
CMSN: An Efficient and Effective Agent Lookup for

Mobile Agent Middleware1

Hiroaki Fukuda

(Shibaura Institute of Technology

3-7-5 Toyosu Koto Tokyo Japan

hiroaki@shibaura-it.ac.jp)

Paul Leger

(Universidad Católica del Norte, Escuela de Ciencias Empresariales

Coquimbo, Chile

pleger@ucn.cl)

Keita Namiki

(JTEC CORPORATION

1-10-7 Kyobashi Cyuo Tokyo Japan

k-namiki@j-tec-cor.net)

Abstract: A Wireless Sensor Network (WSN) is typically deployed in a location in
which no electrical source is provided, meaning that sufficient battery life is crucial.
Applications for WSNs require implementations of complex operations such as network
administration. To simplify the development of these applications, several mobile agent
middleware solutions have been proposed. Applications for these middleware frame-
works are executed by communication among agents; therefore, a common operation is
to look up agents. Because existing proposals do not have much technical support for
an efficient approach to look up agents, every lookup consumes a significant amount
of battery power and time. In addition, current approaches can fail in their lookup
operations if the target agent moves during a lookup operation. This paper proposes
Chord for Mobile agent on Sensor Network (CMSN), an efficient and effective lookup
for mobile agent middleware. CMSN is inspired by Chord for Sensor Networks (CSN),
which introduces hierarchical ring structures and a distributed hash table algorithm to
improve lookup performance. Unfortunately, CSN cannot be applied to mobile agent
middleware solutions because CSN always requires a base station and assumes no agent
migration between nodes. Unlikely CSN, CMSN is designed for an environment where
agents can freely move between nodes without dependency on a special node such as
a base station. In addition, CMSN leverages a feature where the location of a node
is stationary in order to improve lookup performance with simplified algorithms. We
evaluate and compare CMSN in terms of performance, effective lookups, and battery
consumption.

Key Words: Wireless sensor networks, mobile agent middleware, agent lookup, Ag-
illa, CSN, routing protocol

Category: H.4.3, D.1.8, D.4

1 An earlier version of this article has been presented on IEEE International Conference
on Embedded Software and Systems 2015 (ICESS 2015).

Journal of Universal Computer Science, vol. 22, no. 8 (2016), 1072-1096
submitted: 27/4/15, accepted: 29/7/16, appeared: 1/8/16 © J.UCS



1 Introduction

Wireless Sensor Networks (WSNs) [Yick et al.(2008)] consist of a number of

sensor nodes2 used to detect and react to events. WSNs are applied in vari-

ous domains, such as animal monitoring [Wark et al.(2007)], environmental ob-

servations [Chien-Liang et al.(2009)], smart home [Augusto and Nugent(2006)],

and inventory tracking [McKelvin et al.(2005)]. The wide heterogeneity of hard-

ware, software, and network resources poses significant coordination problems

(e.g., network connections, adaptations to environmental changes) and demands

thorough knowledge of technologies [Raychoudfury et al.(2013)]. In addition, the

heterogeneity of hardware and software makes it difficult to modularize pieces

of code to obtain software engineer benefits such as reusability, maintainabil-

ity, and flexibility. In order to migrate these problems and help application

developers, some middleware solutions have been proposed [Blum et al.(2004),

Boulis et al.(2003), Chien-Liang et al.(2009), Hui and Culler(2004)].

The proposed middleware solutions allow developers to build applications

over a simplified abstraction layer. Middleware can be classified into three groups:

data-oriented middleware, which abstracts a number of nodes into one; event-

based middleware, which provides callback methods that are invoked when cer-

tain events are dispatched (e.g., intruder detection); and mobile agent middle-

ware, which executes applications that are based on collaborations between

agents. Regarding completely distributed operations to avoid a single point of

failure, mobile agent middleware solutions are appropriate because each (soft-

ware) agent behaves autonomously to adapt its operating environment, and

can migrate from node to node while maintaining its working state if neces-

sary (e.g., breaking down a node). Among these proposals, mobile agent-based

middleware is suitable for complicated applications including fire detection, in-

trusion tracking, and robot navigation because of its autonomous nature.

Because of the embedded, pervasive nature of WSNs, each node is usually

deployed in a location in which no electrical source is provided or there is dif-

ficulty in doing so (e.g., forest, mine). Therefore, each node has to use a bat-

tery, which must work for a long time (e.g., years) [Madden et al.(2005)]. Con-

sidering the battery problem in mobile agent middleware, the agent needs to

find the node location where the target agent works in order to communicate

and progress the operation in question. This search operation basically requires

sending a packet over nodes, which consumes a large amount of battery power

because sending a single bit can consume the same energy as executing 1,000

instructions [Levis et al.(2002)]. Therefore, the lookup agent location is a crucial

problem in mobile agent middleware.

However, current mobile agent middleware solutions do not provide much

2 For now, we will use the term “node” to refer to “sensor node”.

1073Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



technical support for the efficient looking up of agents. As a consequence, an

agent has to look up the location of its target agent in an ad-hoc manner,

basically visiting every node. This lookup approach consumes a significant (and

unnecessary) amount of the battery power of a node. In addition, existing lookup

approaches for these types of middleware do not always work correctly. For

example, if the target agent moves during the lookup operation, this agent cannot

be found.

This paper proposes Chord for Mobile agent on Sensor Network (CMSN),

an efficient and effective agent lookup for a mobile agent middleware in WSNs.

CMSN is based on Chord for Sensor Network (CSN [Ali and Uzmi(2004)]), a

distributed hash table (DHT) algorithm, to look up agents. Concretely, the con-

tributions of CMSN are:

1. An improvement in terms of time performance and battery consumption of

nodes in a WSN when a lookup operation is executed.

2. The ability to locate an agent even if this agent is moving between nodes.

Although this proposal does not require particular requirements to be im-

plemented in a mobile agent middleware, we have validated CMSN using Ag-

illa [Chien-Liang et al.(2009)], a well-known middleware for mobile agent-based

applications for WSNs. This implementation allows us to show improvements in

runtime performance, effective lookups, and battery consumption.

This paper is organized as follows. Section 2 introduces agent lookups in mo-

bile agent middleware solutions and highlights their existing lookup problems.

Section 3 introduces the key concept on which our proposal is based: DHT al-

gorithms. Section 4 describes our proposal for efficiently looking up agents in

WSNs. Through an evaluation, Section 5 shows that our efficient lookup ad-

dresses the problems presented in Section 2. Section 6 discusses related work

and Section 7 concludes.

2 Lookup of Agents in a WSN

Using Agilla [Chien-Liang et al.(2009)], this section first explains a mobile agent

middleware. It then illustrates the need to look up agents and describes problems

of existing agent lookup approaches used in these middleware frameworks.

2.1 Agilla: A Mobile Agent Middleware

Agilla is well-known middleware for mobile agents on WSNs [Yick et al.(2008)].

Figure 1 shows Agilla’s architecture, which works over an operating system

1074 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 1: Agilla’s architecture (adaptation from [Chien-Liang et al.(2009)]).

Figure 2: A WSN to detect and react to a fire cited from Agilla’s exam-

ple [Chien-Liang et al.(2009)]. (1) Agent A detects a fire. (2) this agent notifies

to Agent B; (3) Agent B travels and clones itself around the fire.

like TinyOS [Hill et al.(2000)]. Every node of Agilla has an interpreter to ex-

ecute a number of mobile agent programs. In addition, these agents can mi-

grate into the network. Coordination among agents is supported by a tuple

space [Gelernter(1985)] and a neighbors table. A tuple space is a shared mem-

ory that is located on each node and can be remotely accessed by agents, and

a neighbors table contains the list of nodes where a node can send a packet

by single-hop transmission [Kleinrock and Silvester(1978)]. To use the physical

resources (e.g., environmental temperature sensors) of a WSN, agents commu-

nicate with the node’s operating system using an interface.

2.2 Looking Up Agents

This section issultrates the need to look up agents through a fire control appli-

cation:

Fires are dangerous, and need to be tracked to be controled. A WSN can be

used for this purpose [Chien-Liang et al.(2009)]. Figure 2 shows the big picture

1075Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



of an agent-based application that detects and reacts to a fire. When a fire breaks

out, an agent detects this fire (1) and must find a fire tracker agent to notify

about the fire (2). This fire tracker agent migrates to the fire and clones itself to

form a perimeter (3). The perimeter is continuously adjusted based on the fire’s

evolution. Depending on the physical resources available in the WSN, this WSN

might notify firefighters or control the fire by itself.

2.3 Shortcomings of Existing Lookups

Notification to an agent requires that this agent must first be found. Existing

mobile agent middleware such as Agilla does not provide much technical support

for looking up agents. Basically, it is necessary to visit every node to find the

target agent. This solution has three shortcomings:

– Runtime performance. Visiting every node takes unnecessary time, lead-

ing to a delay in reacting to certain events (e.g., a fire).

– Migrations during lookups. This solution does not always work because

the target agent can migrate to another node during the lookup operation.

In WSN applications, programmers sometimes write the agent location ex-

plicitly when an agent needs to communicate with other agents.

– Battery consumption. In each visit, a node executes a local lookup op-

eration to find the target agent, which consumes the battery energy. In the

worst case, all nodes execute a local lookup. Note that this issue is different

from the first one, because an improvement of runtime performance does not

necessarily save the battery of each node of a WSN (e.g., consider a node

that is used for all nodes to answer node locations).

The last drawback is crucial for a WSN because these networks are commonly

deployed in locations in which either electrical source is difficult to provide, or it

is not easy to replace the batteries of these nodes. Hence, these batteries have to

work for a long time [Madden et al.(2005)]. Next, we describe the requirements

for an efficient approach to looking up agents in WSNs.

3 DHT Algorithms to Look Up Agents

CMSN uses Distributed Hash Table (DHT) algorithms [Stoica et al.(2001)]. The

section first discusses the need for these algorithms in CMSN, and then explains

DHT algorithms and their use in looking up agents.

1076 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



3.1 Why Use a DHT Algorithm to Look Up Agents?

Centralized or distributed algorithms can be used to look up agents. On the

one hand, a centralized approach uses a base station to track and look up agent

locations. In the fire tracker in Agilla, Fire Detector the fire detector agent, which

detects the fire, convey this to the base station. Fire tracker agents are then in-

jected to a WSN by a base station. On the other hand, a distributed approach

uses potentially all the nodes of a WSN instead of one base station. We briefly

describe the advantages and drawbacks of both kinds of algorithms:

Centralized.: The clear advantage of this approach is that it requires only one

base station to look up agents in a WSN. However, focused on the nodes around

the base station, resulting in a significant increase in battery consumption of

these nodes until their totally energy is spent. As a consequence, these nodes can

no longer work and the base station cannot receive any more requests. Therefore,

no more lookup operations can be executed.

Distributed.: In this approach, a node partially maintains agent locations and

all nodes carry out the lookup operation. Although this approach is more difficult

to implement than the centralized one, the distributed approach is more suitable

for the following three reasons. First, this approach is fault tolerant, and a change

in nodes causes a minimal amount of disruption. Second, it is possible to scale

to a large number of nodes. Third, a lookup operation can work for longer than

the centralized approach because battery consumption is distributed among all

the nodes of a WSN. A longer lifetime for this operation is crucial for scenarios

like fire tracking.

3.2 DHT Algorithms

Because DHT algorithms are used to find objects in a distributed manner, it is

possible to use these algorithms to find agents in WSNs. DHT algorithms use a

hash table (i.e., a key-value table). For this proposal, keys are agent identifiers

and values are agent locations (i.e., nodes). We next explain two DHT algorithms

below.

3.2.1 Chord

Although many DHT algorithms have been proposed [Ratnasamy et al.(2001),

Rowstron and Druschel(2001), Zhao et al.(2004)], we explain the Chord algo-

rithm because of its efficient lookup [Stoica et al.(2001), Ali and Uzmi(2004)].

As a DHT algorithm, Chord uses a DHT. When a node receives an agent

lookup request, this node first looks it up on its local hash table and the re-

quest is forwarded to another node if the lookup operation is not resolved. To

perform this operation, Chord uses a ring formation of nodes, enabling a node

1077Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 3: A Chord ring with 10 nodes and 2 agents.

to forward its lookup request. Figure 3 shows a Chord ring example, which uses

SHA1 [Eastlake 3rd et al.(2001)], a cryptographic hash function, to assign iden-

tifiers to agents and their locations (i.e., nodes). In Figure 3, an agent that is

working on node N1 is assigned the identifier as 24 by using the SHA1 hash

function. A node points to its successor, whose identifier is greater. For exam-

ple, N21 points to successor N32. Using these identifiers, the distance between a

node and an agent can be defined by clockwise subtractions of their identifiers.

For example, the distance between A24 and N21 is farther than the distance

between A24 and N32. Although an agent stays in a certain node, its location

can be managed by another node. In Chord, the location of an agent is managed

by the node whose distance from it is the shortest. For example, Figure 3 shows

that A24 is working on N1, but its location is managed by N32, meaning that

the local hash table of N32 has the entry “A32 → N1”.

To look up an agent location, imagine two identifiers, k and r, where k is

a node identifier (i.e., Nk) and r is an agent identifier (i.e., Ar). Suppose that

Nk receives a lookup request for Ar. If r is greater than k and less than the

identifier of the successor of Nk, this successor can resolve the request about Ar.

Otherwise, Nk forwards this request to its successors until the location of Ar is

resolved. We illustrate this procedure using Figure 3. In this figure, suppose that

N14 receives a lookup request for A30. N14 forwards this request to its successor

N21 because 30 is greater than 21. Then, N21 also forwards this request to its

successor N32, which can resolve the location of A30 because 30 is greater than

node 21 and less than N32. Regarding the time complexity of this lookup, Chord

can look up a node in O(logN), where N is the number of nodes in a ring. This

efficiency is possible because each node uses a finger table to keep a path to other

nodes, where the distance between node k and its successor is 2k−1 nodes (for

more about Chord’s complexity, see [Stoica et al.(2001)]).

1078 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 4: Example of CSN’s rings (a hierarchy of rings of Chord).

Drawbacks to apply to WSNs. In Chord, a ring is created independent of

the physical distance among nodes, defined by a certain hash function. Therefor,

Chord cannot directly be applied to WSNs because a packet loss usually happens

when the physical distance among nodes gets longer.

3.2.2 CSN

CSN, a variant of Chord addresses the physical distance issues that are draw-

backs for Chord in relation to WSNs. CSN considers the physical distance among

nodes to select a successor. CSN introduces a hierarchical clustering approach,

where each cluster of nodes follows the ring formation of Chord. Each node keeps

a finger table of O(logN) size about other nodes in its ring, and a node resolves

its lookup requests by sending O(logN) messages to other nodes. In addition, as

shown in Figure 4, a super node called a cluster head is selected in each ring and

this node joins the upper ring as a member node. For example, N1 is a cluster

head at the top level as well as the middle and bottom levels. Figure 4 shows

that the number of nodes in a lower ring is less than the nodes in its upper ring.

As a result, CSN guarantees that the lookup efficiency is O(MlogN), where N

is the number of nodes that joins the highest level and M is the maximum path

length of the energy efficient path between nodes + 1 (see [Ali and Uzmi(2004)]

for more details).

Drawbacks to apply to mobile agent middleware. CSN cannot be applied

to look up mobile agents in WSNs for two reasons. First, CSN assumes that a

base station starts ring creations and lookups. Second, a number of nodes may

not be joined to a certain ring because of the physical distance between nodes in

the ring creation phase. These reasons means that CSN is not appropriate for the

efficient use of mobile agent middleware solutions because an agent may start a

lookup at an arbitrary node. Apart from the structure of a ring, a lookup in CSN

1079Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 5: An overview of the architec-

ture of a node in CMSN.

Figure 6: CMSN’s architecture.

may not always work because the algorithm does not concern agent migrations,

leading to an unsuccessful lookup even though the target agent is on a WSN.

4 CMSN: An Efficient Lookup of Agents

The core of CMSN uses CSN. We extend the architecture of every node of

a WSN to implement CMSN (see Figure 5). This implementation is on top of

TinyOS [Hill et al.(2000)], an operating system for WSNs. To implement CMSN,

we use the nesC language [Gay et al.(2003)], a C extension for event-driven pro-

gramming. Figure 6 shows the three new components of a node:

1. Packet Manager. This includes Receiver and Sender components. Based

on the received packets, the Receiver component decides whether or not a

node allocates an agent process. The Sender component adjusts the timing

to send packets in order to prevent interference.

2. Neighbors. This collects packets and gathers the strength of each radio

wave to make a neighbor table. To determine the physical distance, we use

the strength of a radio wave when a packet is received3.

3. DHT. This component allows nodes to support DHT algorithms, meaning

that it controls the information on rings: successors, predecessors, and finger

tables.

4.1 Creation of Rings by an Example

CMSN uses hierarchical cluster structures of CSN’s rings. As shown in Fig-

ure 4, each cluster contains a cluster head that joins at least two rings (e.g., top

3 The use of the strength of a radio wave to measure physical distance is commonly
accepted [Awad et al.(2007)].

1080 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



and middle levels). In addition, a node has to communicate with another node

that is next to it in a single hop to save its battery consumption. Suppose that

two cluster heads cannot communicate with each other by a single hop manner

because of the physical distance between them (as in CSN), leading to multi-

hop communications. Therefore, the selection of the cluster head in each ring

based on the physical distance is crucial. Because of this restriction, we manually

choose cluster heads at each level. If we apply this approach to the Internet-based

peer-to-peer (P2P) network, it causes a problem when a cluster head disappears

(i.e., shutting down a computer), resulting in nodes in the same ring that cannot

communicate with other levels. However, this approach is feasible because the

number of nodes is fixed and each node is not commonly added or removed in

WSNs4.

As an example, Figures 7(a, b, and c) illustrates the main stages of the ring

creations. Figure 7a shows the initial state of a grid of 6 x 6 nodes. As shown

at each level of Figure 7a, we specify each cluster head manually. Figure 7b-(t)

shows a top-level ring that consists of six nodes. As shown in Figure 7b-(m),

these six nodes are also cluster heads at the middle level. As a consequence, six

rings at the middle-level are created (Figure 7c-(m)). As well as the top level,

the nodes that belong to the middle level rings are also cluster heads at the

bottom level. Therefore, as shown in Figure 7c-(b), 18 rings are created at the

bottom level.

Next, by using Figure 8, we explain how to create a ring in Figure 8, which

corresponds to the top-level ring from Figure 7a-(t) to Figure 7b-(t), and the

numbers in Figure 8 correspond to the following numbered items:

1. Broadcast a Creation message. Node N1, which is a cluster head, begins

sending a message to create a ring, named a Creation message. Note that, in

WSNs, every message is sent in a broadcast manner. When a node receives

this kind of message, it has to choose whether the message will be accepted

or not.

2. Reply ACKs against the Creation message. Every node that receives

and accepts the Creation message becomes a cluster head at the middle level.

In this example, nodes N2, N3, N5, N6, and N7 will send an ACK to N1.

3. Create neighbor relations. After node N1 receives ACKs from other

nodes, this chooses a successor out of the nodes that reply ACKs. In the

current implementation, we use Received Signal Stremgth Indicator (RSSI),

which means the strength of the radio wave for this choice. As a consequence,

4 If the battery of a node is totally consumed, the topology changes. Although this
change is now ignored, it is possible to apply other approaches like a leader election
algorithm to address this issue.

1081Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



(a) Initial state of nodes at each level.

(b) After creating a ring at the top level.

(c) After creating all rings of each level.

Figure 7: Different stages of the creation of three levels of CMSN’s rings.

node N2, which is the closest node to N1, is chosen. Then, N1 sends a mes-

sage to N2 to inform of this choice. After receiving this message, node N2

registers node N1 as its predecessor, creating a link between No1 and N2.

4. Repeat and ignore the Creation message. A node that is chosen as a

successor starts sending the Creation message. Therefore, the link between

nodes N2 and N3 is created following the steps 1–3. Note that, in Figure 8-

(ii), when node N3 sends a Creation message, node N1 is chosen based on its

RSSI but it is undesirable because a ring among node N1, N2, and N3 will be

created, meaning that the ring creation at the top level finishes. To prevent

this scenario, a node that starts creating a ring (e.g., node N1) ignores any

Creation messages. At the same time, a node that has a predecessor and a

successor (e.g., node N2) does not reply either. As a consequence, all links

between two nodes except the final link (between N7 and N1) are created.

5. Send a Complete message. The link between node N6 and N7 is created

by step 4. In Figure 8-(ii), when node N7 sends a Creation message, no nodes

reply. If node N7 cannot receive any ACK from others within a predefined

period of time, node N7 will send a message to complete the creation of a ring,

named the Complete message. A node that starts creating a ring (e.g., node

1082 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 8: Illustration of steps for a ring creation based on the physical distance

among nodes.

N1) replies to this Complete message. As a consequence, the final link between

nodes N1 and N7 is created5.

After creating the ring at the upper level, CMSN repeats the previous process

to create rings at the lower levels. Thus, CMSN ends up creating all the rings at

every level.

4.2 Assigning Identifiers

DHT algorithms must effectively manage a hash table in a distributed manner.

Therefore, assigning an identifier to each node and agent is crucial. In Chord, it is

not necessary to know how many nodes in a ring beforehand because Chord uses

only one ring, so all nodes belong to this ring. Instead, similar to CSN, CMSN

needs to define the maximum number of nodes per ring beforehand. We make

use of this information to assign well organized identifiers. We first explain an

algorithm for assigning identifiers, which is illustrated with a concrete example

thereafter.

Defining node identifiers.: Although Chord and CSN use the same hash

function (e.g., SHA1) to assign an identifier to each node and agent, CMSN uses

a hash function only for agent identifiers. Node identifiers are assigned by the

following three equations:

scope(l) =

{
Max(hash)

N(l)
(l = 0)

scope(l−1)
N(l)

(otherwise)
(1)

5 Similar to CSN, the number of nodes that compose each level ring is predefined.

1083Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 9: Identifier assignments at three levels.

node idl(i) = node idl(i − 1) + scope(l) (2)

node idl(0) =

{
0 (l = 0)
scope(l) + OFl−1 (otherwise)

(3)

In these equations, l is the ring level (e.g., the top level). We assume that l = 0

corresponds to the top level where the identifier assignment begins. Max(hash)

is the maximum number of the hash function that is used for agent identifiers. For

example, if we use the SHA1 hash function, Max(hash) must be 2160−1. N(l) is

the number of nodes per ring, which is manually defined as explained above. By

using these variables, scope(l) is calculated as equation (1). Scope(l) represents

a unit of boundary that each node needs to manage in a ring. Because the node

assignment process starts from a cluster head per ring where a node identifier

is defined in an inductive manner as shown in equation (2), and node idl(0) in

equation (3) always refers to a cluster head at each level. In equation (3), OFl−1

represents the identifier of a node that is a predecessor of the node at the upper

level. Next, we illustrate this algorithm.

Example of assignment of identifiers to nine nodes.: Figure 9 illustrates

an assigning identifier example with a hash function of 8 bits. The figure shows

three levels of rings: top, middle, and bottom. Each level has a cluster head: node

N1 for the top level, and node N2 for the middle and bottom levels. According to

the equation (1), N(0) is 6 and Max(0) is 28−1;, scope(0) is 42. From equations

(2) and (3), the identifiers of N1 and its successor (i.e., N2) at the top level

are 0 and 42, respectively. At the middle level, N(1) is 3 manually assigned, and

scope(1) is calculated as 14 (42/3). Note that although the identifier of N2 at the

top level is 42, its identifier at the middle level is calculated again by equation

(3). From the other case in the equation (3), OF is 0 because the predecessor of

N2 at the top level is N1, the identifier of which is 0. As a result, the identifier

1084 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 10: Illustration of lookup behavior steps in CMSN.

of N2 at the middle level is calculated as 14 (14 + 0) Finally, the identifiers of

N7 and N8 at the middle level are calculated as 28 and 42 by equation (2). By

repeating this algorithm, unique and well organized identifiers are assigned to

every node on the WSNs.

4.3 Lookup Behavior

Lookup operations of CMSN are based on Chord, which mainly executes ei-

ther a lookup operation in the local hash table of a node if the target identi-

fier (e.g., agent ID) is less than the node identifier, or otherwise forwards the

request to its successor. Similarly to CSN, a cluster head has at least two succes-

sors; therefore, a cluster head needs to choose to which successor it must forward

the received request when forwarding. The concrete situation of this decision is

described at step 3 in the following example.

Figure 10 illustrates the process of a lookup operation. This example starts

when a node N1 receives a lookup request for an agent whose identifier is 32.

The numbers in this figure correspond to the following numbered items:

1. Receive a lookup request for an agent. In this example, node N1 receives

a lookup request for an agent whose identifier is 32 (A32).

2. Forward the request to the same level ring. As described in the as-

signing identifier process (section 4.2), N1 knows that its rings at the middle

and bottom levels manage identifiers from 211 to 255, meaning that A32 is

not managed by N1 and its lower rings. Therefore, N1 forwards the request

to its successor (i.e., N2) at the top level.

3. Forward the request to the lower level ring. N2 compares its identifier

at the top level (i.e., 42) with 32, meaning that the location of the agent

must be managed by N2 or its bottom rings. Because the identifier of N2 at

1085Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



the middle level is 14, which is less than 32, N2 forwards the request to the

successor at the middle level (i.e., N10). For the same reason, N10 forwards

the request to N11.

4. Answer the location of an agent or NotFound. The identifier of N11 at

the middle level is 42, therefore N11 and its bottom ring must manage the

location of A32. The identifier of N11 at the bottom level is 35, therefore

N11 is the candidate that must manage the identifier of the request. Finally,

N11 replies with the location of A32 (i.e., the node identifier) if the local

hash table contains the location, otherwise N8 returns a NotFound message.

4.4 Agent Migration

As described in section 2.3, if an agent migrates to another node during a lookup

operation, the lookup will fail. To prevent this situation, we apply an approach

similar to Mobile Internet Protocol version 6 (MIPv6) [Johnson et al.(2011)]. As

an agent finds a location of another agent (A1) using a lookup operation, A1 can

also look up the node that manages its own location in order to block a reply

to an answer against a lookup request. To prevent lookup failures during agent

migration, an agent sends an UnderMigration message to a node that manages its

location. For example, suppose an agent (A2), which stays at node (N10), mi-

grates to a node (N20), whose location is managed by a node (N15). In this case,

A1 sends an UnderMigration message to N15 before its migration and announces

its new location (i.e., N20) to N15 after arriving at N20.

4.5 Summary of CMSN Advantages

To carry out an efficient and effective an agent lookup, CMSN uses novel strate-

gies for (1) ring creation; (2) identifier assignment; (3) lookup behavior; and (4)

agent migration. The implementation of the first two strategies is implemented

by simple algorithms that leverage two reasonable assumptions in certain WSNs:

their node number is fixed and these nodes do not move. To implement the

strategies 3 and 4, CMSN does consider that the migration of an agent during a

lookup process. Therefore, CMSN can overcome the drawbacks of other solutions

(e.g., CSN): an agent cannot start lookups at an arbitrary node without a base

station, and a lookup could fail if a target agent moves on a WSN.

5 Evaluation

This section shows that CMSN addresses the problems presented in section 2.3:

runtime performance, migrations during lookup operations, and battery con-

sumption. To show to what extent our proposal addresses previous problems,

1086 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Figure 11: Configuration of rings used for the experiment.

Figure 12: Histogram that shows the number of successful lookups and with their

average time.

we compare CMSN to two algorithms: Random Walk [Gkantsidis et al.(2004)],

a search algorithm for P2P network, and Flooding [Heinzelman et al.(1999)], a

routing algorithm used to send requests between nodes.

Experiment setup. To realize the experiment with the aforementioned ap-

proaches, we use PowerTOSSIMZ [Perla et al.(2008)], an extension of the emu-

lator TOSSIM [Levis et al.(2003)] for TinyOS. This emulator works for TinyOS

2.1.1 and is deployed on an Intel Core i5 (2.4 GHz) with 8GB of RAM running

Ubuntu 12.04 (x32). Figure 11 shows the simulation configuration. The grid is

1087Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Approach DHT creation [ms] Per lookup [ms] STDEV [ms]

CMSN 25,676 71 41

Random Walk 0 2,046 1,862

Flooding 0 307 144

Table 1: Average time of successful lookups in CMSN, RandomWalk, and Flood-

ing.

Approach Lookups Failed lookups Failed lookup rate (%)

CMSN 500 0 0.0

Random Walk 500 31 6.2

Flooding 500 5 1.0

Table 2: Comparison of failed lookup rates of CMSN, Random Walk, and Flood-

ing.

composed of a 12 × 12 nodes. CMSN rings are split into three levels. The top

level contains 1 cluster and 9 nodes, the middle level contains 9 clusters and 4

nodes, and finally the bottom level contains 36 clusters and 2 nodes. Using this

configuration, a set of agents are deployed and these agents randomly migrate

between nodes . Then, a lookup operation starts when a node receives an agent

lookup request. Using Random Walk, Flooding, and CMSN, we carried out 500

lookup operations to get an average result of these approaches.

To address runtime performance and battery consumption concerns, we eval-

uated these aspects in two stages: creation of rings (i.e., DHT structures) and

per lookup operation. To prevent infinite lookup operations in Random Walk

and Flooding, we introduced time to live (TTL), as TCP/IP does in order to

represent a failed lookup. This lookup operation takes a greater period of time

compared to a threshold.

5.1 Runtime Performance

Figure 12 shows the results of the experiment with each approach regarding

runtime performance. In this figure, the X-axis indicates different time ranges

(e.g., 0–100 ms) and the Y-axis corresponds to the number of successful lookups

for a certain time range. CMSN is able to resolve more than half of the lookups

in the time range 0-100 (ms). Although Flooding takes less time for lookups than

Random Walk, Flooding’s time ranges is 200–500 ms.

Regarding the average time for lookups, Table 1 shows the evaluation of each

approach and the time for a ring creation in CMSN. The average time to lookup

an agent in CMSN is about 1/30 of RandomWalk and 1/4 of Flooding. As CMSN

1088 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



Battery capacity: 21,600 Joules.

Approach DHT creation Per lookup

CMSN 1.556 (0.0072%) 0.0049 (0.226×10−4%)

Random Walk 0 (0%) 0.1170 (5.415×10−4%)

Flooding 0 (0%) 0.0432 (1.998×10−4%)

Table 3: Comparison of the battery consumption between CMSN, RandomWalk,

and Flooding.

Figure 13: Comparison of CMSN to Random Walk and Flooding.

extends from CSN, ring creations requires time. In this experiment, CMSN spent

about 26 (sec) which is quite slow compared to a lookup operation. However, the

ring creation only occurs once and is amortized when lookup increases (e.g., for

years).

5.2 Migrations during Lookups

This section compares the failed lookups of each approach. As described in Sec-

tion 2.3, lookup operations of some proposals fail because of agent migrations.

For example, in a pure Random Walk approach, a lookup request is forwarded

until the target agent is found, meaning that this operation never stops if the

agent cannot be found.

To compare failed lookups, we introduced TTL. We assign a certain value as

TTL to a lookup request then forward it to another node after decrementing this

value. If this value becomes 0, the request is no longer forwarded, implying that

this lookup fails. For this experiment, we assigned 1,000 to TTL because this

number is big enough for the experiment grid of nodes (i.e., 144 nodes). Table 2

shows a comparison of failed lookups. The failed lookup rate of CMSN is 0%,

1089Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



while those of Random Walk and Flooding were 6.2% and 1% respectively. This

result means that lookup requests of Random Walk and Flooding may return

”agent not found” when an agent is at a WSN.

5.3 Battery Consumption

Table 3 shows the comparison of battery consumption between Random Walk,

Flooding, and CMSN. Although our proposal consumes battery power to create

DHT structures, it only consumes 0.0072% of the battery of each node to create

it. In addition, CMSN consumes 0.226×10−4% of the battery power per lookup

operation. In contrast, Random Walk and Flooding consume 5.5415×10−4% and

1.998×10−4% of each node respectively.

As an additional evaluation, Figure 13 shows the relationship between bat-

tery consumption and the number of lookup operations in Random Walk, Flood-

ing and CMSN. As CMSN requires additional battery power to create structures,

Random Walk and Flooding consume less battery power when the number of

lookup operation is less than 7 times and 41 times respectively. However, when

the number of lookup operation increases to 7 or 41, CMSN consumes less bat-

tery power.

Based on previous results, CMSN consumes a significant amount of battery

power at the beginning, but this consumption decreases when the number of

lookup requests increases to more than 41. In the mobile agent frameworks of

WSNs, fewer than 41 lookup operations is unusual because they are designed to

work from one to two years [Madden et al.(2005)].

6 Related Work

In distributed algorithms, locating agents requires a lookup request to be sent

to a node, which replies with the agent location if this node knows, otherwise

this node forwards the request to another node. This behavior is similar to rout-

ing algorithms on WSNs, which decide where a node should forward a request.

Therefore, a comparison of CMSN with routing algorithms is worthwhile. We

review and compare those routing algorithms categorized by network structures:

flat, hierarchical, and DHT [Al-karaki and Kamal(2004)]. In addition we review

a domain name server (DNS) [IETF(1987)] based lookup approach that, to the

best of our knowledge, it is the only proposal for lookups that can handle agent

migration for a mobile agent-based middleware.

6.1 Flat Routing

In flat routing approaches, all nodes typically play the same role and collaborate

to perform tasks. Although a number of protocols have been proposed so far in

this category, we review two pioneering approaches.

1090 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



SPIN [Heinzelman et al.(1999)] disseminates all the information at each node

to every node in the network. SPIN makes use of the property that nodes in

close proximity have similar information, and hence it is only necessary to dis-

tribute information to far nodes. To carry out this behavior, SPIN introduces a

meta-data to completely describe their collected data, and performs three-stage

negotiations before data transmissions: ADV, REQ and DATA. ADV is used to

announce new data, REQ to request data, and DATA is the actual message.

The algorithm starts when a node obtains new data that must be shared. The

node first broadcasts an ADV message containing the metadata. If a neighbor

is interested in the data, this node sends a REQ message for DATA and this is

sent to it. Otherwise, REQ and DATA are not sent, resulting in the elimination

of transmission, improving energy use. Similar to SPIN, a CMSN node only for-

wards a query to its successor node in the ring, and not all the nodes. However,

SPIN was developed to disseminate information to all nodes on a WSN, implying

that performance for an operation like lookup is affected.

Directed diffusion [Intanagonwiwat et al.(2003)] proposes a new approach

that is based on data aggregation. The main idea of this approach is to combine

the data coming from different sources en route by eliminating redundancy,

minimizing the number of transmissions and resulting in nodes energy savings.

Directed diffusion introduces a gradient concept: strength between two nodes. A

sink node, which is similar to a base station, generates and propagates a query to

a WSN. Intermediate nodes locally propagate the query towards a target node

that senses corresponding data. The data is sent back to the sink node by using

the same path from which it was sent. Because of the local knowledge of nodes,

the same data or query may be transmitted to a node from multiple paths. Every

time a node transmits a data or query, this node updates its gradients based on

attributes like the radio wave strength. Using this gradient, every node is able

to choose which node receives the query or data, meaning that direct diffusion

minimizes redundant paths. However, directed diffusion is not optimum because

the reinforced path can vary due to the gradient calculation that only uses the

local knowledge of a node. CMSN does not suffer from such redundancy, because

one path is always chosen when a node transmits data due to the ring structure;

thus, CMSN saves node batteries.

6.2 Hierarchical Cluster-Based Routing

Hierarchical cluster-based routing is well-known for its techniques for scalable

and efficient communications. Therefore, the idea behind of hierarchical rout-

ing is utilized to perform energy-efficient routing on WSNs. The main idea

of cluster-based routing is that higher energy nodes are used to process and

transmit data to a base station, while lower energy nodes sense in the prox-

imity of the target, resulting in an improved use of node energy. However,

1091Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



these solutions have the problem of the base station (section 3.1). For exam-

ple, LEACH [Heinzelman et al.(2002)] introduces distributed cluster formation,

which randomly selects a small set of nodes as the cluster head and rotates this

role to distribute the energy consumption among WSN nodes. A cluster head

compresses data arriving from its cluster and transmits the aggregated data to a

base station. Some LEACH extensions like PEGASIS [Lindsey et al.(2002)], and

CogLEACH[Eletreby et al.(2014)] optimize energy use through the selection of

the closest neighbors and the minimization of data between a cluster head and

the nodes of this cluster. These protocols are more appropriate when there is

a need for constant monitoring by minimizing battery consumption in a WSN.

However, the effectiveness of each lookup was out of focus because they assume

that every cluster head can transmit a packet to a base station directly (i.e., a

single hop). This assumption is not feasible for the realm of WSN because a node

has a limited transmission length. CMSN considers multi-hop transmissions to

be adapted to a real WSN.

6.3 DHT-based routing

DHT-based routing, such as CSN, is an approach that has been proposed re-

cently, where nodes must necessarily cooperate to maintain and administer ref-

erences to data [Ali and Uzmi(2004), Caesar et al.(2006), Awad et al.(2011a)].

In addition, each node stores a partial view of the whole distributed system that

effectively distributes the routing information. To achieve the effective routing,

each algorithm based on this approach maintains routing information that re-

duces hop counts to the destination of a node. We now review how some DHT

algorithms reduce forwarding requests to carry out an efficient routing.

VRR [Caesar et al.(2006)] is a DHT-based network routing algorithm. VRR

is implemented directly on the top of a link layer, which is a media access con-

trol (MAC) layer in the protocol TCP/IP. In VRR, nodes assign themselves

random and location-independent identifiers in a ring structure. Random node

identifiers lead to long physical routing paths, resulting in additional energy

consumption. Unlike VRR, which only contains one ring, CMSN introduces hi-

erarchical rings and assigns according to a strategy that takes into account the

physical distance among nodes, meaning that a node can forward data to its

neighbor (i.e., successor) with a lower cost.

MVR [Gao and Li(2009)] makes use of multilevel virtual rings, similar to

hierarchical rings, to reduce hop counts from a source node to a destination

node. MVR proposes an autonomous multilevel ring creation algorithm; however,

it does not always succeed because nodes will move, meaning that the backbone

selection message in MVR cannot reach to the neighbor nodes. In addition,

MVR utilizes levels that contain a set of nodes with a unique identifier per level.

1092 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



As MVR is an address-centric routing algorithm, an agent location cannot be

mapped on the same ring structure. Although MVR uses hierarchical rings like

CMSN, MVR cannot be applied to lookup in a mobile agent middleware because

the latter they requires data-centric approaches, since an agent can move to

different nodes. The identifier strategy of CMSN can map identifiers of nodes

and agents on the same ring while the use of hierarchical rings reduces the hop

counts of a lookup request.

VCP and VCP-m [Awad et al.(2011a)][Anwit et al.(2014)] introduces the

virtual cord protocol, which efficiently combines data lookup with routing tech-

niques. VCP accomplishes this by placing all nodes on a virtual cord (i.e., a

value) that is also used to associate with the data, the VCP-m then modifies the

joining nodes process. As in Chord, a hash function is used to create values in a

predefined range, and each node maintains a part of the entire range. In addi-

tion, locally available neighborhood information is exploited for greedy routing

that may reduce hop counts to a destination. Similar to the original Chord, VCP

and VCP-m use a ring formation of nodes, and each node has a greater valued

successor node of a greater value. Each node basically forwards a request to its

successor. Furthermore, a node is able to compare the value of a request with the

node values that are assigned to the physically close nodes. A greedy node for-

wards a request to a closer node when its value is greater than the value request.

The greedy routing relies on the probability that a node with a closer value to

the destination exists around when a node forwards a lookup request. Hence,

VCP and VCP-m cannot guarantee the lookup time. Instead, CMSN adapts a

Chord based routing that can provide strong guarantees of lookup time, because

our proposal is not based on probabilities.

6.4 Discovery Service for Mobile Agent Middleware

MLDS [Bhattacharya et al.(2008)] uses a directory service for supporting of

agent migrations in WSNs through a tree-based structure similar to DNS. A

node that has children nodes is called a Clusterhead in MLDS. A node where

agents stay at keeps sending a location update message to its Clusterhead at a

certain time interval. This periodic message includes agent IDs on a child node.

This message is propagated to the root node at the end. As a consequence, an

agent can lookup the location of another agent at an arbitrary node and also the

location of an agent is updated when it migrates to another node. However, be-

cause of the time interval, a Clusterhead may have stale information. In addition,

this strategy will waste battery power when an agent stays at a node beyond

a period of time. CMSN does not need periodic messages to keep agent loca-

tions because of the agent migration strategy, meaning that unnecessary battery

power is not consumed. In addition, a node can always keep the current location

of each agent, resulting in a node always returning a correct answer for a lookup.

1093Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



7 Conclusion

Because WSNs promise useful solutions in the real world, this is a motivation to

address issues like environmental changes, network connections, and distributed

operations. In addition, these applications must execute operations efficiently

because the nodes of a WSN commonly use batteries to work. To address these

issues in an efficient manner and simplify the development of WSN applications,

different middleware solutions have been proposed. One such solution is based on

agent interactions. For this kind of middleware, an agent must know the exact

location of its target agent before interacting. However, existing middleware

solutions, including Agilla, do not provide much technical support for efficiently

looking up agents. An inefficient implementation of an agent lookup consumes

unnecessary time and battery, which is crucial for a WSN. In addition, agent

lookup operations of mobile agent middleware cannot always return the correct

agent location when migration is supported. This paper proposes CMSN, an

efficient and effective agent lookup, which is based on the CSN algorithm. To

show the effectiveness and efficiency of our proposal, we implemented CMSN as

an Agilla extension on TinyOS.

References

[Al-karaki and Kamal(2004)] Al-karaki, J. N., Kamal, A. E.: “Routing techniques in
wireless sensor networks: A survey”; IEEE Wireless Communications; 11 (2004),
6–28.

[Ali and Uzmi(2004)] Ali, M., Uzmi, Z. A.: “CSN: A network protocol for serving dy-
namic queries in large-scale wireless sensor networks”; Proceeding of the Second
Annual Conference on Communication Networks and Services Research; 165–174;
2004.

[Augusto and Nugent(2006)] Augusto, J. C., Nugent, C. D.: “The role of artificial in-
telligence”; J. G. Carbonell, J. Siekmann, eds., Designing Smart Homes; Lecture
Notes in Computer Science; 2006.

[Awad et al.(2007)] Awad, A., Frunzke, T., Dressler, F.: “Adaptive distance estimation
and localization in wsn using rssi measures”; Digital System Design Architectures,
Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on; 471–478;
2007.

[Awad et al.(2011a)] Awad, A., German, R., Dressler, F.: “Exploiting virtual coordi-
nates for improved routing performance in sensor networks”; Mobile Computing,
IEEE Transactions on; 10 (2011a), 9, 1214–1226.

[Anwit et al.(2014)] R. Anwit and P. Kumar and M. P. Singh: “Virtual Coordinates
Routing Using VCP-M in Wireless Sensor Network”; In Proceedings of Computa-
tional Intelligence and Communication Networks (CICN), IEEE, 402-407, 2014.

[Bhattacharya et al.(2008)] Bhattacharya, S., Fok, C., Lu, C., Roman, G.: “MLDS: A
flexible location directory service for tiered sensor networks”; Computer Commu-
nications; 31 (2008), 6, 1160–1172.

[Blum et al.(2004)] Blum, T. A. B., Cao, Q., Chen, Y., Evans, D., George, J., George,
S., Gu, L., He, T., Krishnamurthy, S., Luo, L., Son, H., Stankovic, J., Stoleru,
R., Wood, A.: “EnviroTrack: Towards an environmental computing paradigm for
distributed sensor networks”; Proceedings of the 24th International Conference on
Distributed Computing System; 582–589; 2004.

1094 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



[Boulis et al.(2003)] Boulis, A., Han, C.-C., Srivastava, M. B.: “Design and implemen-
tation of a framework for efficient and programmable sensor networks”; Proceed-
ings of the 1st International Conference on Mobile Systems, Applications and Ser-
vices; MobiSys ’03; 187–200; San Francisco, California, 2003.

[Butun et al.(2014)] Butun, I., Morgera, S. D., Sankar, R.: “A survey of intrusion de-
tection systems in wireless sensor networks”; IEEE Communications Surveys and
Tutorials; 16 (2014), 1, 266–282.

[Caesar et al.(2006)] Caesar, M., Castro, M., Nightingale, E. B., O’Shea, G., Rowstron,
A.: “Virtual ring routing: Network routing inspired by dhts”; ACM SIGCOMM
Computer Communication Review; 36 (2006), 4, 351–362.

[Chien-Liang et al.(2009)] Chien-Liang, F., Roman, G.-C., Lu, C.: “Agilla: A mobile
agent midleware for self-adaptive wireless sensor networks”; ACM Transactions on
Autonomous and Adaptive System; 4 (2009), 3, 1–26.

[Eastlake 3rd et al.(2001)] Eastlake 3rd, D., Jones, P., US, S. H. A.: “SHA1”; (2001).
[FLIR(2014)] FLIR: “FLIR: Systems for airport security”; (2014).
[Gao and Li(2009)] Gao, L., Li, M.: “Multi-level virtual ring: a foundation network

architecture to support peer-to-peer application in wireless sensor network”;
Telecommunication Networks and Applications Conference (ATNAC), 2009 Aus-
tralasian; 1–6; 2009.

[Gay et al.(2003)] Gay, D., Levis, P., Behren, R., Welsh, M., Brewer, E., Culler, D.:
“The nesc language: A holistic approach to networked embedded systems”; ACM
SIGPLAN Notices; 38 (2003), 5, 1–11.

[Levis et al.(2002)] Levis, P., E., Culler, D.: “Mate: A Tiny Virtual Machine for Sen-
sor Networks”; Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS X) ’02;
85–95; 2002.

[Gelernter(1985)] Gelernter, D.: “Generative communication in Linda”; ACM Trans-
actions on Programming Languages and Systems; 7 (1985), 1, 80–112.

[Gkantsidis et al.(2004)] Gkantsidis, C., Mihail, M., Saberi, A.: “Random walks in
peer-to-peer networks”; INFOCOM 2004. Twenty-third Annual Joint Conference of
the IEEE Computer and Communications Societies; volume 1; Hong Kong, China,
2004.

[Heinzelman et al.(2002)] Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H.:
“An application-specific protocol architecture for wireless microsensor networks”;
IEEE Transactions on Wireless Communications; 1 (2002), 4, 660–670.

[Heinzelman et al.(1999)] Heinzelman, W. R., Kulik, J., Balakrishnan, H.: “Adaptive
protocols for information dissemination in wireless sensor networks”; Proceedings
of the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking; MobiCom ’99; 174–185; ACM, Seattle, Washington, USA, 1999.

[Hill et al.(2000)] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, K., David
andr Pister: “System architecture directions for networked sensors”; ACM
SIGARCH Computer Architecture News; 28 (2000), 5, 93–104.

[Hui and Culler(2004)] Hui, J. W., Culler, D.: “The dynamic behavior of a data dis-
semination protocol for network programming at scale”; Proceedings of the 2Nd
International Conference on Embedded Networked Sensor Systems; SenSys ’04;
81–94; Baltimore, MD, USA, 2004.

[IETF(1987)] IETF: “DOMAIN NAMES - implementation and specification”; (1987).
[Intanagonwiwat et al.(2003)] Intanagonwiwat, C., Govindan, R., Estrin, D., Hei-

deman n, J., Silva, F.: “Directed diffusion for wireless sensor networking”;
IEEE/ACM Transactions on Networking (TON); 11 (2003), 1, 2–16.

[Johnson et al.(2011)] Johnson, D., Perkins, C., Arkko, J.: “Mobile Internet Protocol
Version 6 (RFC 6275)”; (2011).

[Kleinrock and Silvester(1978)] Kleinrock, L., Silvester, J.: “Optimum transmission ra-
dio for packet radio networks or why six is a magic number”; Proceedings of the
IEEE National Telecommunications Conference; Birimingham, Alabama, 1978.

1095Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...



[Levis et al.(2003)] Levis, P., Lee, N., Welsh, M., Culler, D.: “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications”; Proceedings of the 1st Inter-
national Conference on Embedded Networked Sensor Systems; 126–137; 2003.

[Lindsey et al.(2002)] Lindsey, S., Raghavendra, C., Sivalingam, K. M.: “Data gath-
ering algorithms in sensor networks using energy metrics”; IEEE Transactions on
Parallel and Distributed Systems (TPDS); 13 (2002), 9, 924–935.

[Madden et al.(2005)] Madden, S. R., Franklin, M. J., Hellerstein, J. M., Hong, W.:
“TinyDB: An acquisitional query processing system for sensor networks”; ACM
Transactions on Database Systems; 30 (2005), 1, 122–173.

[Manjeshwar and Agrawal(2001)] Manjeshwar, A., Agrawal, D. P.: “TEEN: Arouting
protocol for enhanced efficiency in wireless sensor networks”; Proceedings of the
15th International Parallel & Distributed Processing Symposium; IPDPS ’01; IEEE
Computer Society, Washington, DC, USA, 2001.

[McKelvin et al.(2005)] McKelvin, M. L., Jr., Williams, M. L., Berry, N. M.: “Inte-
grated radio frequency identification and wireless sensor network architecture for
automated inventory management and tracking applications”; Proceedings of the
2005 Conference on Diversity in Computing; TAPIA ’05; 44–47; ACM, Albu-
querque, New Mexico, USA, 2005.

[Perla et al.(2008)] Perla, E., Catháin, A., Carbajo, R. S., Huggard, M., Goldrick,
C. M.: “PowerTOSSIM z: realistic energy modelling for wireless sensor network
environments”; Proceedings of the 3nd ACM workshop on Performance monitor-
ing and measurement of heterogeneous wireless and networks; 35–42; 2008.

[Ratnasamy et al.(2001)] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker,
S.: “A scalable content-addressable network”; ACM SIGCOMM Computer Com-
munication Review; 31 (2001), 4, 161–172.

[Rowstron and Druschel(2001)] Rowstron, A. I. T., Druschel, P.: “Pastry: Scalable,
decentralized object location, and routing for large-scale peer-to-peer systems”;
Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg; Middleware ’01; 329–350; Springer-Verlag, London, UK, UK,
2001.

[Stoica et al.(2001)] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan,
H.: “Chord: A scalable peer-to-peer lookup service for internet applications”; ACM
SIGCOMM Computer Communication Review; 31 (2001), 4, 149–160.

[Wark et al.(2007)] Wark, T., Crossman, C., Hu, W., Guo, Y., Valencia, P., Sikka, P.,
Corke, P., Lee, C., Henshall, J., Prayaga, K., O’Grady, J., Reed, M., Fisher, A.:
“The design and evaluation of a mobile sensor/actuator network for autonomous
animal control”; Proceedings of the 6th International Conference on Informa-
tion Processing in Sensor Networks (IPSN ’07); 206–215; ACM, Cambridge, Mas-
sachusetts, USA, 2007.

[Yick et al.(2008)] Yick, J., Mukherjee, B., Ghosal, D.: “Wireless sensor network sur-
vey”; Computer Networks; 52 (2008), 12, 2292–2330.

[Zhao et al.(2004)] Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D.,
Kubiatowicz, J. D.: “Tapestry: A resilient global-scale overlay for service deploy-
ment”; IEEE Journal on Selected Areas in Communications; 22 (2004), 41–53.

[Eletreby et al.(2014)] R. M. Eletreby and H. M. Elsayed and M. M. Khairy:
“CogLEACH: A spectrum aware clustering protocol for cognitive radio sensor net-
works”; Proceedings of 9th International Conference on Cognitive Radio Oriented
Wireless Networks and Communications (CROWNCOM); 179-184; IEEE, 2014.
the 6th International Conference on Information Processing in Sensor Networks
(IPSN ’07); 206–215; ACM, Cambridge, Massachusetts, USA, 2007.

[Raychoudfury et al.(2013)] Vasker, R., Jiannong, C., Mohan, Z., Daqiand: “Middle-
ware for Pervasive Computing: A Survey”; ACM Pervasive Mob. Comput. 24
(2013), 177–200.

1096 Fukuda H., Leger P., Namiki K.: CMSN: An Efficient and Effective Agent ...


