Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 22 / Issue 6

available in:   PDF (183 kB) PS (1 MB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-022-06-0856


PLA Based Strategy for Solving RCPSP by a Team of Agents

Piotr Jędrzejowicz (Gdynia Maritime University, Poland)

Ewa Ratajczak-Ropel (Gdynia Maritime University, Poland)

Abstract: In this paper the dynamic interaction strategy based on the Population Learning Algorithm (PLA) for the A-Team solving the Resource-Constrained Project Scheduling Problem (RCPSP) is proposed and experimentally validated. The RCPSP belongs to the NP-hard problem class. To solve this problem a team of asynchronous agents (A-Team) has been implemented using multiagent system. An A-Team is the set of objects including multiple agents and the common memory which through interactions produce solutions of optimization problems. These interactions are usually managed by some static strategy. In this paper the dynamic learning strategy based on PLA is suggested. The proposed strategy supervises interactions between optimization agents and the common memory. To validate the proposed approach computational experiment has been carried out.

Keywords: A-team, PLA, RCPSP, agent, optimization, population learning algorithm, resource-constrained project scheduling

Categories: H.1, H.4