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Abstract: In recent years, the volume and the complexity of data in Building Au-
tomation System networks have increased exponentially. As a result, a manual analysis
of network traffic data has become nearly impossible. Even automated but supervised
methods are problematic in practice since the large amount of data makes manual
labeling, required to train the algorithms to differentiate between normal traffic and
anomalies, impractical.

This paper introduces a framework which allows the characterization of BACnet net-
work traffic data by means of unsupervised machine learning techniques. Specifically,
we use clustering, random forests, one-class support vector machines and support vec-
tor classifier, after a pre-processing step that includes principal components analysis
for dimensionality reduction. We compare the effectiveness of the methods in detecting
anomalies by performing experiments on BACnet network traffic data from various
sources. We describe which of these unsupervised methods work best in specific sce-
narios since each method has its distinct advantages and disadvantages. In particular,
we discuss which method is best suited to detect new types of anomalies (novelty de-
tection), or which method most reliably and efficiently finds new attacks of a type that
has been captured in the data previously.
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1 Introduction

A Building Automation System (BAS) performs the monitoring and controlling

of all the electrical and mechanical equipment of a building, from lighting to

HVAC to security systems. The structure of a BAS in a building is composed

of an array of mechanical and electrical devices. All the devices are connected

to a central control station, usually a computer, where BAS administrators can

monitor the whole network. Different kinds of data are sent across the BAS

network, including the information about when a piece of equipment is turned

on and off, changes in value when some movement is detected in particular areas

of a building, changes of temperature within the building spaces, changes of

temperature of air or water within the mechanical systems, valve positions, etc.

Due to the continuous growth in BAS networks, a huge amount of data is

transferred through such networks every day, up to several gigabytes for mod-

erately sized networks. This order of magnitude makes it impossible for BAS

administrators to search for anomalies and identify correlations without efficient

algorithms that scale well and work largely unsupervised. In the absence of such

methods, most of the anomalies remain undetected and the security of the system

is compromised.

This work presents a framework which performs BAS traffic analysis by

means of machine learning (ML) techniques. The framework is graphically de-

picted in Fig. 1.
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Figure 1: BAS network analysis framework. The main components of this framework
are the real-time analyzer and the normalizer. Both real-time network data and the
captured data are converted into an intermediate format (described in Sect. 3), which
is then used to generate a set of decision rules for the normalizer with the help of the
machine learning methods (described in Sect. 4). This paper focuses on the components
within the dotted rectangle.

The main goal of this framework is to characterize the traffic data and detect
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anomalies. Analysis is done on the BAS traffic captured by Wireshark (version

1.12.7). Unsupervised machine learning techniques are used because they are

quite efficient in performing analysis on a large volume of network data (and

continuously expanding data due to addition of new devices to the network),

both in terms of performance and quality. First, we preprocess the data by

normalizing it and using principal component analysis (PCA) for dimensionality

reduction. Then, we implement and test four of the most established machine

learning methods, namely clustering, random forests, one-class support vector

machines (SVM) and support vector classifier (SVC). These methods are known

to be robust in general and have proven to be very useful in detecting anomalies

and discovering patterns while analyzing the network data from other network

protocols [Dua and Du(2011)].

The BACnet protocol is one of the data communication protocols used in

BAS [ISO(2012)] and has been implemented in various products by more than

900 vendors worldwide. The framework supports the analysis of the prerecorded

data in pcap format, as well as live capture and on-the-fly analysis using a

dedicated analyzer that outputs the live data in the intermediate format. The

analysis in the paper was performed on BACnet/IP data, however, the methods

can be applied with minor changes to any BACnet data, since only a few features

come from the IP portion of the packet data, as can be seen from Fig. 3.

This paper is an extension of [Tonejc et al.(2016)]. The most significant

changes are the increased number of features that were extracted from the packet

fields, improving the performance of the machine learning, new machine learning

methods (random forests, SVM and SVC) and more detailed performance and

quality results, together with the expanded results from the flow analysis.

The rest of the paper is organized as follows. The related work is discussed

in the next section. Section 3 explains the structure of BACnet/IP and the

machine learning methods used in this study. Section 4 describes the implemen-

tation details of the machine learning methods along with the flow classifiers.

The obtained results are discussed in Sect. 5. Conclusions and future work are

presented in Sect. 6.

2 Related Work

A significant amount of work has been devoted to the application of machine

learning and data mining techniques to solve the problem of network traffic anal-

ysis. Fortunately, several surveys exist that can serve as introduction to the topic.

For example, [Chandola et al.(2009)] provides a rather extensive introduction to

anomaly detection methods together with a range of possible applications. We

also recommend the survey by [Nguyen and Armitage(2008)], with a slightly

different focus on classification techniques, as well as [Omar et al.(2013)], which
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gives a great summary of techniques including a discussion of their various draw-

backs and advantages.

As far as supervised learning methods to classify network traffic data are con-

cerned, we mention for example the use of Naive Bayesian classifiers [Moore

and Zuev(2005)], and Bayesian neural networks [Auld et al.(2007)]. In [Pe-

dro Casas(2016)], the authors compare a variety of supervised methods, in par-

ticular two statistical-based detection approaches and five standard supervised

ML-based approaches including random forests.

As can be seen from these references, supervised methods are often capable of

performing the analysis on a very large set of data but require previous knowledge

of the application domain.

Recently, learning on streams [Gaber et al.(2007)] and deep learning meth-

ods [Oliveira et al.(2016)] have been employed for anomaly detection and net-

work traffic analysis and classification, however, more research is needed to fully

evaluate the applicability of these methods to building automation network data.

In [Pan et al.(2014)], the authors propose an anomaly-based intrusion detec-

tion system for BACnet/IP networks using Repeated Incremental Pruning to

Produce Error Reduction (RIPPER) as a learning method. The features used

for learning are similar to the features we use in our methods, however, once

again the algorithm is a supervised learning algorithm and requires the input

data to be tagged, and as such, it is less capable of detecting new or unknown

types of anomalies.

Unlike supervised learning methods, unsupervised techniques do not depend

on labelled training data and are better at detecting new kinds of anomalies. Of

course, the unsupervised learning methods also have some drawbacks compared

to the supervised methods as they generally produce more false positives, have

lower accuracy and can fail if the anomalies represent a significant proportion of

the traffic. Some examples of unsupervised learning methods for network traf-

fic data analysis include Clustering algorithms [Erman et al.(2006)], random

forests [Dua and Du(2011)], one-class SVM [Dua and Du(2011)], and SVC, as

well as maximum entropy approaches [Gu et al.(2005)].

3 Structure of BACnet/IP data

This section briefly describes the structure of the BACnet/IP network data and

introduces the machine learning methods that we use to analyze the data.

3.1 Data selection

In the case of BACnet/IP data over Ethernet, the data is encapsulated in a User

Datagram Protocol (UDP) layer. Each packet contains communication and con-

trol values. As shown in Fig. 1, the data can either come from real-time capture
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Figure 2: BACnet/IP data is contained within the UDP datagram as a BACnet Virtual
Link Layer (BVLL), which contains the Network layer Protocol Data Unit (NPDU) and
the Application layer Protocol Data Unit (APDU) with data. For a detailed explanation
of the structure of NPDU and APDU, we refer the reader to [Kaur et al.(2015)].
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Figure 3: The fields as features, organized by the layers in which they are present. In
addition to the above fields, up to 6 reserved bits are present in each packet, as well as
a timestamp (saved for each packet, both in recorded pcap data as well as during the
real-time analysis), bringing the total number of features per packet to 46.

or from prerecorded data. The prerecorded data is captured using Wireshark

and stored in a raw pcap format. In order to convert the raw data into the in-

termediate format, a fair amount of preprocessing is needed. In case of real-time

capture and processing, a dedicated traffic analyzer outputs the data directly in

the intermediate format. Figure 2 shows the structure of a typical BACnet/IP

packet.

For our analysis we chose the fields as suggested in [Tonejc et al.(2015)],

with the addition of several fields from the Application Layer Protocol Data

Unit (APDU) and the reserved fields ( [Tonejc et al.(2015)] only considered the

PDU Type field). From these fields we extracted the features that were used for

the machine learning methods. For the sake of completeness, we list the fields in

Fig. 3, grouped by the layer in which they appear. The fields that are present in

every valid BACnet/IP packet are shown in bold.

BACnet packets do not have a fixed structure, as the presence of many fields

depends on the values of various control bits and fields. For example, the APDU

fields Service Choice, Unconfirmed Service Choice, Error Choice, Reject Reason
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and Abort Reason are never present all at the same time, as each exists only

for a specific value of the PDU Type field. We simply use the value zero for the

missing fields.

3.2 Preprocessing: normalization and dimensionality reduction

The selected fields contain all the essential features of each BACnet/IP packet,

however, the network data needs to be processed before it can be used in the ma-

chine learning methods. The purpose of processing the network data is twofold:

1. to prepare the data for subsequent machine learning analysis, and

2. to aggregate and export the data in a form suitable for visualizing the flows

and creating the model for the flow-based anomaly detection.

All of the fields in BACnet/IP data have a natural representation as unsigned

integers. The following processing is done: the MAC addresses are split into the

organizationally unique identifier and the vendor-specific identifier, each using

three bytes of the MAC address, and encoded as 32-bit integers. The IP addresses

are encoded as four 8-bit integers to reflect the natural structure of IP-based

networks. The BACnet source and destination addresses could be up to 7 bytes

long, so they are encoded using 64-bit integers. In case of a malformed packet

with address longer than 8 bytes, the value is truncated to 64 bits. There is no

loss of information for valid packets and the anomalies in addresses can still be

detected as the value of the address length field falls outside the valid range.

These preprocessing steps convert the 46 features into 54 numerical values.

The next step is the normalization, as the values in various fields have com-

pletely different scales, e.g., the values for valid BACnet addresses could vary

from 0 to 72057594037927935, for Hop count from 0 to 255 and for Indication

from 0 to 1. Since some of the machine learning methods rely on Euclidean dis-

tance between the data points, we need to normalize the values. In particular,

PCA and distance-based clustering methods are affected by disproportionate

scale for different features. When performing the normalization, the values in

each field can be mapped to the interval [0, 1] using the minimum and maximum

possible values for the particular field, or different weights can be assigned to dif-

ferent fields. For example, a higher weight can be assigned to the reserved fields

as these should always be zero and if not, that should be considered very signifi-

cant. The output of the preprocessing and normalization steps is the intermediate

format, which is a CSV-file with 54 columns, with each packet represented as a

vector in 54-dimensional space.

The running time and the performance of the machine learning methods de-

pend significantly on the number of features. In order to reduce the number of

features, we perform dimensionality reduction using PCA. This method finds a
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set of orthogonal directions, such that the variance along the first one is max-

imal and each subsequent direction has the maximum variance possible under

the constraint of being orthogonal to all the preceding directions. The data is

then projected onto these directions, obtaining a representation where each new

variable is linearly uncorrelated with others. There is a trade-off between how

much of the total variance is preserved and how much the number of dimensions

gets reduced. If more principal directions are retained, more of the variance is

captured and if fewer are retained, the dimension is more reduced. In practice

one needs to find a balance between the two by deciding whether the running

time or the accuracy is more important.

An additional issue with PCA is that components which contain no variation

in values, for example, reserved bits of normal data, get discarded by PCA, as

they do not contribute to the variance. This can be a problem if we later want

to detect the traffic with anomalies in reserved bits, as these will no longer be

present after the dimensionality reduction step. There are some solutions around

this problem and they are described in more detail in Sect. 4.

3.3 Machine learning methods

In order to detect new and unknown traffic anomalies, we need to use unsu-

pervised machine learning methods, as the sheer volume of data prevents any

manual tagging of individual packets. There are various machine learning meth-

ods that are well-suited for anomaly detection in the network traffic [Chandola

et al.(2009),Dua and Du(2011)]. In this paper, we focused on the following:

1. Clustering methods. We focus on the distance-based clustering methods, in

particular, k-means and expectation maximization (EM). In k-means, the

data is partitioned into k clusters, such that a point in a given cluster is

closer to that cluster’s centroid than to any other cluster’s centroid. For EM

clustering, a probability distribution is assigned to each sample, indicating

the probability of the sample belonging to a specific cluster. We assumed an

underlying Gaussian mixture model for which the parameters need to be es-

timated. The parameters are then iteratively determined using Expectation

steps and Maximization steps in such a way as to maximize the expectation

of the log likelihood.

2. One-class Support Vector Machine (SVM). We focus on two variants of

this machine learning method, namely Support Vector Classifiers (SVC)

[Boser et al.(1992),Cortes and Vapnik(1995)], and One-class SVM [Schölkopf

et al.(1999)]. In both cases, the data is first mapped to a very high-dimensio-

nal feature space using a non-linear kernel, typically a radial bump function

of the form

K(x,y) = e−
‖x−y‖

γ , γ > 0.
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In the case of One-class SVM, the algorithm tries to find a hyperplane at a

maximum distance from the origin that has all the data points lying on the

side away from the origin. When testing new samples the method essentially

performs outlier detection.

3. Support Vector Classifier (SVC). In the case of SVC, after applying the same

radial basis function as in the SVM approach, we train the model to obtain

an optimal hyperplane that separates normal from anomalous data as much

as possible.

4. Random Forests. A random forest is a meta estimator that fits a number of

decision tree classifiers on various sub-samples of the dataset and uses aver-

aging to improve the predictive accuracy. The sub-sample size is always the

same as the original input sample size but the samples are drawn with re-

placement. To avoid overfitting, when constructing individual decision trees

the random forest algorithm selects a random subset of features at each split-

ting. By varying the number of trees, a trade-off between running time and

prediction accuracy is achieved.

There is a significant difference between the two clustering methods and the

other three methods. In order for the clustering methods to detect the anomalies,

the training data has to already contain the kinds of anomalies that should be

detected. Random forests and the two SVM methods, on the other hand, are

used for novelty detection, i.e., they allow detecting arbitrary new attacks that

have not been encountered before. The random forest or the SVC/SVM can be

trained on a data set that optimally contains no attacks.

For SVC and random forests in particular we need to augment the dataset

(this is not needed for one-class SVM): we generate random data (by sampling

from a uniform distribution independently for each coordinate) and train the

algorithm to distinguish between the original training data that describes nor-

mal traffic and the synthetic data. If the trained random forest or the SVM is

then evaluated on new data, anything that looks significantly different from the

original training data will be flagged as anomalous.

In summary, this means that the clustering methods are optimally used to

monitor attacks that were already present in the training data, whereas the other

methods will detect new attacks, and new attacks only - if an attack was already

present in the training data it will not be flagged in the future. Hence, optimally

one should use a clustering method in combination with a method from the other

set.

3.4 Network flows

Network flows have long been used for intrusion detection in IP networks, e.g.,

[Sperotto et al.(2010)]. An important feature of BACnet networks is the require-
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ment that there exists a unique message path between any two nodes on an

interconnected BACnet network [ISO(2012)]. One can therefore speak of flows

between BACnet devices, and each flow is defined by the BACnet addresses

of the communicating devices. The communication in BACnet can either be a

direct communication between two devices or a broadcast message (local, re-

mote or global). The broadcast messages can be viewed as communication with

a special device and are simply treated the same way as other communication

in our analysis. The flows can be defined in terms of the source and destination

MAC addresses, source and destination IP addresses or source and destination

BACnet addresses. Different underlying structures of the BACnet network are

revealed when using different flow definitions. For each such flow, a multidimen-

sional statistical model is constructed to characterize the types of messages and

their probabilities of occurrence, as well as to determine the expected packet

sizes. Due to the mostly static nature of the building automation networks, such

flow maps enable efficient anomaly detection. For the flow-based anomaly detec-

tion to work we need to make sure we can map the network when no anomalies

are present, to obtain the base state of the network. The anomalies can later

be detected using analytic methods, where we directly compare the current flow

map with the original one, as well as the statistical properties of the individual

flows, such as the message type probability distribution, packet size distribution,

and the packet frequency based on the flow and message type.

4 Implementation Details

In this section, we describe the details of the implementation, together with the

data sources that were used to train and test our methods.

4.1 Data sources

As mentioned in Sect. 3, the pcap data needs to be processed to make it ac-

cessible to the machine learning methods. The preprocessing was implemented

in C for efficiency reasons, following the BACnet standard [ISO(2012)] to parse

the network packets. The result of the preprocessing is the intermediate format,

which is simply a CSV-file with 54 columns. The same format is used when an-

alyzing the packets in real time. The machine learning methods that were used

depend on the Euclidean distance between the data points, therefore the data

in each column was scaled, so as to make the values in each column lie between

0 and 1. For that, the theoretical minimum and maximum values were used

for each column and not the minimum and the maximum of the actual values

present.

We used two types of sources for training and evaluating our methods. The

first source is our BAS lab, which contains about 20 different BACnet devices.
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The traffic was recorded using Wireshark on a PC which was connected to the

mirror port of a local switch. We recorded two days worth of traffic. On the

first day, only the normal behavior of the lab was present, i.e., no deliberate

anomalies were introduced. On the second day, we performed several scans of

the BACnet network using a free demo version of a tool called BACeye. The two

pcap files contain about 1.2 million BACnet packets each. The preprocessing

step took about 6 seconds in total. Although the amount and variety of data is

limited due to the small size of our BAS lab, it is nevertheless a relatively good

approximation of an actual building automation network. For comparison, the

number of packets that we observed in a large university network is about 16

million per day, or about ten times more than in our lab setup. The day-to-day

variation in traffic characteristics is in both cases low.

The second source of data is a set of artificially generated intermediate for-

mat files. As a basis we took the traffic recordings from our lab for a different

day, then added various levels of synthetically generated anomalous traffic. The

proportion of the anomalous traffic was 0.1%, 0.5%, 1% and 2%, with anomalous

records either bunched up or roughly uniformly dispersed throughout the files

(this affects the timing information of those packets). We analyzed the attacks

in [Kaur et al.(2015)] and based our anomalies on the following possible attacks:

– Covert channels using different message types to convey information, specif-

ically, Who-Is-Router-to-network was used to indicate bit 0 and I-Could-Be-

Router-to-network to indicate bit 1 (CCM),

– Covert channels using reserved bits, with reserved bits in the NPDU control

octet indicating whether a covert message is being transmitted and four bits

of the message in the reserved bits of APDU (CCR),

– Using APDU service choices for writing properties or modifying objects

(WP), and

– Using incorrect bit combinations and strange values for BACnet address

lengths (IB).

The two covert channel attacks were inspired by [Wendzel et al.(2012)] and both

involve only the storage channels. The timing channels were not simulated and

would not be detected by the machine learning methods, however, they would

most likely be detected by the flow analysis methods as they change the statis-

tical properties of the affected flows. The DoS and router spoofing attacks were

not simulated, although both should be detectable using our methods.

We generated 100,000 records for each combination, for a total of 33 (=1 +

2× 4× 4) files, including the file without modifications.
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4.2 Implementation of machine learning methods and validation

The analysis of the network data was done after the preprocessing step. For

the machine learning methods, we extracted all 46 listed features from each

BACnet/IP packet, performed the preprocessing steps as indicated in Sect. 3

and obtained a 54-dimensional vector. We then used Weka [Hall et al.(2009)]

and scikit-learn [Pedregosa et al.(2011)] to perform the selected machine learning

algorithms, as well as the dimensionality reduction. We executed the algorithms

on large enough traffic recordings to capture the typical network behavior. Later,

we checked for each additional packet how well it fit into the model that was

learned. This allowed us to detect anomalies in the traffic as they did not fit

the parameters that were extracted from the sample data. For the learning to

be successful, the training data really needs to be representative, otherwise too

many false positives are detected. Due to the fundamentally different modes

of operation for the clustering methods (outlier detection) and the other three

machine learning methods (novelty detection), the training sets were generated

in different ways.

4.2.1 PCA implementation details

As mentioned in Sect. 3, one needs to be careful when performing PCA, as the

features that contain no variation, for example, reserved bits in normal data, get

discarded. This is especially important for the novelty detection methods, where

the training is performed on normal data only. Computing PCA only on the

training data and applying the same mapping to the test data is not an option,

since then it is possible that the attack changes only such features of the original

data which PCA essentially discards, thus making it impossible to detect the

attack. The two outlier detection methods are less affected, because the training

data already contains anomalous packets and no additional gain in variance is

expected when looking at the test data.

In our approach for novelty detection, we perform PCA jointly on the train-

ing set and the data to be tested, then train the algorithms on the transformed

training set first, followed by testing the transformed test set. Obviously this in-

creases the time needed to do the anomaly detection since PCA and the learning

phase have to be performed each time we want to test the new data.

When doing PCA it is important to include enough directions to cover a

significant enough proportion of the total variance, otherwise very infrequent

attacks will be overlooked as they simply will not contribute enough to the

variance. We tested the quality of the anomaly detection when using a different

number of principal components, specifically, we evaluated the quality when

using 3, 5, 7, 10 and all components.
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4.2.2 Training sets for clustering

The clustering methods can only detect anomalies that are already present in the

data, so only the data with anomalies can be used for training. The data was split

into a training set and a testing set as follows. For the lab data we split it into

100,000-line chunks, then trained the algorithms on a randomly selected 66% of

the data in a chunk with anomalies, performed validation on the remaining 34%

of the same chunk and then tested the remaining chunks. For the synthetically

generated data, we performed the same 66%–34% training/validation split on the

file with 1% of anomalous data, then tested the files with different proportions of

anomalous data. In addition, we combined the 1% files with all the different types

of attacks and trained the methods on that (with the same training/validation

split), then tested all the individual files to evaluate the ability of the so-trained

methods to detect various anomalies.

4.2.3 Training sets for RF and SVM

The training is performed as follows. We assume that the normal traffic has a

certain structure that distinguishes it from traffic produced in an attack. We

represent every network packet as a vector in R
54. We then perform PCA jointly

on the datasets with training data and the data to be checked for anomalies.

For each coordinate of the projected training data set we find the correspond-

ing possible range of values, which can be an interval or a set of numbers, for

example {0, 1}. Next, additional data is generated by sampling each coordinate

independently from the other coordinates using a uniform distribution on the

respective range. Because we draw each coordinate independently, the newly

generated data does not have the same structure as the original training data.

This means we can now use a random forest or a SVM to recognize the struc-

ture of normal traffic by training it to distinguish between the original and the

randomly generated data in the same space.

4.2.4 Implementation of ML methods

We ran the following machine learning algorithms, each with or without the

preceding dimensionality reduction using PCA:

– k-means with k = 5 and k = 10 clusters

– EM with k = 5 and k = 10 clusters

– Random forests with 15 trees

– Support vector classifier (SVC)
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Packet is anomalous Packet is normal

Packet predicted anomalous TP FP

Packet predicted normal FN TN

Figure 4: The confusion matrix. Here TP denotes the true positives, TN true negatives,
FP false positives, and FN false negatives. The sum of all four quantities equals the
total number of the analyzed packets.

As stated in Sect. 3, we used the clustering methods as a classifier, where we

marked every cluster smaller than 2% of the total data as anomalous. This was

based on the assumption that at most 2% of the data is anomalous. This can

potentially lead to many false positive results if the number of clusters is too

large, since the non-anomalous clusters also get smaller as the total number of

clusters increases.

The k-means and EM clustering was performed using Weka. For the ran-

dom forests and SVC we used scikit, which internally uses libsvm [Chang and

Lin(2011)] for the support vector machine calculations.

4.2.5 Validation of ML methods

To evaluate the quality of the chosen machine learning methods, we used the

standard quality measures, such as sensitivity, specificity, precision, accuracy

and the F1-score, derived from the confusion matrix, shown in Fig. 4.

The F1 score is the harmonic mean of the sensitivity and precision. Given

the expected nature of the anomalous data, we conclude that the accuracy does

not say much about the quality of the machine learning methods. Therefore

we use the specificity (SPC) and the F1 score, together with the Matthews

correlation coefficient, which is considered one of the best measures for two-class

classification [Powers(2011)]. The three measures can can be computed directly

from the above confusion matrix as

SPC =
TN

FP + TN
, F1 =

2TP

2TP + FP + FN
,

MCC =
TPTN − FNFP√

(TP + FN )(TP + FP )(TN + FN )(TN + FP )
.

4.3 Analyzing the flow data

As mentioned in Sect. 3, when analyzing the flows, the packets can be grouped

based on their source and destination addresses. Additionally, the packets can

be split into two sets: packets without APDU (these are network layer messages)

and packets with APDU. These two sets give rise to the network-layer flows and

application-layer flows. Each device that sent or received a message represents a
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node in a directed weighted flow graph. The nodes can be identified using their

MAC addresses, their IP addresses or their BACnet addresses. The directed

edges of the graph are the flows. Different choices of the node identifiers and types

of flows give rise to several different flow graphs for the same packet recording.

Additionally, we can assign weights to the edges based on various features, for

example, normalized total number of messages in that particular flow, total

number of bytes exchanged, the inverse of the average inter-packet arrival time,

etc. The graph data is exported as Graph Exchange XML Format (GEXF), as

well as Javascript Object Notation (JSON) format.

We can learn the normal state of the BAS network by analyzing the data for

which we know there are no anomalies. Later, we can perform anomaly detection

by comparing the current flow graphs with the saved ones. We visualize the flow

graphs and the differences using the Javascript framework D3.js. In addition

to comparing the differences between the flow graphs, we also run a commu-

nity detection algorithm on each graph. The algorithm used is from [Blondel

et al.(2008)]. It attempts to maximize the modularity Q of the graph, defined as

Q =
1

M

∑
i,j

[
Aij − kikj

M

]
δ(ci, cj),

where Aij is the weight of the edge between nodes i and j, ki is the sum of

the weights on the outgoing edges at node i, ci is the community to which

node i is assigned, M is the sum of all weights of all edges and δ is the standard

Kronecker δ-function. The algorithm starts with each node in its own community

and proceeds iteratively by assigning a node to the community that maximizes

the increase of the modularity at each step. When assigning the weights to the

edges it is important to normalize them to take into account the specifics of

BAS, as there is usually more activity during business hours as compared to the

night or weekend.

4.4 Decision rule extraction

The results of the machine learning methods and the flow data analysis lead

directly to decision rules that can be used to classify the traffic in real time.

Different methods lead to different types of rules. For k-means, we use the

cluster centroids to automatically decide for each incoming packet whether it is

anomalous or not. Similarly, we use the learned underlying model from EM to

assign the probability of being anomalous. If there are no changes in the BAS,

the models can be used for long periods of time without updating. When changes

are made to the network structure (new devices added, services changed, ...), the

models need to be updated or re-learned. Figure 5 shows an example of a rule

based on k-means clustering.
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1. Project the packet data using the following equations:

x = −0.245 · dst MAC id+ 0.245 · NPDU.dlen+ 0.245 · NPDU.dest.spec + . . .

y = 0.449 · dst MAC v+ 0.449 · IP.dst.2+ 0.449 · BVLC.function + . . .

z = −0.674 · src MAC v− 0.541 · IP.src.3 − 0.475 · BVLC.length + . . .

2. If the point (x, y, z) is closer to the point (0.73,−0.09,−9.83) than to any
of the points (−4.74, 0.80,−1.42), (−4.08,−0.11, 0.33), (4.06, 0.07, 0.22),
(−3.96,−0.11, 0.07), then the packet is anomalous.

Figure 5: An example of a rule based on k-means with 3-dimensional PCA as the
preprocessing step and k = 5 clusters. The field values were normalized before applying
the PCA, as described in Sect. 3.2.

Extraction of useful decision rules is harder for the random forests and SVM,

as the PCA step needs to be performed each time with the new data sets, followed

by the learning step, which makes a direct rule extraction impossible. However,

random forests performed well even without the PCA, so the learned decision

trees can be stored and later directly used as decision rules, without the need to

re-train.

The rules from the flow data analysis can be divided into two types: im-

mediate exclusion rules and alert-only. We consider new flows or never before

used commands for immediate exclusion. The alert-only rules are based on the

learned statistical model and are triggered by any unlikely event, for example,

unlikely interpacket arrival time or unlikely packet length.

5 Results

In this section, we present the results of the various analyses that were performed

on the data.

5.1 Evaluation of machine learning methods

As stated in Sect. 4, we use the standard quality measures for machine learning

methods, together with the Matthews correlation coefficient. The results for

various methods are presented in Tab. 1.

Due to space constraints, only a subset of the results is shown. The results

for 10 clusters were not significantly better in any case and in some cases (specif-

ically, EM), the results were actually worse since some small clusters with non-

anomalous data were classified as anomalous, increasing the number of false

positives. When training with one type of attack, only the results of testing

against the data with 0.1% of anomalies are shown. The results for 0.5%, 1%

and 2% are generally better. When training against all the attacks at once, the

results with the highest and lowest MCC are shown. One-class SVM yielded no
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Algorithm Train set Test set MCC Specificity F1 score
km5 IB IB-0.1% 1.0 1.0 1.0

WP WP-0.1% 0.9284 0.9998 0.9259
CCM CCM-0.1% 0.8908 0.9997 0.885
CCR CCR-0.1% 1.0 1.0 1.0
AA IB-0.1% 0.9284 0.9998 0.9259

WP-2% 0.9962 0.9998 0.9963
BACeye BACeye 0.9912 0.9998 0.9912

no-BACeye — 0.9998 0.0
EM5 IB IB-0.1% 0.245 0.9985 0.2357

WP WP-0.1% 0.6265 0.9998 0.6215
CCM CCM-0.1% 0.8511 0.9996 0.8403
CCR CCR-0.1% 0.8511 0.9996 0.8403
AA WP-2% 0.9818 0.9998 0.9821

CCR-0.1% 0.6042 0.9998 0.5977
BACeye BACeye 0.9225 0.9985 0.9202

no-BACeye — 0.9986 0.0
Pkm5 IB IB-0.1% 0.9284 0.9998 0.9259

WP WP-0.1% 0.9284 0.9998 0.9259
CCM CCM-0.1% 0.9284 0.9998 0.9259
CCR CCR-0.1% 0.9284 0.9998 0.9259
AA IB-0.1% 1.0 1.0 1.0

BACeye BACeye 0.9933 0.9999 0.9934
no-BACeye — 0.9999 0.0

PEM5 IB IB-0.1% 0.8511 0.9996 0.8403
WP WP-0.1% 0.8908 0.9997 0.885
CCM CCM-0.1% 0.8908 0.9997 0.885
CCR CCR-0.1% 0.8908 0.9997 0.885
AA IB-0.1% 0.8573 0.9996 0.8475

CCR-2% 0.9917 0.9997 0.9918
BACeye BACeye 0.9825 0.9997 0.9825

no-BACeye — 0.9996 0.0
PRF no-BACeye IB-0.1% 1.0 1.0 1.0

WP-0.1% 1.0 1.0 1.0
CCM-0.1% 1.0 1.0 1.0
CCR-0.1% 1.0 1.0 1.0
BACeye 0.9926 1.0 0.9999

PSVC no-BACeye IB-0.1% 0.7702 0.6636 0.9978
WP-0.1% 0.6174 0.4486 0.9966
CCM-0.1% 0.9826 1.0 0.9996
CCR-0.1% 0.985 1.0 0.9997

Table 1: The quality measures for the various machine learning algorithms, denoted
as follows: km5 is k-means with 5 clusters, EM5 is expectation maximization with 5
clusters, PRF is random forest and PSVC is the support vector classifier. A leading
P indicates that PCA was performed first. The data sets are defined in Sect. 4.1, AA
stands for All Attack types. Since no-BACeye test data contains no true positives or
false negatives, the Matthews coefficient cannot be computed in these cases.
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Figure 6: The Matthews correlation coefficient (left) and the running time (right) as a
function of the number of PCA components. In both cases, the results are for EM with
10 clusters, using all attack types for training and testing against the data with 1% of
packets with incorrect bits. The algorithm were executed on a desktop computer with
Intel i7-3770 CPU and 32 GB RAM.

useful results, hence these results are not included in the table. The table clearly

shows that k-means and random forests perform best. These two methods are

best used simultaneously, as they are complementary in nature.

Since we know what kind of anomalies were introduced into the data, we

are able to compute the values of the confusion matrix. We expect that the

methods perform similarly when applied to the data for which the anomalies are

truly unknown. For all the data sets, between 1 and 3 clusters were marked as

anomalous, with 2 clusters (out of 5) in majority of the cases. The duration of

the training step depended most on the chosen method. Random forests and k-

means were both relatively fast, lasting less than 20 seconds in all cases. For EM

and SVC, the speed depended a lot on the number of PCA components. Figure

6 shows the timing results as a function of the number of PCA components, as

well as the quality of the learning. For SVC we also had to reduce the training

set to just 10.000 samples, as the algorithm failed to complete in a reasonable

time with more samples.

Testing was in all cases fast. When using PCA, there is always a tradeoff

between the performance and quality. In most cases, 5 components provided the

optimal balance. From the table it is clear that by far the best methods are

k-means with k = 5, preceded by PCA and random forests. The best results

for clustering methods were obtained when the classifier was trained on all the

attack types at once. The cluster centroids that were obtained in the training

step were later used for real-time analysis of each incoming packet as part of the

decision rules.
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Figure 7: Flow graph of a network without anomalies (left) and with anomalies intro-
duced by running the program BACeye (right). Clearly visible are the new nodes, new
flows, and the change in size of the existing nodes. Taken from [Tonejc et al.(2016)].

5.2 Visualization of the flow data

In addition to detecting anomalies using machine learning methods, we can de-

tect anomalies by constructing directed flow graphs and running the community

detection algorithm on the graph, in order to obtain the large-scale structure of

the graph. Figure 7 shows the difference between the flow graph of a network

without anomalies (left) and the flow graph when the program BACeye is run

at some point (right). The anomalies are detected and marked automatically by

comparing the current flow graph with the original one. We compare the nodes,

the edges, and the statistical properties of each edge that appears in both flow

graphs.

Figure 8 shows a different network, with a star topology. The statistical prop-

erties of the flows for the three marked nodes are shown in Fig. 9. In particular,

the interpacket arrival time and the packet length are analyzed.

It is clear from the figures that in order for the attacker to remain undetected,

a very limited choice of packet lengths and interpacket timings is available.

6 Conclusions and Future Work

We have shown that machine learning methods can be effective in detecting BAS

network traffic anomalies. In addition, the communication flows have natural

structure that lends itself to an efficient probabilistic description, which simplifies

the detection of anomalies. Combined with dynamic visualization techniques, it

enables the operators of BAS to detect anomalies early and act accordingly.

We focused on the following unsupervised machine learning methods: k-

means, expectation maximization, random forests and one-class support vec-

tor machines, all with or without a preceding dimensionality reduction using the

principal component analysis. There are other algorithms that could also be used,
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Figure 8: Another example of a flow graph for a simple network where all devices
communicate with one central node. The details of the network traffic for the named
nodes are presented in Fig. 9. This is a fairly typical arrangement when devices are
being managed from a central node.

for example density-based clustering algorithms like CLIQUE and MAFIA, self-

organizing maps using artificial neural networks, as well as a whole class of su-

pervised and semi-supervised methods, for example k-nearest neighbor, Kalman

filters, and Bayesian networks among others.

The network traffic comes naturally as a stream of data, so methods such

as CluStream, ClusTree and StreamKM++, designed for learning on streams,

could also be used. In our future work we plan to test these methods on the net-

work data streams (after the preprocessing step) with existing tool MOA [Bifet

et al.(2010)]. Additionally, a combination of several machine learning methods

could yield better results, this is also one of the things we plan to investigate in

the future.

The selected features mostly come from the header values of the packets in

our analysis, i.e., they primarily reflect the structure of the network and the

kinds of communication and not so much the actual application data. We intend

to include more features from the application level in the future, in order to

detect anomalies in the performance of the hardware controlled by the BAS and

not just the communication anomalies. This is important when trying to detect

and thwart more sophisticated cyberattacks, where the attackers try to affect

the BAS hardware.

Our plan is to test the developed methods on real-life traffic recordings, and

to expand our test setup to include more devices with a more diverse set of

anomalies. We also plan to implement the decision rule extraction in a way that

can be directly used in a real-time traffic normalizer. Both flow-based rules and

machine learning-based rules will be extracted.
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Figure 9: The distribution of the interpacket arrival times for the flows
x.x.x.35→x.x.x.240 and x.x.x.240→x.x.x.57 (above) and packet length distribution for
the same flows (below). The packet lengths are fairly representative for BACnet net-
works. The interpacket arrival times depend a lot on the configuration of the devices in
a given network, specifically, the timings are more predictable when a central node polls
the data as opposed to the devices reporting the values by using the Change-Of-Value
subscriptions.
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