
A Semantic Filtering Mechanism Geared Towards Context

Dissemination in Ubiquitous Environments

Guilherme Melo e Maranhão, Renato de Freitas Bulcão-Neto

(Instituto de Informática

Universidade Federal de Goiás

Goiânia-GO, Brazil

guilhermemaranhao@inf.ufg.br, renato@inf.ufg.br)

Abstract: A great challenge in context-aware computing is dealing with the hetero-
geneity and volume of sensors data. A problem regarding that scenario is to notify
context-aware applications, which have distinct interests of context events in terms of
volume, semantic and complexity, in an efficient and relevant manner. Aiming to solve
this problem, this research focuses on a new approach for filtering semantic context
towards supporting context dissemination. This mechanism is to be aligned with the
reasoning capabilities of a context-aware solution and also be maintainable and exten-
sible to efficiently support changes in an ontological model. A performance evaluation
is carried out in a simulated scenario of vital signs monitoring in Intensive Care Units
and wards. Hermes Interpreter’s behaviour is analysed when dealing with filters of dif-
ferent complexities and also an increasing number of subscribers per vital sign. Results
demonstrate the high cost of the semantic filtering mechanism in comparison with pure
context reasoning activities.

Key Words: Filtering, Semantics, Context Dissemination, Experimentation

Category: H.3.3, J.3, L.7.0

1 Introduction

The data’s life cycle in context-aware systems usually contains four phases: acqui-

sition, modelling, reasoning and dissemination [Perera et al. 2014]. These phases

have been strongly influenced by the heterogeneity of published data, as a conse-

quence of the increasing deployment of sensors as well as the increasing amount

of shared data among systems.

The heterogeneity is mainly related to the different information types, e.g.,

geographic coordinates, personal profiles, vital sign measures, humidity or urban

traffic. To describe this type of complex domain, the literature has reported

ontology-based models as those that better fulfill these issues, due to its high

formalism and expressiveness [Bettini et al. 2010, Perera et al. 2014].

As more sensors with distinct purposes are deployed, more new concepts

(measures, units or relationships) are introduced, which in turn produce a ma-

jor impact on the context domain. For instance, imagine that a hospital has

acquired a new type of sensor to monitor body temperature in ICU patients. An

ontological context model for that hospital would have to be changed to support

that new sensor data.

Journal of Universal Computer Science, vol. 22, no. 8 (2016), 1123-1147
submitted: 9/9/15, accepted: 29/7/16, appeared: 1/8/16 © J.UCS

Therefore, in order to provide high maintainability and extensibility of both

systems and context models it is recommended that the context representation

should be independent and decoupled from the context-aware systems them-

selves [Perera et al. 2014]. The ontological modelling also enables this separa-

tion of concerns, because it makes the domain knowledge (domain concepts)

independent from the operational knowledge (executable code).

In addition, such type of modelling enables reasoners to discover new facts

based on explicitly stated context data against the semantic and logic of a on-

tological model. Combining that reasoning technique with rules also enables the

detection of high level context situations, also called high level events, such as the

health state of patients based on vital signs measurements [Bettini et al. 2010].

However, applications may have different needs in a context-aware environ-

ment in such way that a high level event which is relevant to one application,

may be not to other ones. Therefore, before the dissemination phase, a filtering

process aligned with an ontological model is recommended in order to deliver

the correct data to the right application [Perera et al. 2014].

Currently, context-aware systems lack on providing solutions that enable ap-

plications to choose their context of interest in a semantic and dynamic way. For

instance, in the financial stock market, each broker-agent has her own events of

interest, most of them related to price movements, market trends associated to

companies’ business, and all complex pattern events which concerns this scenario.

In a shopping center scenario, consumers have interest in different products, and

for each product, a set of specific details such as price, color, model, and so on.

Another motivating scenario is the vital sign monitoring in hospital ICUs.

There are physicians and nurses with distinct events of interest in terms of

patients and their respective treatments. For instance, a nurse aids a patient

with blood pressure and oxygen saturation issues, whereas a physician attends

a newly operated patient with pulse rate limitations. Dealing with all these

different needs to deliver a consistent and relevant context to applications is the

problem that this paper addresses.

Regarding context-aware systems which execute upon the publish-subscribe

paradigm, we advocate the combination of a semantic filtering approach with

the subscription of topics, because these usually correspond to static and high

granularity structures, which do not satisfy subscribers with dynamic and very

specific demands.

Another reason is to increase the filtering possibilities so that subscribers

might request for concepts and terms according to the semantics described in

an ontology. For instance, instead of subscribing for events based on syntactical

analysis, e.g. “patient name=John” or “oxygen saturation ≤ 90%”, subscribers

may request for events based on an ontological class or property, e.g. “:pulse rate

rdf:type :tachycardia” or “:patient :isLocatedAt :room4”.

1124 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

In this paper we present a new mechanism to support the data’s life cycle in

context-aware systems, specially the context dissemination phase. We propose to

align our results according to the design principles recommended by the literature

and also evaluate them in a case study, that enables expliciting the contributions

for the context reasoning and dissemination phases.

The contributions include: (i) a semantic filtering mechanism for context data

to notify the context-aware applications according to their events of interest; (ii)

the Hermes Interpreter1 component, which reasons and filters semantic context

data as well as manages the events dissemination; (iii) a comparison study be-

tween the amount of time spent by the filtering and the reasoning processes in

a scenario of vital signs monitoring of patients; and (iv) a scalability experi-

ment which analyses the HI’s behaviour in response to an increasing number of

subscribers per vital sign, with filters of different complexities.

The remaining of this paper is organized as follows: Section 2 overviews

specifications for semantic modelling used in the case study; Section 3 details

the semantic filtering mechanism implemented into Hermes Interpreter ; Section

4 presents the case study with a study of performance evaluation and a scalability

evaluation; Section 5 discusses the results; Section 6 discusses related work, and

Section 7 presents the concluding remarks and future work.

2 Theoretical Foundation

2.1 Semantic Modelling Specifications

The Semantic Web is a web of data described and linked in ways to estab-

lish context or semantics that adhere to defined grammar and language con-

structs [Hebeler et al. 2009]. The Semantic Web body of knowledge is com-

posed of modelling specifications that form the building blocks of this work:

RDF (Resource Description Framework) [Wood et al. 2014], OWL2 (Ontology

Web Language) [Hitzler et al. 2012], SWRL (Semantic Web Rule Language)

[Horrocks et al. 2004] and SPARQL [Harris and Seaborne 2013].

RDF provides a graph-based data representation in which nodes represent a

subject and an object linked to the latter. The edges linking subjects and objects

are defined as predicates. An RDF statement is composed of a triple used to

describe any knowledge domain as well as to be shared among systems. For

instance, an RDF statement (:patient, :hasPulseRate, “120”) means that the

pulse rate (predicate) of a particular patient (subject) is 120 bpm (object).

OWL2 is the standard language to define complex ontologies in the Semantic

Web. Its semantics provides constructors to represent axioms and facts, which

provide information about classes, properties, and individuals in an ontology.

1 Throughout this paper, Hermes Interpreter will also be referred as HI.

1125Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Those constructors allow to specify symmetric, transitive and inverse proper-

ties, disjoint classes and properties, equivalent classes and individuals, among

others. The OWL2 expressiveness, formality and reasoning support are of great

significance to model and reason about the semantics of context information.

SWRL is an ongoing effort towards the standardization of a language for de-

scribing rules in the Semantic Web. SWRL complements the semantics provided

by OWL2 with terms and relations that are not supported by OWL2, or even

hard to be expressed in OWL2. The structure of SWRL rules includes the body

→ head format: the former contains the conditions clauses whereas the latter

describes the consequent clauses. By extending the semantics of OWL2, SWRL

has been a feasible alternative to enrich the semantics of concepts.

SPARQL is the standard language to query over RDF statements (or triples).

A SPARQL query can be converted in a graph G that will be matched against

the data in an RDF data source Gr (which is also a graph). In other words, a

SPARQL query result includes all triples of G representing a subgraph of Gr.

Using that same graph matching mechanism, the SPARQL syntax provides four

different query forms, such as the CONSTRUCT form. It allows you to transform

a query result into any kind of RDF graph you can design, as long as each triple

is valid. The CONSTRUCT query form provides an easy and powerful way not

only to transform data from one RDF graph or OWL ontology into another

graph, but also to add triples to RDF repositories or even combine them with

other RDF graphs.

2.2 MSVH Ontology

The MSVH ontology models the semantics of the human vital signs monitoring

activity, particularly in Intensive Care Units and wards [Bastos et al. 2014]. The

ontology represents five vital signs (blood pressure, body temperature, oxygen

saturation, pulse rate and respiratory rate). Besides, it models related concepts

including the measured value with temporal information, measurement unit, the

minimum and maximum parameterized values for a particular patient, among

others. An excerpt of the MSVH ontology is described in Figure 1.

MSVH also defines rules formatted in the SWRL specification to complement

its OWL2 semantic concepts. These rules express abnormalities associated with

each vital sign. For instance, there is a rule to detect the tachycardia state

associated with the pulse rate vital sign (greater or equal than 100) described in

Listing 1. MSVH is the core ontology in the case study presented in Section 4.

Listing 1: SWRL rule for detecting tachycardia [Bastos et al. 2014].

’ pulseRate ’ (? pr) , ’ pulseRateMeasurementDatum ’ (? prd) ,
isPulseRateMeasurement (? prd , ? pr) , va luePulseRate (? prd , ? vpr) ,
nonNegat iveInteger [>= 100] (? vpr) −> Tachycardia (? prd)

1126 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Figure 1: The OWL2 representation for the MSVH ‘pulse rate’ vital sign, mea-

surement data, and corresponding health states (normal, bradycardia and tachy-

cardia) [Bastos et al. 2014].

2.3 Data Interchange Format

Context-aware applications should make use of a flexible and structured mech-

anism to interchange and describe data [Perera et al. 2014]. The JSON format

(Javascript Object Notation) is a lightweight and human-readable standard for

data interchanging and description. It is programming language independent,

easy to read and retrieve information, and also built upon universal structures

including nested name/value pairs and ordered list of values.

Using the JSON format, the semantic filtering mechanism proposed asso-

ciates in a decoupled way each filter parameter with the respective graph pattern

G in a SPARQL query. Besides, JSON keeps the maintainability and extensi-

bility of the semantic specifications in the filtering mechanism, and also enables

the reasoning flexibility over different topics.

3 The Semantic Filtering Mechanism

As depicted in Figure 2, the semantic filtering mechanism proposed works as a

layer between context-aware applications and a publish-subscribe middleware,

offering semantic services such as semantic reasoning and filtering. It is im-

plemented in a software component called Hermes Interpreter, which is part

of the Hermes semantic context management system [Maranhão et al. 2014,

Veiga et al. 2014]. Hermes manages the context data life cycle, from acquisition

to dissemination, and its communication support is based on the publish-subs-

cribe paradigm (applications or Hermes services subscribe for topics of interest).

Besides context filtering, the HI component provides context reasoning ca-

pabilities based on the semantics of OWL2 ontologies and SWRL rules. The

HI reasoning feature has been proven to be maintainable and extensible to deal

with changes on the context model as well as flexible to configure the reasoning

technique according to subscribers’ filters.

1127Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Figure 2: The semantic filtering mechanism.

In Figure 2, an application subscribes (1) topics for the oxygen saturation and

the pulse rate vital signs, respectively. The first subscription filters every oxygen

saturation monitoring whom a particular nurse is responsible for, whereas the

second subscription filters every pulse rate measurement describing tachycardia.

The first subscriber is notified (3) when a context provider publishes (2)

information (i.e. graph Gr) that matches the SPARQL filter (i.e. graph G). In

this case, reasoning support is not required. On the other hand, the tachycardia

state required for the second application will be notified (3) only if the reasoning

support is set. Every pulse rate measurement published (2) is then evaluated

against the SWRL rule describing tachycardia shown in Section 2.2.

3.1 Requirements

Regarding the reasoning characteristic, HI should support multiple types of

reasoning techniques. Due to the increasing of complexity related to applica-

tion domains, different high level context situations emerge to be reasoned, and

each situation requires an appropriate technique to be used. For instance, rules-

based reasoning is recommended for the detection of high level events, whereas

ontology-based reasoning is suitable for the automatic derivation of new knowl-

edge about the current context [Hebeler et al. 2009, Bettini et al. 2010].

Concerning the filtering mechanism, HI should also (i) support ontological

models filtering; (ii) decouple source code from an ontological model; (iii) prior-

1128 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

itize the execution of filters whose parameters are explicitly known; and (iv) be

aligned to reasoning techniques supported by a context-aware solution.

The first requirement aligns the filtering process with the semantics of con-

text, enabling subscribers to ask for events related to the knowledge domain,

e.g., the occurrence of a particular ontological class or property in the published

context in which a subscriber is interested. Heterogeneous data produces com-

plex domains and, consequently, complex filtering needs. Bringing the semantics

of context to the filtering capabilities will help achieving these needs.

Regarding the second requirement, the purpose is to ease the maintenance

and extension of the filters supported even when an ontological model changes.

As domains become more complex, a demand for the maintenance and extension

of ontological models also arises. These context model changes directly influence

the filtering mechanism.

The third requirement is related to the differences of complexity among the

possible filters subscribed for each topic. Some of them do not have to be executed

after the reasoning phase, because the knowledge required is already described in

the published context data, e.g., a subscriber may simply require to be notified

if the measure of a vital sign is greater than a constant. However, subscribers

may also require for even more complex filters in which their execution must

happen after the reasoning phase, e.g., when the information is not available in

the current context data yet. Therefore, it is reasonable that simplest filters be

executed so that their subscribers are notified soon. Considering the ontology-

based reasoning of complex ontological models, the amount of data inferred after

this step considerably increases filtering time.

Finally, the forth requirement aims to make the HI component flexible re-

garding reasoning techniques and previously subscribed filters. For instance, if a

subscribed filter demands a context situation which is described in a pre-defined

rule, HI should use the rule-based technique to infer the data required by that

subscriber when a publication on the respective topic occurs.

3.2 Architecture

The HI’s architectural model is depicted in Figure 3. There are two main flow

of events concerning the HI execution: one flow starts when a context-aware

application subscribes for a specific topic; the other one starts when context

publishers notify data gathered to the Hermes infrastructure.

Regarding the first flow, the HI Filter Service communicates with the HI

Situation Factory to obtain the appropriate HI Filter Situation so that a new

filter can be built for this subscriber. Using the JSON format, this layer describes

filter parameters available to a respective topic including a SPARQL clause to

query against the ontological context model, the reasoning type, among others

exposed in Table 1. By taking advantage of the JSON format features, HI has

1129Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Figure 3: The Hermes Interpreter architecture [Maranhão et al. 2014].

high maintainability and extensibility because the description of filter parameters

are kept apart from the executable code. In the next step, the freshly built filter

is inserted into a queue corresponding to its topic, and it will be executed when

a notification to this topic occurs.

With respect to HI’s second flow, the HI Service provides a single interface

for the reasoning service aiming to support other inference mechanisms. The

HI Filter Service manages (creation and execution) subscribers’ filters. In both

cases, the HI Filter Service calls the HI Situation Factory layer, which returns

the corresponding HI Filter Situation to the current topic. Once again, JSON

enables the architecture to be decoupled from ontology concepts, mapping the

filter parameters with the required reasoning type.

1130 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Considering the requirements described in Section 3.1, the HI Filter Situ-

ations layer addresses the filtering of ontological models and the decoupling

of source code from ontological models. By distributing subscribers’ filters to

queues according to its complexity, the HI Filter Service layer prioritizes the

execution of filters whose parameters are explicitly known such as those that do

not require a reasoning step. Finally, the filtering mechanism is aligned with the

reasoning techniques supported by means of the HI Service layer.

As previously stated, there are metadata supporting the filtering mechanism

for each filter parameter registered in a JSON filter file. The Table 1 presents

the ApneaAlarm parameter with its respective metadata. The ApneaAlarm pa-

rameter is one of the filters supported by the Respiratory Rate topic. The aim

of each filter parameter in Table 1 is described next.

Table 1: ApneaAlarm filter parameters and corresponding metadata.

Metadata Value

has disjoint class true

has parameter false

clause ?x msvh:hasMonitoringRespiratoryRate ?m .
?m msvh:hasMeasurementRespiratoryRate ?measure .
?measure rdf:type msvh:ApneaAlarm .
?sAlarm rdfs:subClassOf msvh:RespiratoryRateAlarm .
?measure rdf:type ?sAlarm .

filter clause null

reasoning technique rule-based

– has disjoint class: it informs whether disjoint classes2 on the ontological

schema exist or not. If there are triples with disjoint classes in the graph G,

HI must include a UNION clause in the SPARQL query to separate them;

– has parameter: it informs whether the query parameter requires a SPARQL

FILTER clause or not, which allows flexibility with fine-grained results;

– clause: it describes the RDF graph pattern G to be matched against the

RDF source graph Gr ;

– filter clause: it describes a SPARQL filter clause template; e.g. FILTER

(?measure >“some value”), in the case of value comparisons;

– reasoning technique: it informs one of the reasoning techniques supported

that HI should set to a corresponding topic.

2 Disjoint classes are those that do not share individuals or instances.

1131Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

3.3 Filter Categories

Three categories of filters are supported to deal with different demands in terms

of filter complexity and the instant of execution of the filtering mechanism:

– FBR - Filter before reasoning: it is composed of filters processed before

the reasoning phase, because they require information already known by HI,

or data already published in the original RDF context model. This type of

filter includes the clauses AND and FILTER of the SPARQL syntax;

– FAR - Filter after reasoning without disjoint classes: it is composed

of filters processed after the reasoning phase, because they require unknown

data, i.e. not previously known in the current RDF context model. It also

implements the clauses AND and FILTER of the SPARQL syntax;

– FARD - Filter after reasoning with disjoint classes: similar to the

FAR filters, this type of filter also demands a previous reasoning phase.

In addition to the SPARQL support of the FBR and FAR filters, this filter

implements the UNION clause to separate disjoint classes in the query filter.

4 Case Study

In this section, we present experiments in a vital signs monitoring scenario in

which HI’s reasoning and filtering capabilities are evaluated.

The MSVH ontology, presented in Section 2, works as the underlying on-

tological context model. The current version of the HI component is based

on the Apache Jena framework, which provides developers with APIs and a

query processor with support to the RDF, SPARQL and OWL2 specifications

[Apache Jena 2014]. Besides, the Pellet reasoning engine [Sirin et al. 2007] is in-

tegrated to the HI component to support both the OWL2 ontology-based and

the SWRL rule-based reasoning processes.

Although the role of both context providers and applications are simulated

by programs developed by the authors, real-world vital signs are used from the

MIMIC public database [Goldberger et al. 2000], which contains registers from

patients during their admission in ICUs and wards.

This patient monitoring scenario is contribution of the Nursing department

of the Clinics Hospital of the Federal University of Goiás, Brazil. For clarification

purposes, we describe this case study by means of Figures 4, 5 and 6.

Every step which Hermes executes to make the user app’s subscription is

depicted in Figure 4. A DDL object is shown with two filter parameters: age

and abnormality (step 1). Next, HI is notified (2) to create a filter to that

subscriber. The HI Situations fabric is instantiated (3) to obtain an instance of

the HI Filter Situation responsible for the respective topic. The fabric returns

1132 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

that object and a JSON file which describes the SPARQL templates to create the

required filter (4 and 5). A Filter object is instantiated, in which the SPARQL

query just created is added (6). This Filter object is added to the correspondent

list, according to its complexity (7). As it needs the rule step to be executed,

its list is the one that contains filters to be executed after the reasoning step.

Finally, the topic Pulse Rate is set to rule reasoning type, due to the existence

of this newly filter (8 and 9).

Figure 4: User application subscribes for a specific topic containing a parame-

terized filter – in this case, it is to be notified when 75 year old patients get

tachycardia.

Figure 5 depicts the context filtering process without reasoning step. The HI

Rule Service layer (steps 1 and 2) communicates the original context in the RDF

format to the Filter Service object, so that it performs the filtering execution of

the FBR filters (3). For each matched filter, it requests the HI Communication

Service to proceed with the context publication (4 to 6).

Finally, Figure 6 refers to the reasoning step so that Hermes can identify new

context facts according to the ontology modeling. HI Rule Service instantiates

the reasoning engine (step 1) which identifies new facts (2) related to the context

data (green nodes and edges). The Filter Service object gets the FAR and FARD

filters (3 and 4), which are kept by the respective topic’s HI Situation. Then,

for each matched filter, the Communication Service is invoked (5) to publish the

context in the DDS network so that the respective subscribers could be notified

(6 and 7).

1133Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Figure 5: Context filtering without a reasoning step.

Figure 6: Context filtering with a reasoning step.

4.1 Functional Validation

This experiment aims to validate the HI’s behaviour in a scenario proposed

by a Nursing staff, in which the maintainability and the extensibility of the

component is validated along the changes in the ontology model. Besides, the

flexibility related to reasoning types and topics are demonstrated. Finally, the

main purpose is to validate how the component notifies multiple subscribers with

distinct interests of context.

The scenario includes 14 patients assisted by 3 nurses for 6 hours: Nurse “A”

and Nurse “B” aid 5 patients each, whereas Nurse “C” aid 4 patients. Every

subscriber’s filter should contain the following parameters: (i) the patient ID

or the responsible nurse; (ii) monitoring date and time; and (iii) a vital sign

reference value or a vital sign abnormality.

1134 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

The following is described a filter subscribed by nurse “A” to the pulse rate

topic:

– responsible nurse: Nurse “A”;

– abnormality: bradycardiaalarm or tachycardiaalarm;

– monitoring interval: between 12 pm and 5 pm of 03/14/2015.

Three scenarios are presented next to explore HI’s functionalities: (i) topic

subscription with filter, (ii) context publishing, and (iii) context dissemination

after changes in the ontological model.

4.1.1 Topic Subscription with Filter

This experiment aims to validate a topic subscription with filter. The evidence is

the creation of a filter (a SPARQL query) to a respective topic. As a successful

result, the subscriber is notified if the situations that the nurse is looking for

occur. Consider for this test the nurse “A” subscription to the pulse rate topic

presented earlier.

The subscription result is a filter related to the respective subscriber, includ-

ing the topic name, an UUID key for the subscriber identification, and a SPARQL

query, which includes the filter parameters specified, as shown in Listing 2.

According to the subscribed filter, HI should detect the occurrence of brady-

cardiaalarm or tachycardiaalarm in the published data, which are ontological

classes with SWRL rules associated in the MSVH ontology.

For the detection of these classes in an RDF context model published by

the context providers, the corresponding JSON HI Filter Situation of the “pulse

rate” topic contains the value “rule-based” for the “reasoning technique” tagged

key associated to the filter parameters bradycardiaalarm and tachycardiaalarm.

Listing 2: Nurse “A” SPARQL filter.

CONSTRUCT {
?x rd f : type msvh : Monitor ingPulseRate .
?x a c t i v i t y : ha sPar t i c i pant ?n .
?n msvh : hasRole msvh : nurse .
?n ac to r : hasName ‘ ‘ NurseA ’ ’ ˆ ˆ s t r i n g .
. . .
?measure rd f : type ?sAlarm .

}

WHERE {
?x a c t i v i t y : ha sPar t i c i pant ?n .
?n msvh : hasRole msvh : nurse .
?n ac to r : hasName ‘ ‘ NurseA ’ ’ ˆ ˆ s t r i n g .
. . .

1135Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

{
?x rd f : type msvh : Monitor ingPulseRate .
?x msvh : hasMonitor ingPulseRate ?m .
?m msvh : hasMeasurementPulseRate ?measure .
?measure rd f : type msvh : TachycardiaAlarm .
?sAlarm rd f s : subClassOf msvh : PulseRateAlarm .
?measure rd f : type ?sAlarm .

}
UNION {

?x rd f : type msvh : Monitor ingPulseRate .
?x a c t i v i t y : ha sPar t i c i pant ?n .
?n msvh : hasRole msvh : nurse .
?n ac to r : hasName ‘ ‘ NurseA ’ ’ ˆ ˆ s t r i n g .
. . .
?x msvh : hasMonitor ingPulseRate ?m .
?m msvh : hasMeasurementPulseRate ?measure .
?measure rd f : type msvh : BradycardiaAlarm .
?sAlarm rd f s : subClassOf msvh : PulseRateAlarm .
?measure rd f : type ?sAlarm .

}
}

4.1.2 Publication of Context

This test aims to verify the HI’s behaviour with respect to the vital signs pub-

lished by the context provider components. Among the various measurements

collected from the MIMIC database, here we consider pulse rate measurements.

In order to be published to the “pulse rate” topic, the measurement data

acquired, which is originally described in the CSV format, is converted to the

RDF triple format. The measurement value chosen is 53 bpm, which is modelled

according to the MSVH ontology: the date and the time of the measurement as

well as some context data about the monitored patient, e.g., her identification

and her nurse assistant.

Once this data is published, HI is notified and performs the reasoning and

filtering processes. As detailed above, the reasoning technique to be used for the

“pulse rate” topic is set to “rule-based”. Next, HI calls the HI Rules Service to

reason about the recent published context. After this process, HI calls the HI

Filter Service, which executes each of the“pulse rate” subscribed filters so that

it can identify their parameters’ occurrences in the inferred RDF model.

As the reasoning process deduces that the 53 bpm published measurement

means a bradycardia abnormality (through the corresponding SWRL rules), the

“nurse” filter detects the presence of the bradycardiaalarm ontological class in

the respective individual measurement. Besides, it verifies that the data collected

is in the interval parameterized by the filter and “nurse A” is the assistant

nurse. Therefore, HI creates a new RDF model, according to the specified by the

SPARQL CONSTRUCT clause, to be notified to the subscriber “nurse”.

1136 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

4.1.3 Context Dissemination After Changes in the Ontological Model

This scenario illustrates the HI’s extensibility and maintainability at run-time.

To validate its extensibility, nursing professionals suggested to include the “mean

blood pressure” information to help them to better assist the patients. This new

requirement was implemented as a new data property, named :hasMeanBlood-

Pressure, which was defined to the :MonitoringBloodPressure ontological class.

To validate the HI’s maintainability, the property :hasName, in the ontological

class :Person, was renamed to :hasPersonName.

After the changes described in the ontological model, the JSON filter files

were changed to include the parameter <MeanBloodPressure> and also to over-

write the property :hasName with :hasPersonName. In order to signal HI about

changes in the MSVH ontology, the tagged information updated ontology was set

to true. Based on this information, as soon as HI is notified about a new con-

text, it updates all the pre-defined subscribers’ filters so that they can include

the recent ontological changes in SPARQL queries.

Continuing the validation, one subscribed for the Blood Pressure topic with

the MeanBloodPressure filter parameter, as shown in Listing 3:

Listing 3: SPARQL query for the new filter.

CONSTRUCT {
. . .
?x msvh : hasMeanBloodPressure ?measure .
?n ac to r : hasPersonName ‘ ‘ NurseC ’ ’ ˆ ˆ s t r i n g .

}
WHERE {

. . .
?n ac to r : hasPersonName ‘ ‘ NurseC ’ ’ ˆ ˆ s t r i n g .
?x msvh : hasMeanBloodPressure ?measure .
FILTER (?measure >= ‘ ‘105 ’ ’ ˆˆ i n t) .

}

Then, as soon as the context providers start publishing information about

the “mean blood pressure”, if it is greater than 105 mmHg a new subscriber

is notified, as described in the following program output sample. VSO 0000005

refers to the BloodPressure ontological class, and the systolic and diastolic mea-

surements describe a mean blood pressure measurement >= 105.

*** FILTER ACCOMPLISHED ****

UUID → 8d6f98fe-4dbd-4946-8145-bef4e2dbacfc

Vital Sign VSO 0000005 measurement from patient 226n VSO 0000005 at Sat Mar 14

14:10:53 BRT 2015

VSign measurement (valueSystolicBloodPressure) → 155 mmHg

VSign measurement (valueDiastolicBloodPressure) → 84 mmHg

Type: VSO 0000005

1137Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

4.2 Reasoning Time Versus Filtering Time

It is reasonable that the new filtering mechanism deals with case study time re-

strictions. For that reason, this second experiment aims at comparing the amount

of time spent by the filtering process in comparison with the reasoning time. We

also consider the subdivision of the ontology-based reasoning time into four main

phases, as described in [Bulcão Neto and Pimentel 2006]:

– MLT (Model Loading Time): the amount of time spent to load an on-

tological model;

– ST (Satisfiability Time): the amount of time spent to validate whether

ontology facts are in accordance with ontology schema or not;

– CT (Classification Time): the amount of time consumed to determine the

individuals hierarchy in accordance with ontology classes and properties;

– RT (Realization Time): the amount of time consumed to identify the

most specific class for each ontological individual.

Different subscriber filters are defined for each filter type (FBR, FAR and

FARD) as follows. Based on Nursing staff’s feedback, 30 subscribers for each

filter is a reasonable value for our purposes in the experiment: FBR (pulse rate

topic), FAR (respiratory rate topic), and FARD (blood pressure topic).

Figure 7 summarizes the results obtained for the FBR, FAR and FARD

filters, respectively. The legends in Figure 7 mean the total average time and the

respective standard deviation (both in milliseconds) for each process (MLT, ST,

CT, RT, and filters supported).

Results show that the filtering phase represents a significant part in the HI’s

processing, specially concerning the filters with disjoint classes. This cost may

be more expressive if a larger number of subscribers is required.

The hardware and software settings used in this experiment are as follows:

– the HI component runs on an Intel Core 2 Duo 2,2GHz with 2 cores, 4GB

RAM, Windows 7 64 bit;

– the context providers (including MIMIC-based vital signs) run on an Intel

Core i5-3330 3GHz x 4, 8 GB RAM, Linux Ubuntu 64 bit; and

– the applications (representing nurses’ demands) run on an Intel Core i5 2,3

GHz with 2 cores, 2GB RAM, Windows XP 32 bit virtual machine, Oracle

VM VirtualBox6.

1138 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Figure 7: Comparison among reasoning variables and FBR (a), FAR (b) and

FARD (c) filters, respectively.

1139Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

4.3 Scalability Evaluation

Besides the comparison between the time costs of reasoning and filtering, a

third experiment analyses the HI’s behaviour along the time, considering the

increasing of subscribers per vital sign. In terms of the case study, the response

time must be acceptable according to the medical literature.

A reference response time is suggested in [Matthias et al. 2009], which pro-

pose a delay time to reduce the alarm fatigue occurrence in ICUs. They prove

that 77% of alarms are ineffective or even ignored, and also claim that 67% of

those alarms may be removed if there is a delay of 19s to sound the sign alarm.

As it is not a purpose of the Hermes Interpreter to solve the alarm fatigue

problem, this response time reference is used as a parameter, i.e. an acceptable

value to process the vital sign context data in an ICU monitoring scenario.

Based on this, the HI’s scalability is evaluated in order to obtain the amount

of subscribers supported in terms of the reference response time. The hardware

and software settings used in this experiment are as follows:

– the HI component runs on an Intel(R) Core(TM) 2 Duo (2,2 GHz each),

4GB RAM, Windows 7 64 Bits;

– Hermes Widgets : Linux Ubuntu 12,4 LTS 64 Bits, Intel Core i5-3330 with

3GHz x 4 and 7,7 GB RAM

– Context-aware applications (subscribers): Windows 7 32 Bits, Intel(R) Dual

Core, 1,73 GHz and 1,5 GB RAM. All subscribers ran on this machine

As defined in the functional validation, each subscriber describes three types

of filter parameters: patient ID, monitoring interval and a vital sign measure

or abnormality. The association between filter categories and vital signs is FBR

(pulse rate), FAR (respiratory rate), and FARD (blood pressure).

For each aforementioned pair of filter and vital sign, three experiments are

performed increasing the number of subscribers (e.g. 30, 300 and 3,000). Figure 8

depicts the average processing times of FBR, FAR and FARD filters, respectively.

Table 2 summarizes the results of this experiment including the average pro-

cessing times and respective standard deviation for FBR, FAR and FARD filters.

5 Discussion

This section summarizes the discussion about the experiments described in the

previous section: functional validation, comparative analysis between reasoning

and filtering times, and scalability evaluation.

Regarding functional validation, we show how the filtering mechanism sup-

ports subscribers’ needs in a semantic fashion. In a heterogenous scenario, tagged

filters are defined to enable the subscribers to combine their contexts of interest.

1140 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Figure 8: HI’s average processing time for FBR (a), FAR (b), and FARD (c)

filters, respectively.

1141Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Table 2: A summary of the scalability evaluation experiment.

Filter Subscribers Average Time Std. Deviation

FBR 30 0.12s 0.82s

300 0.9s 0.23s

3000 9.6s 2.36s

FAR 30 0.23s 0.26s

300 1.5s 1.65s

3000 15.8s 16.6s

FARD 30 0.28s 0.9s

300 2s 0.56s

3000 20.2s 5s

The separation of concerns between domain model (i.e. the MSVH ontology)

and executable code is obtained through the markup scheme tagged encoding.

For that reason, HI is benefited with an extensible and maintainable solution for

context reasoning and filtering. Another advantage is the transparent semantic

layer which the filtering mechanism builds upon the publish-subscribe middle-

ware, offering to subscribers a rich solution to deal with complex domains.

In terms of the comparative analysis between reasoning subprocesses and

filter categories, it demonstrates how expensive is to manipulate those filters in

a complex scenario such as the vital signs monitoring.

Besides, three distinct behaviours are identified concerning the three filter

types: FBR filters spend less time because they use the original context data

(i.e. a smaller RDF triple model); FAR and FARD filters, in turn, take longer,

because both are executed over a huge RDF model with many new context data

inferred. The execution of FARD filters consume more time than the FAR filters,

because the query processor has to analyse all triples of the RDF source graph

Gr in order to detect the occurrence of all disjoint classes.

The results obtained by the scalability evaluation show that only FAR and

FARD categories with 3,000 subscribers do not meet the response time suggested

by [Matthias et al. 2009]. Observe that the average time to the FAR category is

15.8s, but its high standard deviation (16.6s) makes it higher than the 19s used

as reference in the experiment.

All filter types present a linear growth with the increase of subscribers. This

is because the input size for each filter query was not increased along vital signs’

notifications, so that the RDF data source and the SPARQL query for each filter

type were always the same, varying the parameters values only. As verified by

the functional validation, this was not a limitation in the HI operation.

1142 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

On the other hand, if the RDF data source was increased along context notifi-

cations, FBR and FAR filters would continue being executed at polynomial time

[Picalausa and Vansummeren 2011]. However, FARD filters would have their ex-

ecution time exponentially increased. These studies define that SPARQL queries

containing only AND and FILTER operators (i.e. FBR and FAR) are polyno-

mially executable with the increase of input size. However, queries with UNION

and AND operators are NP-Complete problems.

Therefore, if HI made use a knowledge base for storing context notifications,

the maximum number of subscribers to attend the 19s reference would be smaller,

because the input size would be increased along the notifications as well as the

response time. Due to its exponential behaviour, a FARD filter would have its

number of subscribers more influenced than the FAR and the FBR ones.

6 Related Work

In this section, we compare our work in terms of filtering capabilities and non-

functional requirements (maintainability, extensibility and flexibility). None of

the following related works evaluated their solutions with respect to filtering

time and number of subscribers to meet use scenario’s requirements.

Comparatively, Teymourian et al. present an architectural model to be used

in semantic event-driven systems including an ontology to describe high-level

events [Teymourian et al. 2009]. As Hermes Interpreter, that architectural model

also detects events based on ontology-based and rule-based techniques, but its

event filtering mechanism lacks of reactive approach to this problem. Reactivity

is useful for unpredictable and highly dynamic scenarios, when subscribers need

to specify their events of interest.

EXEHDA-UC provides context management services to mobile and web

context-aware applications [Lopes et al. 2013]. Although EXEHDA-UC and Her-

mes share architectural similarities, EXEHDA-UC lacks on ontology reasoning,

as long as this is one of the main activities supported by Hermes Interpreter.

The filtering capabilities proposed by EXEHDA-UC are limited to comparisons

operators, e.g. >, <, �, �, = or �=, whereas Hermes Interpreter also includes

the properties described in the ontology model. Both studies also differ in terms

of the evaluation method: while EXEHDA-UC makes use of the TAM (Technol-

ogy Acceptance Model approach, a performance evaluation was carried to test

Hermes Interpreter ’s capacity to attend users’ needs.

Aman and Snekkenes’s work include an ontological schema for information

security and event monitoring based on context filtering to discard redundant

and unwanted events [Aman and Snekkenes 2014]. To achieve this, the research

uses regular expressions to parse the received context data. Both Hermes and

Aman and Snekkenes’s work deal with semantic context modeling, but the for-

mer is is a general purpose system, whereas the latter is specifically for security

1143Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

issues. Besides, the filtering mechanism in Hermes is semantically associated

with an ontology model and subscribers’ needs. In Aman and Snekkenes’s work,

however, the filtering process occurs by comparison among context data and reg-

ular expressions, pre-defined to each monitored device. Those authors also make

a case study in a security adaptation scenario to context-aware applications in a

health case. However, it does not accomplish response time validation according

to the research field requirements.

Balakrishnan and Nayak combines context dissemination with interoperabil-

ity concerns and dynamic adaptation to tackle with the problem of how the

contents of a rapidly evolving context entity is propagated among interested

context entities [Balakrishnan and Nayak 2014]. The main objective is to meet

heterogeneous entities’ demands for customization of context services such as

a multimedia traffic routing entity, which adapts itself according to needs of

user devices. By making use of networks connectivity and user’s resources to

customize context data, we consider it as complementary work because Her-

mes deals with context dissemination from the user perspective, i.e., in terms

of which context data are of user’s interest in a given moment. On the other

hand, although Balakrishnan and Nayak also present a comparative evaluation

among main events of context dissemination, these are related to the phases of

a context dissemination protocol, whereas in Hermes they are linked to filtering

and inference of context data.

TrailM is a context management system that handles the preferences of dealer

users in commercial ubiquitous environments [Martins et al. 2012]. Context data

includes users’ identification, the products that they want to buy or to sell, and

their paths in the ubiquitous environment. Using such information information,

TrailM notifies a dealer when another dealer with similar interests is nearby.

TrailM’s context model lacks of reasoning support because it is solely modelled

into relational databases. Regarding the context dissemination issues, TrailM

only considers dealers’ paths and preferences, while HI offers a dynamic mode

to the users parameterize their own events of interest, based on the semantic of

the context. Besides that, TrailM’s filtering mechanism is static concerning the

supported parameters, while HI’s is extensible and maintainable according to

the changes on the ontology model.

Similar to our work, the E-health system is built upon an ontology-based ar-

chitecture for the development of context-aware services [Guermah et al. 2013].

E-health aims to notify users about predefined events related to the patients’

situations. Although the architecture is extensible to support new rules, it does

not provide support to the specification of filters to attend the diversity of sub-

scribers’ interests, which is required in highly dynamic scenarios such as the case

study described earlier.

1144 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

Table 3 summarizes the comparison of related work. It describes some de-

sign principles which have to be presented in context-aware solutions and other

relevant features concerning the research field.

P1 - Independent context model

P2 - Support to multiple context reasoning techniques

P3 - Consistency verification among facts and context model

P4 - Context filtering

P5 - Semantic filtering of context events

P6 - Performance evaluation

Concerning the table data, if the related work does not explicitly mention

the principle or if it is not among its goals, it is defined with the ’-’ marker,

in the respective cell. If it is presented, it is marked as ’Y’. If the principle is

explicitly described as future work, it is described as ’FW’.

Table 3: Comparison: Design principles and research features.

Research Year P1 P2 P3 P4 P5 P6

[Teymourian et al. 2009] 2009 Y Y Y Y Y -

[Lopes et al. 2013] 2013 - - - Y - -

[Aman and Snekkenes 2014] 2014 Y Y Y Y - -

[Balakrishnan and Nayak 2014] 2014 - - - Y - Y

[Martins et al. 2012] 2012 - - - Y - FW

[Guermah et al. 2013] 2013 Y Y Y - - -

Hermes Interpreter 2015 Y Y Y Y Y Y

7 Conclusions and Future Work

This paper focuses on context data’s life cycle, especially on the context dis-

semination phase. The authors claim that solutions for context dissemination

must deal with the diversity of the subscribers’ interests regardless the appli-

cation domain such as health [Guermah et al. 2013, Souza et al. 2014], finance

[Teymourian et al. 2009], or shopping [Martins et al. 2012].

1145Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

In order to address that issue, this paper presents a filtering mechanism

so that applications describe semantic events dynamically. This mechanism is

maintainable and extensible to support changes on an ontological context model

as demonstrated in vital signs monitoring scenario.

Results also demonstrate the feasibility of a context filtering layer between

the context reasoning phase and the context dissemination phase. In order to

better deal with changes in the ontology model and to adapt a filter category to

a proper reasoning type, this new layer should keep apart the filters supported,

the semantic model and the execution code itself. The comparative test shows

the cost of introducing a semantic filtering mechanism depends on the number

of subscribers and the complexity of their required filters. Finally, the scalability

evaluation shows how many subscribers HI would support to attend the medical

reference response time for notifying context in a vital sign monitoring scenario.

As future work, we intend to integrate the filtering mechanism with a knowl-

edge base, to enable both context reasoning and filtering about past context

events as well as to investigate the cost of filtering past events.

Hermes Interpreter could also be evolved to provide context reasoning and

filtering to others events related to the health monitoring (e.g. elderly fall) using

supervised learning techniques or probabilistic logic to support patient’s diag-

nosis.

Acknowledgements

The authors would like to thank the Nursing department of the Clinics Hospital

of the Federal University of Goiás for its valuable support.

References

[Aman and Snekkenes 2014] Aman, W., Snekkenes, E.: “Event driven adaptive secu-
rity in internet of things”; Proceedings of the Eighth International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies, (2014), 7-15.

[Apache Jena 2014] Apache Software Foundation: Apache Jena Semantic Web Frame-
work. (2014). http://jena.apache.org/.

[Balakrishnan and Nayak 2014] Balakrishnan, D., Nayak, A.: “Adaptive Context Dis-
semination in Heterogeneous Environments”; IEEE Transactions on Mobile Com-
puting, 13, 6 (2014), 1173-1185.

[Bastos et al. 2014] Bastos, A.B., Sene Júnior, I.G., Bulcão-Neto, R.F.: “Modeling and
inference based on the semantics of monitoring of human vital signs”; Proceedings
of the 20th Brazilian Symposium on Multimedia and the Web, (2014), 13-16.

[Bettini et al. 2010] Bettini, C., Brdiczka O., Henricksen, K., Indulska, J., Nicklas,
D., Ranganathan, A., Riboni, D.: “A survey of context modelling and reasoning
techniques”; Pervasive and Mobile Computing, 6, 2 (2010), 161-180.

[Bulcão Neto and Pimentel 2006] Bulcão Neto, R.F., Pimentel, M.G.C.: “Performance
evaluation of inference services for ubiquitous computing”; Proceedings of the 12th
Brazilian Symposium on Multimedia and the Web, (2006), 27-34.

1146 Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

[Goldberger et al. 2000] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov,
P., Mark, R., Mietus, J., Moody, G., Peng, C., Stanley, H.: “PhysioToolkit and
PhysioNet: Components of a new research resource for complex physiologic signals”;
Circulation Electronic Pages, 23, 6 (2000), 215-220.

[Guermah et al. 2013] Guermah, H., Fissaa, T., Hafiddi, H., Nassar, M., Kriouile, A.:
“Context modeling and reasoning for building context aware services”; Proceedings
of the International Conference on Computer Systems and Applications, (2013), 1-7.

[Harris and Seaborne 2013] Harris, S., Seaborne, A.: SPARQL 1.1 Query
Language W3C Recommendation. (2013). http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

[Hebeler et al. 2009] Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A.: “Semantic
Web Programming”; (2009) John Wiley e Sons, isbn 978-0-470-41801-7.

[Hitzler et al. 2012] Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P.F.,
Rudolph, S.: OWL2 Web Ontology Language Primer (Second Edition) W3C Rec-
ommendation. (2012). http://www.w3.org/TR/owl2-primer/.

[Horrocks et al. 2004] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof,
B., Dean, M.: SWRL: A Semantic Web rule language combining OWL and RuleML.
(2004). http://www.w3.org/Submission/SWRL/.

[Lopes et al. 2013] Lopes, J., Gusmão, M., Souza, R., Davet, P., Souza, A., Costa, C.,
Barbosa, J., Pernas, A., Yamin, A., Geyer, C.: “Towards a distributed architecture
for context-aware mobile applications”; Proceedings of the 19th Brazilian Sympo-
sium on Multimedia and the Web, (2013), 43-50.

[Maranhão et al. 2014] Maranhão, G.M., Sene Júnior, I.G., Bulcão-Neto, R.F.:
“Anatomy of a semantic context interpreter with real-time events notification sup-
port”; Proceedings of the 20th Brazilian Symposium on Multimedia and the Web,
(2014), 159-162.

[Martins et al. 2012] Martins, C., Rosa, J., Franco, L., Barbosa, J., Bezerra, E.: “To-
wards a model to explore business opportunities in trail-aware environments”; Pro-
ceedings of the 18th Brazilian Symposium on Multimedia and the Web, (2012),
143-150.

[Matthias et al. 2009] Matthias, G., Boaz, A.M., Dwayne, R.W.: “Improving alarm
performance in the medical intensive care unit using delays and clinical context”;
Anesthesia e Analgesia, 108, 5 (2009), 1546-1552.

[Perera et al. 2014] Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: “Con-
text aware computing for the Internet of Things: A survey”; IEEE Communications
Surveys Tutorials, 16, 1 (2014), 414-454.

[Picalausa and Vansummeren 2011] Picalausa, P., Vansummeren, S.: “What Are Real
SPARQL Queries Like?”; Proceedings of the International Workshop on Semantic
Web Information Management, (2011), 1-6.

[Sirin et al. 2007] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: “Pellet:
A practical OWL-DL reasoner”; Web Semantics: Science, Services and Agents on
the World Wide Web, 5, 2 (2007), 51-53.

[Souza et al. 2014] Souza, A., Mesquitta, F., Lopes, J., Souza, R., Pernas, A., Yamin,
A., Geyer, C.: “A situation-aware ubiquitous approach for the evaluation of thera-
peutic goals in a hospital environment”; Proceedings of the 6th Brazilian Symposium
on Ubiquitous and Pervasive Computing, (2014), 921-930.

[Teymourian et al. 2009] Teymourian, K., Streibel, O., Paschke, A., Alnemr, R.,
Meinel, C.: “Semantic event-driven systems”; Proceedings of the 3rd International
Conference on New Technologies, Mobility and Security, (2009), 347-352.

[Veiga et al. 2014] Veiga, E.F., Maranhão, G.M., Bulcão-Neto, R.F.: “Supporting the
development of real-time, semantic context-aware applications”; Proceedings of the
20th Brazilian Symposium on Multimedia and the Web, (2014), 1-4.

[Wood et al. 2014] Wood, D., Lanthaler, M., Cyganiak, R.: RDF 1.1 Concepts and
Abstract Syntax W3C Recommendation. (2014). http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

1147Melo e Maranhao G., de Freitas Bulcao-Neto R.: A Semantic Filtering ...

