
IntelliGOV - A Semantic Approach for Compliance
Validation of Service-Oriented Architectures

Haroldo Maria Teixeira Filho
(Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil

haroldo.filho@uniriotec.br)

Leonardo Guerreiro Azevedo
(IBM Research, Rio de Janeiro, Brazil

LGA@br.ibm.com
Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil

azevedo@uniriotec.br)

Sean Wolfgand Matsui Siqueira
(Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil

sean@uniriotec.br)

Abstract: Organizations are adopting Service-Oriented Architecture (SOA) to increase
operation’s efficiency and flexibility. To accomplish these goals, it is necessary to ensure that
the architecture and its evolution are compliant with business goals, best practices, legal and
regulatory requirements. However, the diversity of domains and stakeholders involved in SOA
solutions demands complex and expensive work to validate the architecture compliance. Hence,
it can result in high costs and low quality assessment if the organization does not use an
effective approach in this scenario. In addition, it would be important to consider standards and
open solutions in order to promote interoperability and reuse of available tools, making it easier
to spread throughout the organizations. We propose intelliGov, an architecture that aims to
solve these problems by using ontologies, semantic rules and queries in order to simplify the
compliance validation process. The architecture employs open standards – OWL, SWRL and
SQWRL – in its implementation. A case study, executed in a global energy company that is
currently adopting SOA, demonstrates gains in quality and costs of the compliance assessment
process using the proposed architecture.

Keywords: Service-Oriented Architecture (SOA), Governance, Ontology, Semantic Rules,
Semantic Queries.
Categories: H.0, H.3.5, H.4, I.2.4, M.2, M.9

1 Introduction

Service-Oriented Architecture (SOA) is an approach for building applications by the
interconnection of loosely coupled software modules into on-demand business
processes [Elgammal et al., 2014]. This goal is achieved by discovering, invoking and
composing distributed services to accomplish a task [Papazoglou et al., 2007]. It aims
to reduce costs and schedules of applications development through composition of
existing services, fostering reuse of existing IT assets [Erl, 2005].

Journal of Universal Computer Science, vol. 22, no. 8 (2016), 1048-1071
submitted: 3/9/15, accepted: 29/7/16, appeared: 1/8/16 © J.UCS

However, in a SOA environment the number of flexible parts of the architecture
and of involved independent stakeholders increases, resulting in a higher complexity
than traditional approach [Niemann et al., 2010] [Holanda et al., 2009]. It leads to
several problems, such as: (i) in the development of several versions of the same
service, reducing reuse [Niemann et al., 2010]; (ii) difficulty to expand the
architecture to a corporate and global scale, due to the distributed nature of SOA and
the variations in the regulatory aspect [Hsiung et al., 2012]; (iii) change management
issues in an environment that depends on distributed components and stakeholders
[Schepers et al., 2008].

Academy [Hojaji and Shirazi, 2010] [Joachim et al., 2013] [Stantchev and
Stantcheva, 2012] and industry [Bennett, 2012] [Brown et al., 2006] points to SOA
Governance as a solution for those problems. As described in [Janiesch et al., 2009],
SOA Governance is the establishment of structures, processes, policies and metrics to
ensure the adoption, implementation, operation and evolution of a SOA aligned with
business objectives and compliant with laws, regulations and best practices.

In addition, as stated in [Niemann et al., 2010], the primary goal of SOA
Governance is the compliance to intra-company, normative and legal standards. There
is also an increasing pressure for regulatory compliance in organizations, due to high-
profile bankruptcy cases, safety mishaps and the financial crisis [Rodríguez et al.,
2013]. Hence, compliance is a critical aspect in the SOA domain.

A common view of SOA Governance processes was provided in [Teixeira Filho
and Azevedo, 2014]. It consolidates industry and academy approaches in 51
processes. These processes require knowledge from several areas, ranging from
technical aspects (e.g., service development and monitoring) to strategic activities
(e.g., financial models and definition of organizational structures). This holistic
characteristic of SOA makes the compliance validation activity a challenge due to the
demand of knowledge derived from several domains, which is difficult to formalize
[Tran et al., 2011]. It also makes compliance a complex and expensive activity due to
the necessity to employ experts to audit compliance rules, collect, analyse and report
results [Rodríguez et al., 2013].

Therefore, it is necessary to consider domain representation and tools for
supporting the compliance validation. Although there are some proposals for dealing
with compliance assessment problems in SOA [see Section 2], they require the
development of specific components and extensions which make their use more
complex or they are not adequate to describe real world SOA governance. Then, there
is a need for supporting standards and available tools while also improving the
validation results (in terms of correctness and effort) in more complex real world
scenarios.

The work presented in this article proposes intelliGOV, a new approach for
compliance evaluation in SOA environments based on ontologies, semantic rules and
queries. IntelliGov uses Ontology to formally represent the domain knowledge and
semantic rules and queries to express the policies that describe regulatory
requirements. A software architecture is proposed to handle these elements, providing
mechanisms to extract information from the SOA environment, load this data as
instances in the ontology and evaluate compliance using rules described in the
ontology. The proposal was implemented and evaluated through a case study
conducted in a global energy organization. The results evidence the use of intelliGOV

1049Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

effectively reduces efforts and errors in the compliance validation process. Even
though some problems might be similar in Information Technology (IT) governance
as a whole, we focus on SOA Governance and, therefore, possible generalization of
the proposed approach and its validation on a broader scenario is out of the scope of
this work.

The remainder of this work is organized as follows. Section 2 describes related
work. Section 3 presents intelliGov approach. Section 4 describes a case study used to
validate the solution. Finally, Section 5 presents the conclusions and future work.

2 Related Work

This section reviews related work regarding SOA governance and the compliance
assessment problem in this context.

2.1 SOA Governance

The main goal of this paper is to propose a compliance mechanism to simplify SOA
governance establishment, which according to Janiesch et al. [2009] is the
establishment of structures, processes, policies and metrics to ensure the adoption,
implementation, operation and evolution of a SOA aligned with business objectives
and compliant with laws, regulations and best practices. To reach this goal, several
implementation frameworks were proposed to structure SOA governance mechanisms
implementation.

Niemann et al. [2010] propose model elements to be used for SOA Governance
establishment:

 Organization Entities: comprise processes, roles and responsibilities
necessary to implement and operate the governance mechanism;

 Governance policies: establish the expected behaviour of architectural
elements;

 Best practices catalogue: provides guidelines and acts as a base for future
policies and process improvements;

 Compliance check mechanisms: constantly verify adherence to policies,
checking if the resulting architecture is aligned to business goals, and to
legal and regulatory requirements;

 Maturity evaluation: measures the evolution of the governance mechanisms.
These five elements are defined considering organization’s goals and they act on

processes and technologies used by the organization to implement and operate the
SOA environment. Niemman et al. [2010] do not define which processes are
necessary to implement SOA governance.

Several works define frameworks specifying the necessary processes to
implement, operate and govern a SOA environment. Janiesch et al. [2009] propose a
framework of processes and compare the proposal with ITIL framework [Taylor et
al., 2007]. Hojaji et al. [2010] propose a model based on COBIT [ITGI, 2007]. The
Open Group [2009] proposes a model that divides processes in two categories: (i)
Governed processes category: contains the processes to develop and sustain the SOA
environment and are subjects of the SOA Governance Mechanism; and, (ii)
Governance processes category: controls policies, compliance evaluation and result

1050 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

reporting applied to the governed processes. Bennet [2012] and Brown [2006] also
propose models to implement, operate and govern a SOA.

To compare these models, Teixeira Filho and Azevedo [2014] analysed the
proposed governance models and listed the suggested processes of each approach,
aiming to identify the processes more frequently used and eventual divergences. The
result was the design of a common model, composed by 51 processes to implement
SOA governance. Those processes can be classified in four different groups of
processes:

 Strategy group: contains processes to define objectives, establish and
measure goals, define financial models for service charging and investment,
and organizational structure definition;

 Compliance group: establishes mechanisms to define and standardize
policies, auditing and exception handling due to non-conformities;

 Execution group: includes processes to implement SOA, considering service
and application development, project and portfolio management;

 Support group: includes processes to deal with change management,
communication, training and resource development, monitoring and problem
and incident management.

Considering those processes, it is possible to identify a diversity of knowledge
domains in SOA governance, ranging from technical aspects, like versioning and
system monitoring, to management aspects, like goal and organizational structure
definition. Niemann et al. [2010] also indicates this multidisciplinary approach,
defining nine possible domains for SOA governance policies: architecture, project
management, finance, service operations, data standards, asset management,
technology, security and organization. Zhou et al. [2010] state SOA governance
mechanisms must deal with heterogeneity and must be able to deal with several types
and granularities of policies. Hence, the definition of policies for a SOA governance
compliance mechanism demands tools able to represent knowledge from several
domains and different types.

2.2 Compliance assessment in SOA

Several authors address the compliance assessment problem in SOA. This section lists
these works and their limitations.

The use of the Service Modelling Language (SML) [Pandit et al., 2009] to
describe the SOA elements (e.g., services and systems) and ISO Schematron [Jelliffe,
2002] to describe, as schema constraints, the policies that the elements must follow is
proposed in [Zhou et al., 2010]. A set of tools verifies if the architecture elements
described in SML are valid considering the Schematron restrictions. It added specific
components and extensions to the standards to deal with the non-capability of SML
and Schematron to work with forward chaining inference and to handle performance
issues. These specific components are more complex and difficult to maintain than the
use of standards and open tools.

Some works [Birukou et al., 2010] [Tran et al., 2011] propose the use of
Complex Event Processing (CEP) [Luckham, 2002] techniques to evaluate
compliance. These approaches collect events from the SOA environment, and
evaluate compliance using this information through an event correlation mechanism
based on rules that specifies the desired behaviour. In this solution, the rules have to

1051Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

contain all the necessary knowledge of the policies and the SOA environment for
validation. Considering the cross-domain characteristic of SOA, the use of a CEP
approach can lead to rules with high complexity, increasing the chance of errors in the
compliance assessment process.

The following concerns were identified in the CEP approach [Tran et al., 2012]:
lack of a common vocabulary and difficulty to consolidate data. To solve these
problems, they improved the CEP approach with Model Driven Architecture (MDA)
[Mellor et al., 2002] practices. They included mechanisms for aggregating the policy
definitions into a model describing the service architecture and combining these
pieces of information to generate service architecture elements and CEP rules.
However, this solution increases the complexity of the CEP proposals and creates
architectural concerns. Following the MDA approach requires to generate the rules
and the related components of the service architecture whenever a stakeholder alters a
policy.

The use of a data warehouse to establish an integrated database with a schema
representing SOA concepts (e.g., services and applications) and data representing the
existing elements of the architecture is proposed in [Rodriguez et al., 2013]. This
solution uses queries to verify compliance. The same problem of the CEP solution
exists in this scenario: it uses queries and views in the data warehouse environment to
express all the necessary knowledge to validate the SOA policies, leading to complex
models.

Considering these works, it is necessary to reduce complexity by aggregating
knowledge in the compliance validation process. To ensure the applicability in
organizations, the solution needs to be simple, with few building blocks for
implementation. In addition, as SOA deals with interoperability of several
heterogeneous environments, an approach based on open standards can simplify the
integration issues.

Some solutions propose the use of ontologies and rules to deal with compliance
validation, making the process of heterogeneous knowledge representations and
interoperability between environments easier. The use of ontologies to describe an IT
governance domain and the use of axioms and rules in the ontology to describe
policies, submitting the items to an inference engine, is proposed in [Spies, 2012].
This approach allows capturing the knowledge of the domains involved in SOA in a
formal language and uses inferences to validate compliance.

An approach for using OWL [Hitzler et al., 2012] ontologies to represent domain
knowledge and SWRL [Horrocks et al., 2004] to express policies in the SOA domain
was proposed in [Teixeira Filho et al., 2014]. However, in both approaches ([Spies,
2012] and [Teixeira Filho et al., 2014]), the use of ontologies and SWRL are not
enough to describe real world SOA governance policies. An example is a rule like
“minor versions of a service must implement the same service interfaces”. To deal
with this kind of rule, it is necessary to compare the set of interfaces related to each
service version and assert that their contents are equal. OWL and SWRL does not
compare an entire set of related elements, demanding operations to handle sets and
aggregations. The work presented in this article evolves the ontology based
approaches, increasing the types of policies addressed by these solutions, providing a
solution to the set manipulation problem, by use of a query language attached to the
ontology and rules language.

1052 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

3 intelliGov – An Approach for Compliance Validation of
Service-Oriented Architectures

This section presents the intelliGov conceptual view and details to implement its
required components.

3.1 intelliGov Conceptual View

The intelliGOV approach is based on a modular architecture that combines
ontologies, semantic rules and queries with an inference engine and data extraction
tools to provide an accurate vision of the compliance state of a SOA.

An ontology is an explicit representation of a conceptualization [Gruber, 1993],
constituted by objects, concepts and other entities assumed to exist in a domain and
the relationship between them. The use of an ontology leads to a unique vocabulary
definition capable to represent formally and unambiguously the SOA domain
concepts. It guarantees correct interpretation of data by human or computational
agents. Hence, it reduces the necessity of experts to define or execute compliance
assessment, providing a unified vocabulary to users and computational agents to
specify and infer compliance.

For policy definition, it is important to use a mechanism capable of dealing with
concepts expressed in the ontology. It is also necessary to consider all the knowledge
expressed in the form of axioms in the ontology to simplify the policy description
through the reuse of this logic. Finally, both the ontology axioms and the policy
specification have to be machine-interpretable in order to automate compliance
assessment, thus reducing its execution time and errors.

In order to deal with these aspects, we propose the use of rules and queries to
describe governance policies. In this work, rules are assertions that can describe
enterprise behaviour, able to express organizational rules, company policies, external
regulations and standards [Bajec and Krisper, 2005]. The use of rules combined with
queries enhances the expressiveness of the solution, allowing complex operations like
aggregations and cardinality verification, which cannot be expressed as rules.

Figure 1 presents the proposed architecture. It is divided in five modules (Data
extractor, Ontology, Semantic Rules/Queries, Inference Engine and User Interface).
This modular architecture allows customizations and the use of different technologies
according to the application environment. The approach to design and implement the
architecture focus on the establishment of a set of tools that make easier the
manipulation of ontologies, rules and queries.

A Data Extractor module collects data describing the elements that composes the
architecture, reading this information from the tools that supports the SOA
environment. Afterwards, it converts this data into instances of an ontology, creating
objects representing elements like the services that exists in the organization and
systems that consume information using these services. Additional descriptive data
that cannot be extracted automatically might be inserted in the ontology by a user
interface. This ontology contains classes and relationships describing the SOA
domain, e.g. services, service contracts, systems and other architecture elements.

1053Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

Figure 1: intelliGOV conceptual view

By using the user interface, governance teams can define policies for SOA
governance describing them as semantic rules that are added to the ontology. Finally,
whenever is necessary to generate a compliance report, the ontology content
combined with the semantic rules are submitted to an inference engine, that verifies
which instances are compliant with the rules and presents the result on the user
interface.

3.2 intelliGOV components

The intelliGOV architecture requires a set of tools and technologies. Our
implementation employs open standards, aiming interoperability and easiness of use.

The approach uses the Ontology Web Language (OWL) [Hitzler et al., 2012] for
ontology description. OWL is an open standard, recommended by W3C and has a
large set of available tools for modelling, programming and reasoning. OWL is based
on XML technologies, which are also usual in a SOA environment, reducing the
learning curve of the approach.

We used Semantic Web Rule Language (SWRL) [Horrocks et al., 2004] to
describe policies rules. SWRL is an open standard to describe rules using classes and
properties represented in an OWL ontology. It exploits all the knowledge formally
expressed in ontologies, considering vocabulary, axioms and all types of relationships
defined in OWL.

Finally, we used Semantic Query-Enhanced Web Rule Language (SQWRL)
[O’Connor and Das, 2009] to express the queries. It exploits knowledge described in
the OWL ontology and associated rules in SWRL. It adds the capability to aggregate
data, obtaining measures like average and counting of elements, classify and order
data, and evaluate cardinality in relations. It fosters the increasing of the solution
expressiveness.

We used the components described in Figure 2 to implement the intelliGOV
prototype according to the conceptual view presented in section 3.1 (Figure 1).

1054 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

Figure 2: intelliGOV architecture components

The users of this architecture are members of SOA governance teams, responsible
for defining policies and evaluating compliance. These users are able to execute these
tasks through a presentation module that accesses an ontology manager that creates
rules and instances on the ontology. The ontology manager accesses a query and
inference engine to evaluate the rules and classify the elements in the ontology. Using
these components, the users add rules and queries representing the policies in the
ontology and, using the inference engine, executes queries and inferences to evaluate
compliance. Finally, the Data Collection Module uses the ontology manager to create
instances to represent the SOA environment objects. It gathers data from organization
SOA tools, e.g., service bus, service repository or artefact repository.

The modules were implemented in Java and deployed on the JBoss application
server. The Protegé API 1was used to access the ontology. It provides an open API to
the ontology management component. Drools2 is used as query and inference engine,
due to it compatibility with SQWRL/SWRL and with the Protégé API.

4 The Case Study

Although the proposal followed a design science research [Hevner et al., 2004], in the
evaluation we executed a case study in a global company of the energy sector. In this
section, we present the case study and discuss its results.

1 Protegé API – protegewiki.stanford.edu/wiki/ProgrammingWithProtegeOWL
2 Drools rules engine – www.drools.org

1055Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

4.1 Case study scenario

The case study was executed in a Brazilian energy company with global operations,
currently engaged in a SOA initiative. The company has 118 services implemented in
different technologies, including ABAP, Java, Lotus Notes, and NET. These services
are published in Oracle Service Bus and documented in Oracle Enterprise Repository.
A Clear CASE repository stores the source code versions.

The governance and publication of services in the service bus is executed by a
team named as Integration Competency Center (ICC). Several teams develop and
maintain services, using both traditional and agile development processes. There are
internal development teams distributed in six different states of the country and
outsourced development executed by external software factories.

A case study considering only one case is applicable to several situations, such as
the scenario of this work [Yin, 2009]. As the company acts in a global scale, has a
broad spectrum of technologies used in other organizations and must interoperate with
other enterprises, we can consider this scenario as representative.

4.2 Definition of the policies for the case study

The first step of the case study was to raise governance processes that require
improvements according to organization business challenges. Then it would be
possible to choose important processes considering the literature and the impact on
the organization, restricting the scope of the case study for governance policies. Two
senior members of the ICC accomplished this task. They both have worked more than
five years within the organization and they have more than five years of experience in
SOA. In order to map the organization governance processes to the proposals of the
literature, the ICC member chosen the processes considering a model that
consolidates the main proposals of SOA governance processes recommended by
industry and academia [Teixeira Filho and Azevedo, 2014]. As a result, they selected
service modelling and version control processes, due to its complexity and importance
for the organization.

Security and reuse are the main challenges for the service modelling process. The
organization classifies information type in security levels, distributed in five ordered
classes (A, B, C, D and E, with A being the less strict category). These levels specify
constraints and requirements to store data in systems and transport it among
applications. This classification was reviewed in 2013 in order to comply with a new
transparency law defined by the Brazilian government resulting in new security levels
that now coexist with the legacy classification. The levels names were changed to
Public, 1, 2, 3 and 4, representing respectively the former levels A, B, C, D and E.
Therefore, it brought the requirement for considering this mapping in service
modelling.

The second challenge deals with reuse. Developers in the company need to know
the existing set of services to include in their SOA solutions. Although documentation
is explicit in Oracle Enterprise Repository, a new classification schema was required
to enhance searches. The solution defined by the corporate architecture team was the
definition of a taxonomy to classify data based on Subject Areas, representing the
business areas related to the data. The subject areas are organized in a hierarchical
way, reflecting the organization hierarchy. This classification scheme is currently

1056 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

under development and several information and services are not classified yet.
Therefore, every service must be associated to the correct subject area, aiming to
optimize the search for reuse.

Finally, regarding version control, several existing services are variations of the
same function that coexists due to the lack of a defined versioning policy, leading to
multiplication of unnecessary service endpoints. There is also a history of operational
problems due to contract changes in services already consumed by applications. To
solve this problem, the ICC proposed a version control policy based on two elements:
service releases and variants. Service releases are versions of the same service but
with different interface. They potentially affect the behaviour of existing consumers.
Each new service release generates a new asset in the production environment, with a
new endpoint. The legacy service releases may coexist to fulfil legacy service
contracts and they have to become active until these contracts expire. Variants are
service versions that do not have different interfaces, but changes in the service
functionality. Usually variants result from bug fixes or performance improvements.

Considering the scenario, the specialists described policies for these processes.
They also prioritized the policies in three levels of importance (Low, Medium and
High), informed if automatic verification mechanisms are possible and if evidences
were available from automatic collection. The results were filtered, considering only
high priority and automatically verifiable policies with existing evidences to
validation, leading to a set of policies, described on Table 1.

Policy Policy Domain Policy Description
1 Service

Modelling
Every service must be classified accordingly to the
corresponding subject area of the information
handled by the service.

2 Service
Modelling

Every service must be classified accordingly to the
corporate information security levels of the
organization.

3 Service
Modelling

Every service that handles sensitive information
must use channel cryptography to transport data.

4 Service
Versioning

All the variants of a service release must have the
same input and output interfaces.

5 Service
Versioning

Service releases of a service must have different
input or output interfaces.

6 Service
Versioning

Only one service variant of a service release must be
active on the service bus.

7 Service
Versioning

Every service release that has an active service
contract must be active in the service bus.

Table 1: Policy set for the case study

4.3 Manual evaluation

The research team distributed the policies to seven other analysts with different skills
and experience. All analysts were ICC members with experience in software
development. In order to characterize the analysis, they were classified in two

1057Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

dimensions: the first measuring the experience in the organization, obtained in
previous projects in the company; the second, based on the experience in service-
oriented architectures. Table 2 presents the distribution of the experience of the team:
rows represent dimensions, and columns represent ranges of number of years of
experience. Cells represent the quantity of people related to a type of knowledge
against the years of experience.

Type of Expertise
Years of Experience

1 - 2 3 – 5 5+
Organization 4 1 2
SOA 2 2 3

Table 2: Distribution of experience of the team

Each member evaluated a number of services and checked the compliance,
describing any reasons identified for non-compliance. The number of evaluated
services per person varied between two to five services according to the complexity of
the service interfaces and the number of existing versions, leading to an equal
workload to each team member.

In order to define a validation template, the research team evaluated the policies,
and a member of ICC, with more than five years of experience both in the
organization and in SOA, validated this work.

During the manual execution, 25 services were evaluated, corresponding to
approximately 21% of the services in the organization. The services were selected
randomly and the quantity was selected in a way that each analyst would expend a
two hours of work, without affecting their other activities. Although it does not cover
all the services, it covers all the technologies used in the organization, including
scenarios of communication with other companies or agencies, allowing the
evaluation of external providers’ scenario, and data access services based on legacy
systems.

After the evaluation, the results expressed by each analyst were compared with
the template. For each divergence, an evaluation error was counted. The quantity of
errors was divided by the total number of evaluations, obtaining an error rate per
policy. The time spent by each analyst was also measured, leading to a total time
spent to validate the 25 services and an average time per policy per service.

In this time measurement, it was included the time to find and obtain the required
information, the time to take the decision of compliant or not, and the time to register
the result, emulating the same steps that intelliGOV does.

4.4 Ontology and Rules definition

The policy set defined for the case study acted as a base to model the ontology for our
proposed solution, using an adaptation of the 101 methodology [Noy and
McGuinness, 2001]. This methodology was selected due to its simplicity to allow the
validation of the proposed approach.

The resulting ontology is presented in Figure 3, and described as follows. It is
based on the Service-Oriented Architecture Ontology Version 2.0 [The Open Group,

1058 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

2014], considering versioning and specific elements from the organization. Classes in
white are reused from the Open Group ontology and classes in grey were created to fit
the requirements of this case study (i.e., they were not present in Open Group
ontology). For any other enterprise interested in adopting the proposed approach, it
would be possible to reuse the Open Group ontology and/or the case study ontology
as well as any other related ontology. The aim of the ontology employed in our case
study was to analyze the applicability of the proposed approach and, therefore, a
reference ontology for SOA governance was out of scope of this work.

Figure 3: Case study ontology

Element represents any item of the SOA environment. It is specialized in
Services that represents functionalities available in the organization. Service
Contract establishes the agreement of a service use. A Service has a Service
Interface that requires (hasInput) and provides (hasOutput) data from different types
(Information Types). This data can be atomic or complex (represented by the
composedBy object property)

The extensions to the Open Group ontology created to handle the organization
specific requirements were the following.

First, to deal with information classification, a class named SubjectArea was
included to represent organizations’ information areas. SubjectArea is a subclass of
Element. SubjectAreas classifies Information Types by the object property
responsibleFor. Element’s object property handlesDataFrom represents the
possibility of data manipulation from any element.

To handle security, two more classes were included: Communication Protocol,
representing possible protocols, like HTTP and JMS, used to access service
interfaces; and Security Mechanism, representing mechanisms used to ensure
security, like channel and content cryptography. In both cases, object properties were
added: accessibleBy to relate Service Interface with Communication Protocol;
and, implements to relate Communication Protocol with Security Mechanism.
Security Level class was created to represent the security levels of the organization.
It is related to Service by a definesSecurityConstraintsTo object property and to an

1059Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

Information Type by the definesSecurityRequirementsTo object property. To
express the ordering of the security levels, an object property named
greaterOrEqualTo and its inverse property lowerLevelTo represent the ordering
between the security levels.

Finally, to deal with version management, the Service Release class was included
to represent releases of a service that exists in the organization. On the other hand,
Service Variant was included to represent the concept of variant proposed by the
ICC, relating to the service release by a variantOf object property. They are both
services, inheriting relations to service interfaces, allowing validation of the
versioning policies.

A SQWRL statement was created for each policy. We used ontology terms to
build a logical expression representing the policy statement that would result in
TRUE whenever all policy conditions are met and FALSE otherwise. To illustrate this
process, consider the policy 1, presented below, and the steps for creating the
corresponding SQWRL as follows.

Every service must be classified accordingly to the corresponding subject area of the

information handled by the service

The first step to create the SQWRL statement corresponds to the definition of the

ontology elements to be used by the policy. The first element is a service s. To define
the information handled by the service using the ontology terms, we must consider its
service interface si, and the data types of the inputs and outputs of the service
interface, denoted as input and output InformationType. Finally, we have to compare
the service subject area saServ to input and output service areas, (saInput and saOut,
respectively) that composes the service interface. With these definitions, the first part
of the statement is defined as:

soa:Service(?s)∧ soa:ServiceInterface(?si)∧ soa:InformationType(?input) ∧
soa:InformationType(?output) ∧ igov:SubjectArea(?saServ) ∧
igov:SubjectArea(?saInp) ∧ igov:SubjectArea(?saOut)

The second step corresponds to the establishment of the relations between the
elements, by setting the object properties as follows:

 Service and its Subject Area are related by a igov:handlesDataFrom

property;
 Service and its Service Interface are related by a soa:hasInterface

property;
 Service Interface is related to inputs and outputs Information Type by

soa:hasInput and soa:hasOutput properties;
 Subject Areas of inputs and outputs are related by

igov:isResponsibleFor property.

Considering these elements, the second block of the statement can be written as:

1060 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

igov:handlesDataFrom(?s, ?saServ) ∧ soa:hasInterface(?s, ?si) ∧
soa:hasInput(?si, ?input) ∧ soa:hasOutput(?si, ?output) ∧

igov:responsibleFor(?saInp, ?input) ∧ igov:responsibleFor(?saOut, ?output)

The third step corresponds to the creation of sets that group subject areas related

to the service, and its inputs and outputs while also consolidates these groups by
service, providing, for each service, the subject areas related to the service itself and
the data used in the service interface. The operator sqwrl:makeSet builds the set and
the operator sqwrl:groupBy groups the set by service, allowing the creation of three
sets: setSubServ, representing the subject areas related to the service, and setSubInp
and setSubOut, respectively related to inputs’ and outputs’ subject areas. Considering
these terms, the third block of the expression can be described as follows.

sqwrl:makeSet(?setSubServ,?saServ) ∧ qqwrl:makeSet(?setSubInp, ?saInp) ∧
sqwrl:makeSet(?setSubOut, ?saOut) ∧ sqwrl:groupBy(?setSubServ, ?s) ∧
sqwrl:groupBy(?setSubInp, ?s) ∧ sqwrl:groupBy(?setSubOut, ?s)

Finally, the last block of the expression compares, service by service, the content
of the sets setSubServ and the sets setSubInp and setSubOut, considering true only the
services where all elements of the input/output sets are contained in the subject areas
listed in the service set. Initially, the operator sqwrl:equal was used to try to compare
the sets. However, sqwrl:egual operator does not consider the grouping operation. To
solve this problem, we calculated the difference between the sets using the
sqwrl:difference operator and checked if the size of the resulting set was equal to
zero, using the sqwrl:size and the swrlb:equal operators. The resulting block was
defined as follows.

sqwrl:difference(?dif1, ?setSubOut, ?setSubServ) ∧ sqwrl:difference(?dif2,
?setSubInp, ?setSubServ) ∧ sqwrl:size(?siz1, ?dif1) ∧ sqwrl:size(?siz2, ?dif2) ∧
swrlb:equal(?siz1, 0) ∧ swrlb:equal(?siz2, 0)

The combination of the four terms leads to a logical instruction that results TRUE

whenever a service is compliant and FALSE otherwise. The result of the query of the
services s that are compliant with the definition is obtained using the sqwrl:select
operator. Combining all these elements, the final expression is described as follows.

soa:Service(?s)∧ soa:ServiceInterface(?si)∧ soa:InformationType(?input) ∧
soa:InformationType(?output) ∧ igov:SubjectArea(?saServ) ∧
igov:SubjectArea(?saInp) ∧ igov:SubjectArea(?saOut) ∧ igov:handlesDataFrom(?s,
?saServ) ∧ soa:hasInterface(?s, ?si) ∧ soa:hasInput(?si, ?input) ∧ soa:hasOutput(?si,
?output) ∧ igov:responsibleFor(?saInp, ?input) ∧ igov:responsibleFor(?saOut,
?output) ∧ sqwrl:makeSet(?setSubServ,?saServ) ∧ qqwrl:makeSet(?setSubInp,
?saInp) ∧ sqwrl:makeSet(?setSubOut, ?saOut) ∧ sqwrl:groupBy(?setSubServ, ?s) ∧
sqwrl:groupBy(?setSubInp, ?s) ∧ sqwrl:groupBy(?setSubOut, ?s) ∧
sqwrl:difference(?dif1, ?setSubOut, ?setSubServ) ∧ sqwrl:difference(?dif2,
?setSubInp, ?setSubServ) ∧ sqwrl:size(?siz1, ?dif1) ∧ sqwrl:size(?siz2, ?dif2) ∧
swrlb:equal(?siz1, 0) ∧ swrlb:equal(?siz2, 0) → sqwrl:select(?s)

1061Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

The same process was applied to the other policies defined by the ICC team.
Some of the queries demanded the definition of other SWRL rules in the ontology to
establish OR relations and optimize memory usage by reducing the number of
elements handled by the statement. Table 3 presents these rules.

To implement the policies, it was necessary to define what characteristics of a
service handle secure information. After consulting experts from the organization, it
was identified that these services are classified as security level 2 or higher in the
security classification level. Therefore, rule 1 checks if the service is above level 2
and if it uses Channel Cryptography. Rule 2 verifies if the service does not handle
secure information, making it compliant whatever security mechanisms is used. To
group the services that complies to one of the two assertives, a new class denoted
CompliantSecurityService was created, allowing the implementation of an OR
clause.

Rule 3 evaluates if a service contract is inactive, classifying it in a class denoted
InactiveContracts. The execution of this rule reduces the number of service contracts
evaluated on policy 7, reducing evaluation time and memory consumption.

Rule SWRL Rule Statement Objective
1 igov:definesSecurityConstraintsTo(?sl, ?s) ∧

igov:lowerLevelTo(?sll, ?sl) ∧ sameAs(?sll,
igov:2) ∧ soa:hasInterface(?s, ?si) ∧
igov:accessableBy(?si, ?cp) ∧
igov:implements(?cp,
igov:ChannelCriptography) →
igov:CompliantSecurityService(?s)

To obtain services that deals
with secure information and
demands channel cryptography,
according to Policy 3.

2 igov:definesSecurityConstraintsTo(?sl, ?s) ∧
igov:greaterOrEqualLevelTo(?sll, ?sl) ∧
sameAs(?sll, igov:3) →
igov:CompliantSecurityService(?s)

To obtain services that do not
deal with secure information and
do not require security
mechanisms on the compliant
set

3 soa:ServiceContract(?sc) ∧ igov:endDate(?sc,
?dt) ∧ temporal:after("now", ?dt) →
igov:InactiveContract(?sc)

To defines the set of Inactive
Contracts by checking the
expected ending date

Table 3: Supporting SWRL rules

The resulting queries representing the policies 2 to 7 are presented in Table 4.

4.5 intelliGOV execution

After the definition of the ontology and rules, we load data from the organizations’s
SOA environment. Some manual procedures were also performed. The equivalence
between the legacy and current security classification was included in the ontology,
using the sameAs property, relating the instances representing the equivalent levels.
The information regarding the relation between security mechanisms and
communication protocols was obtained by interviews with experts and included in the

1062 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

ontology. Finally, data content was anonymized to preserve organization
confidentiality

Policy Policy Query
2 soa:Service(?oServ) ∧ igov:SecurityLevel(?oLevel) ∧

igov:definesSecurityConstraintsTo(?oLevel, ?oServ) → sqwrl:select(?oServ,
?oLevel)

3 igov:CompliantSecurityService(?s) → sqwrl:select(?s)
4 igov:variantOf(?minor, ?major) ∧ soa:hasInterface(?minor, ?minInt) ∧

soa:hasInterface(?major, ?majInt) ∧ soa:hasInput(?minInt, ?minInput) ∧
soa:hasInput(?majInt, ?majInput) ∧ soa:hasOutput(?minInt, ?minOutput) ∧
soa:hasOutput(?majInt, ?majOutput) ∧ sqwrl:makeSet(?setMinInput, ?minInput) ∧
sqwrl:makeSet(?setMajInput, ?majInput) ∧
sqwrl:makeSet(?setMajOutput, ?majOutput) ∧ sqwrl:makeSet(?setMinOutput,
?minOutput) ∧
sqwrl:groupBy(?setMajInput, ?minor) ∧ sqwrl:groupBy(?setMinInput, ?minor) ∧
qqwrl:groupBy(?setMajOutput, ?minor) ∧ sqwrl:groupBy(?setMinOutput, ?minor) ∧
sqwrl:difference(?setDif1, ?setMajInput, ?setMinInput) ∧ sqwrl:difference(?setDif2,
?setMinInput, ?setMajInput) ∧ sqwrl:size(?tamDif1, ?setDif1) ∧
sqwrl:difference(?setDif3, ?setMajOutput, ?setMinOutput) ∧
sqwrl:difference(?setDif4, ?setMinOutput, ?setMajOutput) ∧
sqwrl:size(?tamDif2, ?setDif2) ∧ sqwrl:size(?tamDif3, ?setDif3) ∧
sqwrl:size(?tamDif4, ?setDif4) ∧ swrlb:equal(?tamDif1, 0) ∧ swrlb:equal(?tamDif2,
0) ∧ swrlb:equal(?tamDif3, 0) ∧ swrlb:equal(?tamDif4, 0) → sqwrl:select(?minor)

5 igov:versionOf(?ver1, ?serv) ∧ igov:versionOf(?ver2, ?serv) ∧
soa:hasInterface(?ver1, ?int1) ∧
soa:hasInterface(?ver2, ?int2) ∧ soa:hasInput(?int1, ?inp1) ∧ soa:hasInput(?int2,
?inp2) ∧ soa:hasOutput(?int2, ?out2) ∧ soa:hasOutput(?int1, ?out1) ∧
sqwrl:makeSet(?setIn1, ?inp1) ∧ sqwrl:groupBy(?setIn1, ?ver1) ∧
sqwrl:makeSet(?setIn2, ?inp2) ∧ sqwrl:groupBy(?setIn2, ?ver2) ∧
sqwrl:makeSet(?setOut1, ?out1) ∧ sqwrl:groupBy(?setOut1, ?ver1) ∧
sqwrl:makeSet(?setOut2, ?out2) ∧ sqwrl:groupBy(?setOut2, ?ver2) ∧
sqwrl:makeSet(?setVer, ?ver1) ∧ sqwrl:groupBy(?setVer, ?serv) ∧ sqwrl:size(?szVer,
?setVer) ∧ sqwrl:difference(?setDif1, ?setIn2, ?setIn1) ∧ sqwrl:difference(?setDif2,
?setIn1, ?setIn2) ∧ sqwrl:difference(?setDif3, ?setOut1, ?setOut2) ∧
sqwrl:difference(?setDif4, ?setOut2, ?setOut1) ∧ sqwrl:size(?szDif1, ?setDif1) ∧
sqwrl:size(?szDif2, ?setDif2) ∧ sqwrl:size(?szDif3, ?setDif3) ∧ sqwrl:size(?szDif4,
?setDif4) ∧ swrlb:divide(?rd, 1, ?szVer) ∧ swrlb:add(?r, ?szDif1, ?szDif2, ?szDif3,
?szDif4, ?rd) ∧ swrlb:greaterThanOrEqual(?r, 1) → sqwrl:select(?ver1)

6 igov:variantOf(?var, ?ver) ∧ igov:hasState(?var, igov:Operational) ∧
sqwrl:makeSet(?setVar, ?var) ∧ sqwrl:groupBy(?setVar, ?ver) ∧ sqwrl:size(?szVar,
?setVar) ∧ swrlb:equal(?szVar, 1) →
sqwrl:select(?ver, ?var)

7 igov:hasState(?serv, igov:Operational) ∧ soa:isContractFor(?sc, ?serv) ∧
igov:InactiveContract(?isc) ∧ sqwrl:makeSet(?setCont, ?sc) ∧
sqwrl:groupBy(?setCont, ?serv) ∧ sqwrl:makeSet(?setInat, ?isc) ∧
sqwrl:difference(?setAtiv, ?setCont, ?setInat) ∧ sqwrl:size(?szAt, ?setAtiv) ∧
swrlb:greaterThan(?szAt, 0) → sqwrl:select(?serv)

Table 4: SQWRL queries representing the policies of the case study

1063Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

4.6 intelliGOV execution

After the definition of the ontology and rules, we load data from the organizations’s
SOA environment. Some manual procedures were also performed. The equivalence
between the legacy and current security classification was included in the ontology,
using the sameAs property, relating the instances representing the equivalent levels.
The information regarding the relation between security mechanisms and
communication protocols was obtained by interviews with experts and included in the
ontology. Finally, data content was anonymized to preserve organization
confidentiality.

During intelliGOV execution, some important points were identified:
• As explained in Section 4.4, some queries were originally written using the

sqwrl:equal (?s1, ?s2) operator, that compares the contents of two sets ?s1
and ?s2, and returns true if they are equal or false, otherwise. However, when
combined with the sqwrl:makeset (?s, ?e) ^ sqwrl:groupBy (?s, ?re)
operators, the sqwrl:equal operator always returns true, ignoring the grouping
condition. The solution was the evaluation of the difference set, counting the
number of elements and verifying if it is equals to 0. The use of these
operations produced the desired result, but increased rule complexity. This
situation happened on policies 1, 4 and 5. The queries presented previously
in Table 4 considered the adapted policies;

• Due to this complexity, the execution of policies 4 and 5 led to out of
memory exceptions when all the services were considered. To handle that, a
statement was included in each query to limit the execution to one service at
a time. As an example, in policy 5, a statement sameAs(?serv, [service
instance]) was included in the beginning of the policy and the [service
instance] parameter was filled in a loop that executed the query sequentially
for the entire service set.

After execution, the number of errors and the execution time for each policy were
registered. To measure execution times, the time before and after query execution
were stored and the difference between these two moments was considered as the
execution time. For policies 4 and 5, due to the use of queries per service strategy,
resulting in a loop of query executions, the execution time of each step of the loop
was registered and the total execution time for the policy was considered as the sum
of the individual executions, leading to a higher execution time. For the other policies
that could be evaluated for the entire set, the total execution time was directly
measured.

4.7 Case study results

To evaluate the results, the data measured in the case study was consolidated and the
research team promoted a meeting with the participants to discuss the results. During
this meeting, the template was validated by the entire group. The results are presented
in Table 5.

1064 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

Policy

Manual Evaluation intelliGOV Execution

quantity
of errors

error
Rate
(%)

execution
time (sec)

average
execution
time per

service (s)

quantity
of errors

Error
Rate
(%)

execution
time (s)

average
execution
time per

service (s)
1 6 24% 570 23 0 0 3.7 0.1
2 8 32% 405 16 0 0 2.7 0.1
3 2 8% 445 18 0 0 3.4 2.9
4 3 12% 400 16 0 0 72.5 2.8
5 8 32% 365 15 0 0 70 0.1
6 4 16% 305 12 0 0 2.8 0.1
7 6 24% 315 13 0 0 2.8 0.1

Table 5: Results of manual and intelliGOV execution

For policy 1, the problem described by the participants was the difficulty to
identify the correct domain of information in the context of the organization,
especially when the classification of the company diverges from the practice of the
market. For instance, the workforce service, which deals with employee data, was
correctly classified in the Human Resources area, since the organization classifies this
information in the same manner as the market. However, the service SalesOrder was
classified as a Sales service, despite the fact that the company classifies that as a
Downstream service.

The participants also had difficulty to identify the classification of hierarchies of
data. As an example, consider the Supplier Payment service that handles queries of
the set of payments received by a supplier, composed by two groups of data: Supplier
Data, which describes specific supplier information, like identification, name and
contacts; and Payment Data, containing the value of the payment, banking
information and accounting information. Each one of these groups of data belongs to
one or more distinct subject areas. Supplier Data is contained in the Supplies area and
Payment contains information handled by both Finance and Accounting areas. Hence,
the data classification of this service is the composition of these subject areas. In the
manual evaluation, the analyst considered only the Supplies area on the analysis and
marked the service as compliant.

These errors were avoided using intelliGOV through the transitive property
handlesDataFrom. In the Supplier Payment Service, all the levels of information were
considered, leading to an expected classification composed by the Supplies, Contract,
Finance and Accounting areas. The compliance assessment errors were originated due
to the lack of knowledge of the analysts about the structure of the company and not
from a technical aspect. This knowledge was registered in the ontology, leading to
better results using intelliGOV.

For policy 2, the problem was the mapping between the old security classification
and the new one. The analysts with less experience in the organization considered the
services classified in the legacy classification as non-compliant, instead of
interpreting the mapping between the two classifications. intelliGOV considered the
mapping of the two classification model by means of the sameAs relation between

1065Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

instances representing each level of the model. One important point is that no logic to
map the levels needed to be expressed in the SQWRL queries, thus reducing the
complexity of the query.

The difference between the security classification taxonomies also caused the
wrong evaluation on policy 3, since errors identified by the team were caused by
errors in the classification that led to a wrong protocol selection. However, because
this policy depended more on a technical knowledge (given a security level, which
communication protocol is correct), the error rate was lower than the one measured in
policy 2. Considering intelliGOV, it reused the knowledge of the mapping between
the legacy and new levels of information security, allowing a precise conformity
identification. For policies 4 to 7, the problem was the difficulty to separate the
concepts of variants and releases in the context of the company. The concept of
variant is closer to the traditional way that teams develops software in the IT area,
what justifies smaller expected and actual number of non-conformities and smaller
error rates. However, the concept of releases as expressed by the ICC is less common,
leading to higher error numbers. The participants identified that it was very complex
to identify whenever a service specification changed due to a new version in the case
of changes in the service interface.

Considering specifically policy 7, the analysts with less experience in the
company did not considered the concept of existing active contracts to define
whenever or not an old release must be active, representing actual service consumers
that depend of the old service interface. This fact led to errors in compliance
identification and explained several operational problems that occurred in the ICC
regarding deactivation of releases with active consumers. In this context, the
definitions were technical (i.e., from the IT area).

Considering this analysis, it is possible to identify that intelliGOV gains were
obtained due to the use of all necessary knowledge available in the ontology. This
knowledge includes detailed and specific rules like mapping of security levels, data
and organizational structure information and version control policies. These rules and
concepts were not used correctly by part of the analysts during the manual evaluation,
leading to a higher error rate. IntelliGOV also presented gains in performance due to
the automation of the processes of finding and integrating information and reasoning
about compliance.

Another important point is related to the distribution of the error rate of the
manual execution according to the different types of expertise of the professionals.
Figure 4 presents this compilation, considering the average error rate of the
evaluation. In Figure 4.a, the error rate is distributed according to the experience of
the professionals in the organization. Figure 4.b presents the error rate according to
the experience in SOA technology. From these results, the participants with more
experience in the organization have lower error ratings. It shows the importance of
intelliGOV solution. Due to knowledge captured in the ontology, the professionals
with more experience can be released to act on more strategic tasks, after supporting
the modelling of the ontology to be used.

1066 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

Figure 4: Comparison of error rate distributed by organizational and SOA experience

5 Conclusions and Future Work

Compliance evaluation of SOA is an expensive and complex activity. To reduce these
factors, we proposed intelliGOV, an approach based on ontologies, semantic rules and
semantic queries. To implement a software toolset to support the approach, OWL,
SWRL and SQWRL were used, aiming to increase interoperability and flexibility.
The contributions are a new approach to validate compliance in SOA environments
and a toolset that automates this process.

To evaluate results, a case study was executed in a global energy company,
considering services that deals with developed applications, packages, legacy systems
and intercompany communications. Two variables were measured: error rates,
representing the percentage of wrong compliance evaluations, and execution times,
representing the necessary time to evaluate a policy. Two kinds of evaluation were
executed: a manual evaluation, executed by seven analysts of the organization, with
different levels of experience both in the organization and in SOA; and an evaluation
executed by intelliGOV.

The manual evaluation led to an error rate that varied from 8% to 32% and an
execution time for evaluation of one policy considering the entire set of elements of
the SOA that varied between approximately 5 and 10 minutes. It was also possible to
identify that experience in the organization contributes to decrease this error rate,
based on the experience of the participants of the case study. Using intelliGOV, the
error rate was reduced to zero and the execution time varied between 2.7 and 70
seconds, even with processing limitations of the SQWRL expressions.

The proposed solution may be used to deal with business concepts (like business
structure organization and corporate security policies) as well as technical issues (e.g.,
version control). Hence, it can provide results for several compliance evaluation
scenarios.

However, some limitations were identified and should be stressed in future
works. First, the process list used in the evaluation: despite of the importance of the
selected processes, the list could be extended to evaluate other critical areas in SOA,
like service composition and billing. Second, the domains considered for the ontology
definition. The study was limited to the domains of structure, security and technology

1067Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

(e.g., services, contracts, inputs and outputs) according to the selected processes by
the ICC team. These aspects could be evaluated applying intelliGOV in additional
processes and different domains.

Another limitation was the case study team, composed only by IT people. So, a
future work is to broaden the audience to include business stakeholders. Then,
identifying their issues in the policy definition step, capturing eventual non-existing
terms in the current ontology, and assessing the use of intelliGOV for compliance
checking in this scenario.

Other limitation is the use of a simple ontology engineering methodology to
design the ontology used in the case. However, the use of more complete approaches
could enhance the results, due to more efficient ontology design and could be a new
line of work to explore. One possible study would be the conception of a complete
ontology for the SOA governance domain and strategies to merge it with other
domain ontologies that capture the concepts and rules that relates to the SOA
governance mechanism.

Another work could be the use of computational agents to act on the
identification of non-conformity, leading to agility and more stability of the
organization. A computational agent could run the compliance analysis and, based on
the result, act to control the environment or to suggest possible actions.

Finally, some aspects regarding the SQWRL language can be explored.
Limitations on comparison operators of SQWRL were detected and the resolution of
these issues can simplify the description of the rules and promote more reductions of
processing time. Another point considers the process of transcription of policies in
natural language to SQWRL. This activity can become complex as policy complexity
rises, leading to extensive queries. Further studies regarding the processing of rule
transcription and natural language processing can simplify this process and reduce
complexity.

References

[Bajec and Krisper, 2005] Bajec, M., Krisper, M.: “A methodology and tool support for
managing business rules in organisations”; Information Systems, 30, 6 (2005), 423-443.

[Bennett, 2012] Bennett, S. G.: “A Framework for SOA Governance, Release 3.2”; Oracle
Practitioner Guide, Oracle, (February 2012), also appeared as electronic version in
http://www.oracle.com/technetwork/topics/entarch/oracle-pg-soa-governance-fmwrk-r3-2-
1561703.pdf

[Birukou et al., 2010] Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P.,
Strauch, S., Tluczek, M.: “An integrated solution for runtime compliance governance in SOA”;
Service-Oriented Computing; Springer Berlin Heidelberg, (2010), 122-136.

[Brown et al., 2006] Brown, W. A., Moore, G., Tegan, W.: “SOA Governance-IBM’s
Approach”; Effective governance through the IBM SOA Governance Management Method
approach, White paper, August 2006, also appeared as electronic version in
ftp://170.225.15.40/software/soa/pdf/SOA_Gov_Process_Overview.pdf.

[Elgammal et al., 2014] Elgammal A., Sebahi, S., Turetken, O., Hacid, M., Papazoglou, M.P.,
van den Heuvel, W.J. :”Business Process Compliance Management: ad integrated proactive

1068 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

approach”; Proceedings of the 24th International Business Information Management
Association Conference, Milan (2014), p.764, 781

[Erl, 2005] Erl, T.: “Service-Oriented Architecture (SOA): Concepts, Technology, and
Design”; Prentice Hall, Upper Saddle River, NJ, USA (2005).

[Gruber, 1993] Gruber, T. R.: “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing”; Knowledge acquisition, 5, 2 (1993), 199–220.

[Hevner et al., 2004] Hevner, A. R., March, S. T., Park, J., Ram, S.: “Design science in
information systems research”; MISQ (Management Information Systems Quarterly), 28, 1
(2004), 75-105.

[Hitzler et al., 2012] Hitzler, P. Krötzsch, M., Parsia, B., Patel-Schneider, P. F., Rudolph, S.:
“OWL 2 Web Ontology Language Primer (Second Edition)”; W3C Recommendation 11
December 2012 (2012), also appeared as electronic version in
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

[Hojaji and Shirazi, 2010] Hojaji, F. & Shirazi, M. R.: “A Comprehensive SOA Governance
Framework Based on COBIT”; Proc. 6th World Congress on in Services (SERVICES-1), IEEE
Computer Society, Miami (2010), 407–414.

[Holanda et al., 2009] Holanda, H. J. A., Barroso, G. C., Serra, A. B.: “Performance Analysis
of Service Oriented Software”. iSys - Revista Brasileira de Sistemas de Informação (Brazilian
Journal of Information Systems), 2, 1 (2009), also appeared as electronic version in
http://www.seer.unirio.br/index.php/isys/article/view/336/392

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B.,
Dean, M.: “SWRL: A semantic web rule language combining OWL and RuleML”; W3C
Member Submission 21 May 2004 (2004), also appeared as electronic version in
http://www.w3.org/Submission/SWRL/

[Hsiung et al., 2012] Hsiung, A., Rivelli, G., Huttenegger, G.: “How to design a global SOA
infrastructure: Coping with challenges in a global context”; Proc. ICWS 2012 - IEEE 19th
International Conference on Web Services, IEEE, Honolulu (2012), 536–543.

[ITGI, 2007] ITGI, Control Objectives for Information and related Technology (COBIT), Ver
4.1, Apr 2007.

[Janiesch et al., 2009] Janiesch, C., Korthaus, A., Rosemann, M.: “Conceptualisation and
facilitation of SOA governance”; Proc. ACIS 2009 - 20th Australasian Conference on
Information Systems, Melbourne (2009), 154–163.

[Jelliffe, 2002] Jelliffe, R.: “The Schematron Assertion Language 1.6”; Academia Sinica
Computing Centre (2002), also appeared as electronic version in
http://xml.ascc.net/resource/schematron/Schematron2000.html

[Joachim et al., 2013] Joachim, N., Beimborn, D., Weitzel, T.: “The influence of SOA
governance mechanisms on IT flexibility and service reuse”; The Journal of Strategic
Information Systems, 22, 1 (2013), 86-101.

[Luckham, 2002] Luckham, D. C.: “The power of events - An Introduction to Complex Event
Processing in Distributed Enterprise Systems”; Addison-Wesley Reading (2002), also appeared
as electronic version in https://sisis.rz.htw-berlin.de/inh2010/12375999.pdf

[Mellor et al., 2002] Mellor, S. J., Scott, K., Uhl, A., Weise, D.: “Model-driven architecture”;
In Advances in Object-Oriented Information Systems; Lecture Notes in Computer Science,
2426; Springer, Berlin Heidelberg (2002), 290-297.

1069Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

[Niemann et al., 2010] Niemann, M., Miede, A., Johannsen, W., Repp, N., Steinmetz, R.:
“Structuring SOA Governance”; IJITBAG (International Journal of IT/Business Alignment and
Governance), 1, 1 (2010), 58-75.

[Noy and McGuinness, 2001] Noy, N. F., McGuinness, D. L.: “Ontology development 101: A
guide to creating your first ontology”; Stanford knowledge systems laboratory technical report
KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880 (2001), also
appeared as electronic version in
http://liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/What%20is%20an%20ontology%2
0and%20why%20we%20need%20it.htm

[O’Connor and Das, 2009] O'Connor, M. J., Das, A. K.: “SQWRL: A Query Language for
OWL”; OWLED - Sixth International Workshop on OWL: Experiences and Directions,
Chantilly, Virginia, USA (2009), also appeared as electronic version in
http://www.webont.org/owled/2009/papers/owled2009_submission_42.pdf

[Pandit et al., 2009] Pandit, B., Popescu, V., Smith, V.: “Service Modeling Language, Version
1.1”; W3C Recommendation 12 May 2009 (2009), also appeared as electronic version in
http://www.w3.org/TR/sml/

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F.: “Service-
oriented computing: state of the art and research challenges”; IEEE Computer, 40, 11 (2007),
38–45.

[Rodríguez et al., 2013] Rodríguez, C., Schleicher, D., Daniel, F., Casati, F., Leymann, F.,
Wagner, S.: “SOA-enabled compliance management: instrumenting, assessing, and analyzing
service-based business processes”; Service Oriented Computing and Applications, 7, 4 (2013),
275-292.

[Schepers et al., 2008] Schepers, T. G., Iacob, M. E., Van Eck, P. A.: “A lifecycle approach to
SOA governance”; Proc. 2008 ACM Symposium on Applied Computing, ACM, Fortaleza,
Brazil (2008), 1055-1061.

[Spies, 2012] Spies, M.: “Continous Monitoring for IT Governance with Domain Ontologies”;
Proc. 23rd International Workshop on Database and Expert Systems Applications (DEXA),
IEEE, Vienna, Austria (2012), 43 –47.

[Stantchev and Stantcheva, 2012] Stantchev, V., Stantcheva, L.: “Extending traditional it-
governance knowledge towards soa and cloud governance”; IJKSR (International Journal of
Knowledge Society Research), 3, 2 (2012), 30-43.

[Taylor et al., 2007] Taylor, S., Lacy, S., Macfarlane, I. : “ITIL v3.0 Publication Framework:
ITIL Service Support, Service Desk, Service Strategy, Service Design, Service Transition,
Service Operation, and Continual Service Improvement”, Office of Governance Commerce
(OGC) (2007)

[Teixeira Filho and Azevedo, 2014] Teixeira Filho, H. M., Azevedo, L.G.: “Governance of
Service-Oriented Architecture through the CommonGov Approach”; IJCISIM (International
Journal of Computer Information Systems and Industrial Management Applications), 6, 1
(2014), 505-514.

[Teixeira Filho et al., 2014] Teixeira Filho, H. M., Azevedo, L.G., Siqueira, S. W. M.:
“Applicability Analysis of Using Ontologies and Semantic Rules for Supporting Compliance
Assessment in the Context of Service Oriented Architectures” (in Portuguese: “Análise de
Aplicabilidade do Uso de Ontologias e Regras Semânticas para Apoiar a Verificação de
Conformidade no Contexto de Arquiteturas Orientadas a Serviço”); Proc. IX Simpósio
Brasileiro de Sistemas de Informação, SBC, João Pessoa, Brazil.

1070 Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

[The Open Group, 2009] The Open Group: “SOA Governance Framework”, Open Group
Standard (2009), 96p, United Kingdom, Reference C093, ISBN 1-931624-82-8, also appeared
as electronic version in
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=c093

[The Open Group, 2014] The Open Group: “Service-Oriented Architecture Ontology, Version
2.0”; Open Group Standard (2014), 89p., United Kingdom. Reference C144, ISBN 1-937218-
50-8, also appeared as electronic version in https://www2.opengroup.org/ogsys/jsp/
publications/PublicationDetails.jsp?publicationid=13543

[Tran et al., 2011] Tran, H., Holmes, T. I., Oberortner, E., Mulo, E., Cavalcante, A. B.,
Serafinski, J., Dustdar, S.: “An end-to-end framework for business compliance in process-
driven SOAs”; Proc SYNASC (Symbolic and Numeric Algorithms for Scientific Computing),
IEEE, Timisoara, Romania (2011), 407-414.

[Tran et al., 2012] Tran, H., Zdun, U., Holmes, T. I., Oberortner, E., Mulo, E., Dustdar, S.:
“Compliance in service-oriented architectures: A model-driven and view-based approach”;
Information and Software Technology, 54, 6 (2012), 531-552.

[Yin, 2009] Yin, R. K.: “Case study research: Design and methods”; Sage, 5 (2009).

[Zhou et al., 2010] Zhou, Y. C., Liu, X. P., Wang, X. N., Xue, L., Tian, C., Liang, X. X.:
“Context model based soa policy framework”; Proc. ICWS (International Conference on Web
Services), IEEE, (2010), 608-615.

1071Teixeira Filho H.M., Guerreiro Azevedo L., Matsui Siqueira S.W. ...

