition of merge (11a) }

〈a ↓ b, a ↑ b〉

= { definition of even-odd cleaner }

〈a〉 � 〈b〉

bisort ((s ‖ t)� (u ‖ v))

= { interchange law (3) }

bisort ((s � u) ‖ (t � v))

= { specification (15) }

(s � u) � rev (t � v)

= { reverse and interleaving }

(s � u) � (rev v � rev t)

= { definition of merge (11b) }

(s � rev t) � (u � rev v)

= { specification (twice) (15) }

bisort (s ‖ t) � bisort (u ‖ v)

We could use the resulting equalities as defining equations. A moment’s reflec-

tion, however, reveals that we can streamline the definition:

bisort 〈a〉 = 〈a〉

bisort (x � y) = bisort x � bisort y

We have introduced a base case for singletons and generalized the inductive case.

6 Relating Diagrams and Algebra

We are finally in a position to reconcile art with mathematics, diagrams with

algebra. Reconciliation is asked for as the recursive decomposition of the bitonic

sorter is quite different in the two approaches, the diagrammatic presentation
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[Cormen et al. 2001] and the algebraic presentation [Misra 1994].

diagrammatic presentation algebraic presentation

bisort 〈a〉 = 〈a〉

bisort (x ‖ y)

= bisort (x ↓ y) ‖ bisort (x ↑ y)

bisort 〈a〉 = 〈a〉

bisort (x � y)

= bisort x � bisort y

In the definition on the left, the divide step requires additional circuitry (the low-

high-cleaner), while the conquer step is free. On the right-hand side, the divide

step is free, while the conquer step requires additional circuitry (the even-odd-

cleaner). These differences are, however, illusory: the structure of the circuits

is identical. The diagram on the left is obtained from the diagram on the right

by shifting the comparators that span five wires as far as possible to the left.

Moreover, the correspondence does not depend on the specifics of the underlying

comparator circuit—it is purely structural; it holds for any gate with two inputs

and two outputs. What follows is an algebraic proof of this claim.

Up to this point we have only conducted pointwise calculations. However,

experience shows that for structural proofs a point-free argument is preferable.

To this end we lift the operators we have seen before to function spaces:

(f ‖ g) x = f x ‖ g x (f � g) x = f x � g x

We also require projection functions as a substitute for the use of concatenation

and interleaving in patterns:

low (x ‖ y) = x

high (x ‖ y) = y

even (x � y) = x

odd (x � y) = y

Constructors and projections are related by the following universal properties:

f = low ◦ g ∧ g = high ◦ h ⇐⇒ f ‖ g = h

f = even ◦ g ∧ g = odd ◦ h ⇐⇒ f � g = h

where ◦ is function composition. You may recognize the similarity to categorical

products. Indeed, we can use the ingredients above to define the product arrow:
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f × g = f ◦ low ‖ g ◦ high f � g = f ◦ even � g ◦ odd

The universal properties imply the following functor laws:

id × id = id (16a)

(f ◦ g)× (h ◦ k) = (f × h) ◦ (g × k) (16b)

id � id = id (16c)

(f ◦ g) � (h ◦ k) = (f � h) ◦ (g � k) (16d)

Finally, the interchange laws below make precise how the two products interact:

(f � g) ‖ (h� k) = (f ‖ h)� (g ‖ k) (17a)

(f � g)× (h � k) = (f × h) � (g × k) (17b)

We illustrate the use of these point-free combinators by redefining the low-

high and even-odd cleaners which were defined pointwise in Section 2.4. They

are obtained by repeatedly “squaring” the underlying comparator circuit, for

example:

(cmp � cmp)

�

(cmp � cmp)

(cmp × cmp)

×

(cmp × cmp)

In general, the low-high cleaner is cmpk�, while the even-odd is cmpk×, where

f0× = f

f (k+1)× = fk× × fk×

f0� = f

f (k+1)� = fk� � fk�

We can use these combinators to express the algebraic definitions of the

bitonic sorters in a point-free style:

bisort0 = id bisort0 = id

bisortk+1 = (bisortk × bisortk) ◦ cmpk� bisortk+1 = cmpk× ◦ (bisortk � bisortk)

This presentation very clearly exhibits the symmetry between the two definitions.

In a sense they are dual: we obtain one from the other simply by exchanging ×

and �. Turning to the equivalence proof, we first abstract away from the specifics

of the application:

f0 = id g0 = id

fk+1 = (fk × fk) ◦ c
k� gk+1 = ck× ◦ (gk � gk)
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To establish f = g, we show that f also satisfies the recursion equation of g:

fk+1 = ck× ◦ (fk � fk) (18)

The proof proceeds by induction over k:

f1

= { definition of f }

(f0 × f0) ◦ c
0�

= { definition of f }

(id× id) ◦ c0�

= { functor law (16a) }

c0�

= { definition of c� }

c

= { definition of c× }

c0×

= { functor law (16c) }

c0× ◦ (id � id)

= { definition of f }

c0× ◦ (f0 � f0)

fk+2

= { definition of f }

(fk+1 × fk+1) ◦ c
(k+1)�

= { induction assumption (18) }

((ck× ◦ (fk � fk))× (ck× ◦ (fk � fk))) ◦ c
(k+1)�

= { functor law (16d) }

(ck× × ck×) ◦ ((fk � fk)× (fk � fk)) ◦ c
(k+1)�

= { definition of c× }

c(k+1)× ◦ ((fk � fk)× (fk � fk)) ◦ c
(k+1)�

= { interchange law (17b) }

c(k+1)× ◦ ((fk × fk) � (fk × fk)) ◦ c
(k+1)�

= { definition of c� }

c(k+1)× ◦ ((fk × fk) � (fk × fk)) ◦ (c
k� � ck�)

= { functor law (16d) }

c(k+1)× ◦ ((fk × fk) ◦ c
k�) � ((fk × fk) ◦ c

k�)

= { definition of f }

c(k+1)× ◦ (fk+1 � fk+1)

The base case on the left is entirely straightforward. The central manoeuvre in

the inductive step on the right is the application of the interchange law (17b).

(As an aside, observe that the terms surrounding the rewrite also exhibit a nice

symmetric recursion structure, where some work is done before the recursive

calls and some work is done afterwards.)

7 Relation to Sorting Networks

We have derived two mergers from first principles, using an inductive approach

based on uninterleaving the input sequences. We then showed that the resulting

schemes correspond to those proposed by Batcher. Let us now apply the same

approach to sorters. Once again there are two disciplined ways to sub-divide

the input: halving and uninterleaving. This time we will explore both strate-

gies because examples of almost all of the resulting arrangements appear in the

literature, in various guises.
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7.1 The Sorters

The first step is to rewrite the binary merge operator as an equivalent function

of one argument. The resulting two versions of the merger are denoted as follows:

merge‖ (x ‖ y) = x � y merge
�
(x � y) = x � y

The associated Knuth diagrams for circuits with 8 inputs are presented below,

where (a) and (b) depict the exchange merger, while (c) and (d) represent the

bitonic one. In each case the diagram on the left uses halving and that on the

right interleaving; the difference amounts to a bit reversal permutation of the

input.

merge exchange bitonic merge

(a) merge‖ (b) merge
�

(c) merge‖ (d) merge
�

Each of these four merging networks gives rise to a sorter:

sort⊕ 〈a〉 = 〈a〉

sort⊕ (x ⊕ y) = merge⊕ (sort⊕ x ⊕ sort⊕ y)

where ⊕ is instantiated either to ‖ or �. The sorters that use halving represent

Batcher’s original methods. The interleaved merge exchange sorter has appeared

before [Codish and Zazon-Ivry 2010], as has the bitonic sorter [Misra 1994].

7.2 The Twist

The mergers can be mechanically divided into two sub-components by consid-

ering the base case separately from the inductive one. This arrangement is par-

ticularly interesting for the exchange merger, which has an intriguing twist. In

that case, the factorized definitions are as follows:

merge‖ = pair‖ ◦ low-high–clean merge
�
= pair

�
◦ even-odd-clean

where pair⊕ (x ⊕ y) = x � y is merge with a trivial base case:

〈a〉� 〈b〉 = 〈a, b〉

(s � t)� (u � v) = (s � u) � (t � v)

The function pair
�

is a “pair sorter”, which sorts sequences of sorted pairs. Its

halving analogue, pair‖, behaves similarly. The Knuth diagrams for the mergers

now have slightly different layouts from before:
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twisted merge exchange

(a′) merge‖ (b′) merge
�

The non-base cases of the corresponding sorters become:

sort‖ = pair‖ ◦ low-high–clean ◦ (sort‖ × sort‖)

sort� = pair
�
◦ even-odd-clean ◦ (sort� � sort�)

Now, here is the twist. Since each component preserves orderedness, the positions

of the first two phases can be swapped:

sort‖ = pair‖ ◦ (sort‖ × sort‖) ◦ low-high–clean

sort� = pair
�
◦ (sort� � sort�) ◦ even-odd-clean

The resulting interleaved sorter is a recursive expression of Parberry’s pairwise

sorting network [Parberry 1992, Hinze and Martin 2017b]. We have not seen the

version using halving in the literature.

The Knuth diagrams below show the difference between various layouts of

the interleaved exchange sorter: (e) is the original from Section 7.1 and (f ) has

the phases swapped, as in Parberry’s adaptation. The third arrangement, (g),

corresponds to two accounts of “Batcher’s Baffler” with correctness proofs in a

traditional imperative style [Gries 1986, Dijkstra 1987]. These latter two are the

earliest expositions of the interleaved exchange sorter of which we are aware.

merge exchange sorter Parberry’s twist Batcher’s Baffler

(e) (f ) (g)

The altered layout of (g) compared to (e) reflects the iterative nature of these

presentations. Algebraically, it can be computed by unfolding the recursion then

rearranging the components using the interchange law (16d), so for example:

sort� � sort�

= (pair
�
� pair

�
) ◦ (even-odd-clean � even-odd-clean)

◦ ((sort� � sort�) � (sort� � sort�))
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It is natural to ask whether the phases can also be swapped for the bitonic

mergers. They have a similar decomposition involving a pair-sorter:

merge‖ = pair ′‖ ◦ low-high–clean ◦ (id × rev)

merge
�
= pair ′

�
◦ even-odd-clean ◦ (id � rev)

where pair ′⊕ has the same definition as pair⊕ except that the odd-even cleaner �

is replaced by the even-odd one �. Unfortunately the components are not as well-

behaved as those for the exchange merger. Neither id × rev nor id � rev preserve

orderedness, and so a similar interchange of sub-parts is not possible.

There are, of course, many other possible permutations of the input if we re-

move the restriction to halving and interleaving. For example, there are 315 dif-

ferent rearrangements of the 8-key merge exchange sorter alone [Al-Haj Baddar

and Batcher 2011].

8 Related Work

Batcher’s algorithms were the first systematic methods for designing sorting net-

works of arbitrary input size. For decades, they have attracted enormous interest

from academia and industry alike; at the time of writing there are over 2500 ci-

tations of the original paper. Much of the related work concerns performance

and bounds. Batcher’s merge exchange sorter has been proven to use a minimal

number of comparators for input sizes n � 8 [Knuth 1998]. Van Voorhis showed

how greater economy of comparators is possible for larger input sizes by dividing

the input into more than two groups [Van Voorhis 1971] and the results are still

the best known for some values. The challenge of proving that a given number of

comparators is minimal for sorting networks of input size n > 8 is still an open

problem.

There is also a substantial body of literature on the design, modelling and

verification of Batcher’s networks. We therefore begin by categorizing a small

selection of examples according to the approach taken, and then refer the reader

to other work for more comprehensive reviews.

Imperative Both Gries and Dijkstra produced formal correctness proofs of the

merge exchange sorter, lovingly called “Batcher’s Baffler”, in an imperative

style [Gries 1986, Dijkstra 1987]. Neither used the zero-one principle but the

proofs are quite lengthy in comparison to their functional counterparts.

Relational The bitonic merger was described and analysed in the relational lan-

guage Ruby [Sheeran 1991] and shown to be related to the balanced merger.

More recently, relations were used to identify the relationship between Par-

berry’s pairwise network and Batcher’s merge exchange sorter [Codish and

Zazon-Ivry 2010]. The recursive, relational presentation is simpler and more

straightforward to follow than Parberry’s description.
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Functional A functional description of bitonic sort appeared as an illustration

of an algebraic model of divide-and-conquer algorithms for parallel comput-

ers [Mou and Hudak 1988] but this did not include any correctness proofs.

An elegant and succinct correctness proof of bitonic sort was given subse-

quently using functions on the powerlist data structure [Misra 1994]. The

idea of using parametricity in Haskell as an alternative to Knuth’s zero-one

principle was introduced later [Day et al. 1999]. Bitonic sort was included as

a motivating example to demonstrate how a verification of correctness could

be performed on Boolean input and then generalised to more complex types.

Machine-checked Formal Proofs One of the first formal proofs of correct-

ness of bitonic sort using an automated reasoning system [Couturier 1998]

was performed in the prototype verification system PVS [Owre et al. 1992];

the proof did not use the zero-one principle. Lava, a tool for hardware de-

sign and verification, was used later [Claessen et al. 2003] to verify both the

bitonic and merge exchange algorithms using the zero-one principle. This ac-

count also mentioned the close relationship between the two mergers, in the

sense that their definitions differ only in the choice of cleaner. The difference

here is our derivation from first principles and precise relation to other ex-

positions. Constructive type theory was used to verify bitonic sort in Agda,

via the zero-one principle [Bove and Coquand 2006]. Agda was also used

to verify bitonic sort using parametricity [Dybjer et al. 2004], in a method

that combined testing, model checking and theorem proving. Braibant and

Chlipala followed a similar approach to Bove and Coquand to conduct a for-

mal proof in Coq, but with the added dimension of connecting to an actual

hardware implementation in the Fesi language [Braibant and Chlipala 2013].

There is a further distinction within these various paradigms between recur-

sive and iterative approaches. Sheeran comments that recursive descriptions can

be more comprehensible, as they offer more insight into how the algorithm was

designed [Sheeran 1989]. This is borne out by the contrast between the elegance

of recursive butterfly circuits [Jones and Sheeran 1991] and the complexity of the

derivations of an iterative merge exchange sort by Gries and Dijkstra. Parberry’s

method is an exception as the original design was iterative, but we argue that

the recursive expression of the algorithm in Sections 7 is more transparent. An

iterative approach to the bitonic sort is given in Obsidian [Claessen et al. 2012],

which is quite easy to follow.

In the broader context, the interest in hardware design among the functional

programming community that was sparked in the 1980’s is still strong [Sheeran

2015]. This is partly because hardware design is essentially a form of parallel

programming and recent growth in the use of parallel machines has driven a

demand for related tools. As a consequence, the development of data-parallel
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functional programming languages has flourished [Blelloch 1993, Chakravarty

et al. 2007]. Functional languages are well-suited for designing, analysing and

validating parallel algorithms for many reasons. These include their high level of

abstraction, use of higher-order functions to structure descriptions, associated

formal transformation and verification methods, and ease of algebraic manipula-

tion for equational reasoning. We refer the reader to [Gammie 2013] for excellent

and comprehensive review of the long tradition of describing circuits using func-

tional programming techniques. Gammie also includes a summary of other formal

methods for hardware design including algebraic techniques, relational models

and diagrammatic methods involving “boxes and wires”. For more details of the

early history see also [Knuth 1998] and [Sheeran 2005].

9 Conclusion

To conclude, the “bitonicity” property invented by Batcher is really a red her-

ring. Yet he showed extraordinary insight to conceive both of his schemes using

diagrams alone, without the benefit of calculation. The algebraic method per-

mits a clean derivation of the mergers from minimal assumptions. It shows they

are the two canonical choices, and the proofs rely solely on the monotonicity

property of comparison networks. This rigorous approach also unmasks the re-

semblance between the two mergers. In both cases, all of the work is done by the

conquer step, while the divide step is free. In contrast, Batcher’s presentation of

the circuits show a surprising inconsistency: the burden of the work is assumed

by the divide step for one, and conquer for the other.

Batcher names two advantages of the bitonic sorter over the exchange sorter.

First, they are flexible in the sense that one network can accommodate input

lists of various lengths. Second, they are modular, so a network can be split up

into several identical modules. We question whether these advantages are really

valid? Both sorters appear to be equally flexible and have identical modularity,

as evidenced by their recursive decomposition.

A final argument in favour of the symbolic presentation is the fresh perspec-

tive afforded by the point-free view. This high-level stance is useful for exposing

duality between different presentations of the bitonic sorter, as well as making

precise the connection between the exchange and pairwise sorters [Hinze and

Martin 2017b].
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