
Parameterized and Dynamic Generation
of an Infinite Virtual Terrain with Various Biomes

using Extended Voronoi Diagram

Kazimierz Choroś
(Wrocław University of Technology, Wrocław, Poland

kazimierz.choros@pwr.edu.pl)

Jacek Topolski
(Wrocław University of Technology, Wrocław, Poland

jacek.topolski@pwr.edu.pl)

Abstract: The paper describes and extensively evaluates a new method for the parameterized
and intelligent generation of an infinite environment including various biomes in a virtual 3D
space defined by the user. The biomes might be generated with different set of textures and by
using different formulas to form shape of the landscape. Despite different shapes they still
blend smoothly between each other. To achieve this goal Gaussian blur and Voronoi diagram
algorithms are used. To enable additional parameterization for biomes placement the standard
Voronoi algorithm is extended by including cell change along an axis and dispersion of
Voronoi cells. Applying latitude into terrain type produces more realistic results. An entire
terrain is generated on the CPU using a separate thread to eliminate stuttering during
calculations and then the data is sent to the GPU in order to draw it. It forces reducing amount
of data as much as possible, because data must be sent through the graphical bus. The tests have
been performed by setting up a sample terrain and performing basic actions on this terrain like
moving or rotating to gather frame times. The results showed that although the method
demands much memory it is efficient and suitable for the real-time processing.

Keywords: Virtual 3D Spaces, Virtual Biomes, Infinite Terrain Generation, Real-Time
Rendering, Extended Voronoi Diagram, Gaussian Blur, Terrain Patch Generation, Virtual
Terrain Parameterization
Categories: H.5.1, I.2.10, I.3.7, J.7

1 Introduction

Computer visualizations, virtual reality systems, computer animations, computer
games, simulators, dynamic representations and visualizations of industrial processes,
as well as many other software applications and systems demand the generation of
virtual and as much as possible realistic terrains in three-dimensional spaces
(Shiau, 07], [Mat, 09], [Reed, 10], [Ruzinoor, 12], [Yannakakis, 15]. The bigger and
in addition more complex terrains for virtual sightseeing are now expected. They
should also include various biomes. Biomes are defined as contiguous areas with
similar climatic conditions. Such geographical communities of plants, animals, and
soil organisms (flora and fauna) are often referred to as ecosystems.

Journal of Universal Computer Science, vol. 22, no. 6 (2016), 836-855
submitted: 30/11/15, accepted: 28/5/16, appeared: 1/6/16 © J.UCS

Three-dimensional space (3D space) is a geometric model where a point is
described as an ordered triple containing coordinates which the point is placed on.
Their coordinates are represented by real numbers. Every object is composed of many
such points called vertices forming their shapes, which are later overlaid with
miscellaneous colours and texture coordinates. 3D space can represent real world very
intuitively. Therefore, this model is generally chosen to visualise photorealistic and
interactive spaces. Before flattening the 3D space onto the screen we need to
transform all vertices to the projection space which stores the whole space in a cube.
To display the defined vertices we have to go through the world, view, and projection
spaces which are basically a consequence of multiplication of the transformation
matrices. We need a world-view-projection matrix which transforms the model
vertices from the model space to the coordinates on the 2D screen.

Realistic terrain visualizations generated by rendering of the 3D graphics involve
enormous calculations [Akenine-Moller, 02], [Choroś, 08]. However, a real-time
rendering has still some limitation, especially in computer games, simulators, or other
interactive visualizations where current devices impose on saving resources for also
other things like animations, artificial intelligence, or game logic.

The modelling and simulation in 3D virtual and augmented reality systems
become very significant in the visualisations of industrial processes. Simulations
provide visual information on the behaviour and performance of existing systems as
well as of enterprises planed for the future. 3D dynamic representation of industrial
processes are produced in a virtual reality, where the real and virtual elements have
direct and synchronized connections with each other, extending the features of the
real components with the ability and services of these new virtual elements. Virtual
system provides faster planning, easier system integration, and more reliable
operation and control [Kopácsi, 13].

Terrain is usually represented as a manually or procedurally generated heightmap
[Cassol, 11]. Some approaches use hybrid techniques.

In an infinite virtual world the terrain is boundless. But in the majority of
different implemented virtual worlds the terrain is limited for example by impassable
borders like a valley bounded with mountains or an island bounded with water. The
real infinity is difficult to achieve because of technological restrictions. Therefore, the
infinity of virtual worlds is usually simulated using different sophisticated techniques
of management of the terrain parts. For example the virtual world can be looped by
using an abstraction of torus model called wraparound [Wolf, 01], because it’s
impossible to reach the end of a torus as it basically doesn’t exist. The torus is usually
identified with a planet which can be encircled. Current hardware with the hardware
tesselation allows producing very complex planetary scenes using wraparound model.
Such a technique is called a planet rendering and it maps a cube onto a sphere. The
main problem of planet rendering is to maintain the real size of a planet because it
requires to preserve large distances and many details. However, the application of
fractals for the generation of details may create a very realistic landscape [Cozzi, 14].
Similarly, the wraparound approach can be used but around a cylinder, which means
we have boundaries only on the top and bottom of the map.

The infinity can be also simply simulated by generating the subsequent parts of
the terrain just before approaching the borderland of the already generated landscape.
Such a solution has been implemented in the Minecraft game [Minecraft, 14]. It

837Choros K., Topolski J.: Parameterized and Dynamic Generation ...

generates infinite terrain without repetitions using procedural algorithms. In that case
the problem of begin-end edge welding does not occur as due to the noise coherence it
is easy to connect already generated parts with the new ones.

In this paper we are going to choose the approach based on a full landscape
infinity (without wraparound or planet rendering), moreover taking into account the
latitudes of terrain parts and their types. Because it is not possible to create a terrain
manually or by using some existing maps, so we have to rely on the procedural
generation techniques. The goal of this paper is to analyse a method of infinite terrain
generation including various biomes and to enable additional parameterization for
biomes placement taking into account terrain type and latitude. The results of
exhaustive tests performed with this new method demonstrating its advantages and
efficiency will be presented and discussed.

The paper is organized as follows. The next section describes some related work
in the area of the generation of infinite terrains in 3D virtual worlds. The main idea of
the Voronoi diagrams is outlined in the third section. The method of the dynamic
generation of an infinite terrain is presented in the fourth section. In the fifth section
the extended Voronoi diagram is presented including its parameterization by cell
change along an axis and dispersion of Voronoi cells. The sixth section presents the
results of extensive tests of quality and efficiency of this new method of
parameterized and dynamic generation of an infinite virtual terrain with various
biomes. The final conclusions are discussed in the last seventh section.

2 Related Work

There are many papers on the generation of virtual terrains but unfortunately only a
few solutions have been proposed for the generation of infinite terrains. Most
frequently it was enough to create a finite landscape with the fixed size, although very
large [Lin, 09]. Such a terrain is easier to maintain and process, because we get
complete information on terrain elevations that may be used to logically distribute
terrain features and special objects, whereas infinite terrain implies generating its
content partially, so it limits our knowledge about landscape [Luna, 06].

The problem of the infinity of 3D terrains has been thoroughly discussed in the
Dollins dissertation [Dollins, 02]. In this dissertation hash-based algorithm was used
to manage the adequate parts of the generated terrain. The terrain parts were
procedurally generated on-the-fly without necessity to save them in a file, so every
time the visitor came back to already visited place the adequate part of the terrain was
generated once more. These parts were regular grids with no adaptation. The only
additional improvement was applied for terrain parts more distant from the camera
consisting of diluting the very distant grids.

Unfortunately, the terrain generated using this method is rather monotonous
because its every part is generated by the same procedural algorithm and the whole
terrain is covered by the same texture. However, the colours are changing depending
on the height of a vertex, finally the colours are blended with the texture to produce
pixel colour. So, the main disadvantages of this method are a low diversity of the
landscape shape as well as uniform and unvarying colours. Such a solution seems to
be sufficient for some applications like flight simulators where the details of
generated landscapes may be not very important. But the expectations in many games

838 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

or virtual visualizations are much higher and the texturing of landscapes in such
applications should be much more refined and realistic.

Greuter et al. [Greuter, 03] proposed an approach to procedurally generate
pseudo-infinite virtual cities in real-time. These virtual cities contained highly diverse
and complex buildings generated as required, on the fly as they are encountered by
the user. The building generation parameters were set using pseudo-random number
generator, seeded with an integer derived from the building's position. The city could
expand to an extent that would require a lifetime to explore, and was called by the
Authors as pseudo-infinite.

In [Schneider, 06] the authors have proposed a new method for real-time editing,
synthesis, and rendering of infinite landscapes exhibiting a wide range of geological
structures. This solution is based on a concept of projected grids which is frequently
used for sea or ocean rendering. This technique creates a surface expanded up to the
horizon using a grid with fixed number of vertices.

The concept of projected grid is quite intuitive and means that we define a grid
covering the whole screen which is then projected (overlaid) onto terrain. The grid
vertices are conformed to the terrain shape preserving roughly the same triangles size
in screen space giving free LOD and creating far distance view (up to the horizon).
This scheme may be also used on a spherical surfaces, e.g. for planet rendering. The
technique requires an additional frustum called projector frustum which specifies the
extended range of view to eliminate artifacts, but at the same time it makes the
algorithm a little more complex. One of the main drawbacks is that we need to know
the maximum vertex height of a terrain. Using that information the algorithm knows
how to set up the projector frustum properly, otherwise we would see defects on the
screen edges caused by not generated geometry. Projected grid is in fact computed on
the GPU, but also in this approach it is difficult for the generated terrain to create
various areas with different shapes and textures.

Procedural approaches seem to be the most attractive for the generation of infinite
terrain [Raffe, 12]. A procedural generation means that the content is created
algorithmically rather than manually. Procedural methods are employed in generation
not only of landscape but also vegetation, buildings, fire or water and they give the
opportunities to create very diversified virtual worlds of different scales. Whereas
manual methods are time-consuming proportionally to the size of the landscape.

Procedural generation techniques differ in the visual aspect and computational
complexity, as well as in application areas. Many of these procedural techniques,
mainly applied in computer games, are described and discussed in the surveys
presented in [Smelik, 09], [Carli, 11], [Hendrikx, 13]. Also the number of
implemented systems with landscape generation is rapidly growing. Most of them like
[Livny, 09] or [Losasso, 04] use GPU for generating a terrain, because such a solution
does not require transmitting a lot of data from CPU to GPU. The techniques mainly
performed on GPU are much more efficient and easier. In our method vertex buffers
are not used because dynamic buffers demand a lot of memory. However, despite its
advantages we are going to use the CPU for generating terrain final data as current
CPUs are fast enough to generate the data for landscape in runtime and by using few
manners it is possible to reduce data as much that it is small enough to send it to the
GPU when crossing terrain quads. Furthermore, there is still a lack of mechanisms

839Choros K., Topolski J.: Parameterized and Dynamic Generation ...

that handle different biomes in a flexible way, for which it is much harder to create
logic on the GPU side.

Realistic biomes incorporate correct plant placement which many approaches has
been already proposed for. Terrain parameters [Hammes, 01] can be used to simulate
a realistic placement of plants. Another solution has been proposed in [Deussen, 98]
where a special technique has been used for distribution texture to generate black and
white dots in conjunction with Voronoi diagram for relaxation of the dots. The black
dots represented plants, but the plant type must have been determined from additional
parameters. Another texture with the plant details was used, but at this step it seems
that it would be better to use the terrain parameters instead of a texture. Both of the
mentioned solutions have the disadvantage that they don’t involve creating separate
special biomes which may be desirable in some games or visualizations. On the other
hand they provide a great addition for plants placement used locally in already created
biomes. The challenge in procedural approaches is to place the objects in the way that
they fit the ground and environment well. Objects can be put on the ground by mixing
the ground textures with the object textures. However, it might not be suited for all
kind of objects due to the primitive merging with the ground using simple gradient.

Recently a new method (unfortunately the original paper describing this method
[Liu, 11] is written in Chinese) of an infinite terrain generation has been applied in the
unmanned aerial vehicle real-time flight simulation and training system [Wei, 13]. In
this new method various ecological phenomena of different altitude zones can be
simulated in the rendering process. For example in the mentioned plane simulator
such effects as rain, snow, and explosions were generated, and furthermore, realistic
sound effects were provided of different frequencies adequate for the engine speeds.

And finally a very recent solution [Parberry, 14] proposes to generate geotypical
infinite terrain based on elevation statistics acquired from widely available sources
such as the United States Geographical Service. To generate procedural terrain that
shares height characteristics with real terrain the Perlin noise method [Perlin, 02] with
elevation data has been applied.

The Perlin noise method can be executed using the parallel algorithm which
combined the characteristics of the original algorithm with parallel processing
[Li, 15]. The Authors have shown that such a parallel approach is very efficient for
terrains of large sizes satisfying requirements for generating massive terrains.

Whereas in this paper, our method of the parameterized and dynamic generation
of an infinite terrain with various biomes in a virtual 3D space will be analyzed. The
method uses the extended Voronoi diagram as well as the Gaussian blur and takes
into account the latitude. The goal of the tests was to confirm that the proposed
extended version of the Voronoi diagram can be applied in a real-time process.

3 Voronoi Diagram

Voronoi diagrams are used to divide the virtual 3D space into regions called simply
Voronoi cells. Each of these cells contains a point called seed, site, or generator. To
create cell distances are calculated using one of the distance functions. The cell is
created in such a way that each point in the cell has the lowest distance to the seed
than to any other.

840 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

Let T be a non-empty set from Euclidean space with a distance function d. Let P
be a set of all seeds and x, y are the indices of the seeds. The equation (1) produces a
set of points creating the Voronoi cell for the given x-seed

 xyPtdPtdTtT yxx ,,,| (1)

There are many distance functions like Karlsruhe metric, Chebyshev distance,
Minkowski distance, etc. which can be applied to create the Voronoi diagram. The
most frequently used is the Euclidean distance function. It determines a straight line
drawn on the halfway of the segment connecting two neighbour points and
perpendicular to this segment. The straight line runs until crossing another straight
line created from another two neighbouring points.

The pseudocode of the Algorithm 1 produces the original Voronoi diagram. For
the given position (in our case we use 2D space) we search for the cell for which the
seed point is the closest to the given position. Therefore, we have to iterate over the
neighbouring seeds to calculate the distances. The seeds are in random positions,
although they are determined, which basically means that for the same given position
the algorithm uses the same seed positions. The function valueNoise2D generates
random and determined value for the given parameters in the range of [-1,1], whereas
calculateDistance is the function for calculating the distance. The generated2DNoise
is a function returning final noise value in the range of [0,1]. Using the Euclidean
distance it is not necessary to use the original equation as we only need to compare
distances, thus we can optimize it using the Squared Euclidean distance which doesn't
apply the final square root to the result.

Algorithm 1: Voronoi diagram algorithm

input data: x, y
RANGE = 2
for j := ⌊ y ⌋ – RANGE to ⌊ y ⌋ + RANGE do

 for i := ⌊ x ⌋ – RANGE to ⌊ x ⌋ + RANGE do
 xSeedPos = xCur + valueNoise2D(xCur, yCur, SEED_FOR_RAND)
 ySeedPos = yCur + valueNoise2D(xCur, yCur, SEED_FOR_RAND + 1)
 xDist = xSeedPos – x
 yDist = ySeedPos – y
 distance = calculateDistance(xDist, yDist)
 if distance < minimumDistance then
 minimumDistance = distance
 xCandidate = xSeedPos
 yCandidate = ySeedPos
 end if
 end for
end for

return generated2DNoise(⌊ xCandidate ⌋ , ⌊ yCandidate ⌋)

Among numerous applications of the Voronoi diagram there are such as

applications in mining for estimating the reserves of minerals, in climatology for
calculating the rainfall for an area as well as in ecology, architecture, or even machine

841Choros K., Topolski J.: Parameterized and Dynamic Generation ...

learning. The practical applications of the Voronoi diagram are described for example
in [Okabe, 09]. In our method [Choroś, 15] of infinite terrain generation the Voronoi
diagram is used to simulate spreading area types over the landscape.

There are few algorithms for producing the Voronoi diagram like Fortune’s
algorithm [Berg, 08], Lloyd’s algorithm (this one produces evenly-spaced cells, that’s
why it is sometimes called a relaxation), or algorithms producing the Delanuay
triangulation like Bowyer-Watson algorithm or S-hull [Sinclair, 14]. Due to the
duality between Voronoi diagram and Delanuay triangulation it is possible to
construct the diagram from the triangulation in linear time. Because we need to
control the diagram in a specific way to apply some parameters for virtual terrain with
various biomes an extended version of the Voronoi diagram has been proposed
[Choroś, 15]. In the next section we will recall only the main features of this extended
version of the Voronoi diagram. Then the parameterization of dynamic generation of
an infinite virtual terrain with various biomes using the extended Voronoi diagram
and the results of extensive tests of quality and efficiency will be presented.

4 Infinite Terrain Generation

In the proposed approach and analyzed in this paper the CPU is used for terrain
generation. This solution has been chosen because nowadays computer equipment is
very effective, mainly the CPUs installed in computers are sufficiently fast to generate
the adequate data for virtual terrain generation in runtime. Furthermore, the generated
data are intelligently reduced to such extent that they can be continuously sent to the
GPU when traversing the virtual areas [Choroś, 15]. Another reason is that at present
we do not have any mechanism to easily handle different biomes the more that it is
difficult to propose an adequate logic for the GPUs.

It is not easy to maintain the whole mesh at the same level of detail (LOD), so,
the terrain is partitioned into quads of the same size. Then, quads have some
parameters, for example a parameter used in LOD effects or a parameter applied for
removing cracks (T-vertices) on the terrain. This parameter determines the position of
the quad, i.e. it determines whether the quad is on the left, on the right, or in the
corner, etc. It leads to the generation of the grid with modified vertices on edges and
which fit to another quad with different quality level. The Figure 1 presents a matrix
preserving real positions of quads and illustrating how the quads are organized.

Vertices are characterized by three elements: position, normal vector, and weights
of areas. The weights of areas are stored in an array containing values determining the
proportions of every type of area in the vertex. It is a kind of transition between such
areas as a desert, a grassy area, or rocky area. For example at some point the weight
of a sandy area is 80% and a grass area has the weight equal to 20%, so it means that
this area is much more similar to a desert than to a grassland. Moreover, vertices
heights are also used to calculate a maximum and minimum vertex height and then to
create a cube used for the frustum culling. All these data are stored in a file containing
whole terrain ensuring the opportunity to load the generated quads from a file in
runtime instead of generating them once more.

The generation of an infinite terrain does not demand the same highest quality of
every part of the terrain. The layers applied in this method increase a flexibility and
possibility to investigate the best configuration for quality and level number. The set

842 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

L of layers is defined as L={A, B, C, ...}, where A, B, C, ... ϵ Z and the number
correlates to the number of layers for the given quality. It means that the A is number
of layers for the highest quality level, B is the number of layers for medium quality
level, etc.

Figure 1: Terrain quads organization for five layers L={2,2,1}

At a given moment of the generation process we are in the certain quad of the
terrain, seen as a central quad. When the position of camera changes the quads visible
around should be updated and their quality should also be changed. To reduce the
frequency of these updates and in consequence to reduce the amount of data sent to
the GPU the quads will be updated when we move to another quad. Crossing a quad
at the top edge demands loading new quads in the first row of the matrix but also
freeing memory from the quads at the last row. We should also update the quality and
position parameters of other quads in the matrix. A generic solution is possible to be
used to update the quads with such variability using the L array because of the
similarity of the squares.

The algorithm of determining position parameters marks the quads that are not on
the edges with another quality level, so they should not be modified. This algorithm
sequentially produces an array with quad positions for every layer.

Such an array enables us to use the outward spiral method [Wolf, 01] for iterating
over the quad matrix to assign the parameters to its corresponding quads. The outward
spiral method has already been used to render quads. The spiral method also ensures a
front-to-back rendering [Fernando, 04]. In the front-to-back rendering the objects
closer to the camera are first rendered. It results in overlaying of other objects, in
reducing calls to the pixel shader, and in saving rendering time. Therefore, in our
method the closest quads are rendered earlier and further quads later as well.

5 Parameterization of Virtual Terrain Generation

In the proposed approach the Voronoi cells are identified as biomes. Moreover,
several parameters are introduced such as biome size, speed of latitude change (which
will affect type of areas), and dissolution.

843Choros K., Topolski J.: Parameterized and Dynamic Generation ...

The biome size parameter determines the cell size in the Voronoi diagram.
Although all cells are generated of the same size without any random variations,
however other parameters cause the area size differentiation.

To do it we just need to divide the input data (x and y) in the Algorithm 1 by
some size factor. The larger the factor is, the bigger will be the cell. If cells are small
the border between biomes are more straight, because they are more fragmented. The
borders of biomes are not straight lines in real worlds, but they are some curvatures,
so we should avoid very small cells. Furthermore, cell size has also influence on the
speed of latitude changes. The changes are slower as the cell size grows.

The main problem is to change area type according to the given position and to
propose the procedure for the situation when the last zone of area is reached. There
are two possible solutions – after reaching the last zone we can start once more from
the first zone. In such a case the terrain will be a sequence of zones like tropics-
tundra-arctic zones, then once more tropics-tundra-arctic zones, so after the arctic
there will be tropics. However, such a zone change is not realistic. Much more
adequate for real worlds is the sequence like tropics-tundra-arctic-arctic-tundra-
tropics. Some zones are used twice and in this example an arctic zone would be
generated rather too big. To avoid such big zones a smaller range of latitude should be
specified.

If x is the position value from the axis along the latitude and S is the speed of
latitude change the function (2) can be applied to specify the factor used for changing
biome type according to the given position.

(2)

Before processing the position value by the function (2), we need to prepare the
input position in such a way that it makes the function periodical. The easiest way is
to use modulo x = |x| mod (S • 2). Having such function we can apply it to the
Voronoi algorithm as a step to perform latitude change, where the x is the seed's
horizontal/vertical position. Therefore, the output of the f(x) function will be the
output of the method generating the Voronoi diagram.

The second parameter proposed in the extended Voronoi diagram ensures that as
in the real world arctic and tundra areas are mainly generated on the high latitudes,
whereas tropical and grass area rather in the terrain parts of the lower latitudes.

The third parameter is connected with a dispersion. To ensure the irregular
spreading of biomes high values for the dissolution should be used to eliminate the
straight connectivity line between cells of different types and to produce more diverse
and less predictable world. It significantly improves the final look of a landscape.

Such feature provides more randomness to the map resulting in more interesting
world. This feature is very easy to implement, because it requires only clamping the
f(x) values to the range of [S–d, S+d], where d is the factor of dispersion.

After introducing these parameters we can extend (Algorithm 2) the Voronoi
standard diagram to provide the complete improvements for distributing the biomes.
It does not change anything inside the original algorithm, but only process its final
output further to incorporate mentioned parameters. We can notice that we are in a
very comfortable situation because we don't need to rely on neighbouring values.
Moreover, this approach let us easily provide an additional functionality that is

844 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

turning on or off some of the parameterization processing, so it may be even more
flexible for end users.

Algorithm 2: Extended Voronoi diagram algorithm

 input data: noise – final value generated from original Voronoi algorithm
 input data: yCandidate – variable calculated from previous Voronoi algorithm

 latitude = ⌊ |yCandidate| ⌋ mod (S • 2)

 if latitude <= S then
 latitudeGradientValue = latitude / S;
 else
 latitudeGradientValue = – latitude / S + 2;
 end if

 noise = clamp noise into [latitudeGradientValue – d, latitudeGradientValue + d]
 return clamped noise into [0,1]

The cells generated by the Voronoi algorithm have different shapes and thereby

the terrain becomes more realistic. Each cell is of uniform colour. In our approach
every area type has its specific colour, so the number of colours is equal to the
number of area types. Then the terrain is rendered using the Gouraud interpolation
algorithm. Between two vertices this algorithm produces very sharp edges, so we
need to smooth them.

To create smooth transition between two areas we need to somehow blur them. It
is possible to achieve such effect using well known method – Gaussian blur, although
it reduces a lot of other details. The method uses a concept of weighting neighbouring
pixels, which basically boils down to generating a matrix of weights (called a
convolution matrix), which is used for the currently processed pixel and its
neighbours. Dimension of the matrix is a kernel size, which results in strengthening
blur as the kernel size increases. Every pixel is given a weight which means how
much value of the pixel is taken into the final pixel. Such weights are generated using
the Gaussian function [Nixon, 08]. Pixels closer to the centre have higher weight
value making their values more important for the final pixel colour. Theoretically, the
function never produces zero value for any given x, y, but practically after certain
kernel size the values are getting so small that can be considered as zero, hence we
can ignore higher kernel sizes.

The Gaussian blur has been used in our approach because it is very suitable way
in the case of connectivity problem. However, every blur which produces smooth
results might be used.

Our algorithm produces the results in 3D array forms. A weight is a number
representing an area type. To ensure during the rendering process the proper blur on
the edges of the visible parts of the terrain, that is to ensure for example the transition
within 10 vertices, the Voronoi map should be extended by 20, i.e. 10 vertices from
two sides, in height and width.

For different area types we can use different 2D generators like improved Perlin
noise [Perlin 02], simplex noise, or other noise-based generators (as well as not noise-
based generators). Because the connection on the edges is realized by the Gaussian

845Choros K., Topolski J.: Parameterized and Dynamic Generation ...

blur at earlier stage they even don't have to fit on the edges. Furthermore, if the terrain
geometry is diverse with different ecosystems the mesh is usually precalculated
before rendering, but we can generate such terrain geometry on-the-fly without
precalculating anything before rendering.

The last remark concerns the problem of texturing. Weights enable us to process
different textures independently by having an array of textures. Unfortunately, when
rendering a vertex on a border (on a transition between different areas) as many
textures as there are weights greater than 0 should be sampled and the results should
be combined to produce smooth transition. The 2D texture array is used as it is a
convenient way to access appropriate texture when performing height-based
texturing. Every texture can have its own chain of mipmaps. By using texture array it
is easy to determine what texture should be sampled on a given vertex.

Many landscapes also consist of hand-made objects to make them closer to the
reality. Sometimes it’s because they simply can’t be generated algorithmically or need
to have some special look, particular for storyline (we are aiming objects that exist in
the nature like flora or fauna). Such objects must be put on appropriate places, but we
definitely don’t want to spread them manually – in fact we can’t do that, because the
terrain is infinite.

Fortunately, in our approach with weighted vertices we can simply generate a
random position and see what the weights are for the vertex on that position, because
the weights tell us everything about biome type, thus we can choose the most suitable
object. Moreover, every vertex contains height, so we can take it into account when
selecting the object. We don’t have information about slope though, so we have to
access neighbouring vertices to calculate it. This may be a bit uncomfortable when we
generated vertex position on a quad edge, because we have to jump between different
quads. Additionally, it may get a bit trickier if the quad is on the edge of the generated
map, because we don’t have the information about further quads yet, so we prefer to
avoid generating the objects on the edges of the last layer, but just generate the
objects there when we are approaching this place.

6 Tests and Results

Due to this new approach a landscape with various biomes can be generated and
moreover these biomes blend smoothly between each other. Also another area type
can be added however such a procedure demands the implementation of a specific
interface for introducing area latitude and the height for a given position of a vertex.
Then the pixel shader should be modified to include a new area. To alleviate this
inconvenience it is suggested to use Hammes technique [Hammes, 01] for texturing.
Next this new implemented object can be added to the engine and then the engine is
able to spread the areas with given parameters.

6.1 Testing Environment and Methods

The tests have been performed in the computer environment with the following
parameters:

 motherboard: Asus P5K SE,
 CPU: Intel®CoreTM2 Quad CPU Q6060 2.40GHz,

846 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

 GPU: NVIDIA GeForce 8800 GT 512MB (driver version 340.52),
 RAM: GeIL CL5-5-5 DDR2-800 (400MHz),
 OS: Windows 8.1 64bit.
Our scene was set up using 17 layers covering around 4.5 square kilometres of

visible terrain. On the edge of the last 17th layer we have 33 quads of the size 65 x 65.
We assumed 1 meter distance between vertices in highest quality. Taking into account
that consecutive welded sequentially quads have common vertices, the area size was
calculated as follows: (33 • 65 – 32)² = 4,464,769 m² (about 4.5 km²). The layers that
have been used were L={2, 1, 2, 4, 8} and we placed camera 100 meters above terrain
to include all of the added biomes. Our view included 234 (viewing frustum has been
analyzed by special additional procedure) of 1089 quads with the following numbers
of layers for given quality {4, 6, 16, 48, 160}. The biomes were placed randomly but
determined, that means we had the same biomes placement during all tests.
Depending on test type we were changing the numbers of layers and biomes to
provide complete overview of performance impact. Gaussian kernel size was set to 35
– this value seems to have pretty good quality/speed ratio, although the value does not
matter in the tests of frame times because it impacts only terrain generation time.

To calculate efficiency we used standard mechanism for calculating time needed
to draw a frame (FT) implemented in our engine. We have resigned from calculating
frames per second (FPS) as it provides non-linear and unreliable results [Mali, 11].
The tests included different aspects like idling, moving, or turning around. To obtain
the results we ran our engine (using 1024x768 resolution) for some time to perform
the actions and to take the frame times in order to prepare graphs.

In order to measure memory usage we used build-in software from Windows 8.1
called Resource Monitor. Provided memory results were taken from Private (KB)
column. Results were generated by simply running the program with different values
for numbers of layers and biomes. They are not affected neither by camera nor biome
placement nor quad qualities.

6.2 Quality

The method with applying latitude into terrain type may produce more realistic
results. The visitors may not observe any immediate change of biome types when
moving over terrain. Such terrain feature doesn't distract them and makes the terrain
look good from the flying perspective. Figure 2a presents the terrain with three
biomes without latitude change whereas terrain on Figure 2b has been generated
taking into account latitude. The inclusion of a latitude parameter ensures that on the
north we have arctic biomes (white) while tropical biomes (sandy) on the south.
Taking into account latitude results in a much more realistic view of generated
terrains.

This significant quality improvement observed on Figure 2b is the main and
crucial advantage of the approach based on the extended Voronoi diagrams. Instead of
randomly dispersed parts of the landscape we have generated the terrain much more
realistic, consistent with intuitions and observations of reality.

847Choros K., Topolski J.: Parameterized and Dynamic Generation ...

a) b)

Figure 2: Quality improvement of a rendered landscape. Every biome has another
shape generator and set of textures: a) three biomes without latitude change b) three
biomes with latitude change

6.3 Flexibility

To add another biome we need to implement an interface containing methods for
returning biome placement (latitude) and height for given position of a vertex. In the
implementation used to generate a given biome the height generation is completely
independent of other biomes.

After that we have to modify our pixel shader (and vertex shader along with input
layout to pass the new weight to pixel shader) to include the new biome. We have to
include proper texture and weight from newly added biome into texturing mechanism.
Finally, we have to add that implemented object to the engine via one method and the
engine is capable of doing all of the work by itself to spread the biomes with given
parameters.

The procedure of including a new biome can be improved even more. When there
are many biomes and we want to move the biomes slightly, it would force us to go
through the classes and fix the latitudes. A better solution would be to define the max
latitude when adding the biomes to the terrain description.

6.4 Efficiency

The solution proposed in this method ensures that the geometry of every frame is not
recomputed by the GPU. Nevertheless, it may be a risk that the FPS characteristic will
significantly diminished in the possible situation when many biomes are visible at the
same time and a lot of textures is sampled. It may especially happen when in blurring
process a big kernel size is used producing many small weights and sampling several
textures for most of pixels. For that reason the pixel shader should include bias for
biomes weights because then the kernel size of Gaussian blur has not so great
influence in the cases of many visible biomes. In the first tests of the efficiency of this
approach the performance times have been measured of the generation of one quad of
the size 65x65 including the following actions: creating the Voronoi map with area
types, performing the Gaussian blur, preparing structure with data for a quad, saving
quad to a file, and finally sending the quad data to the GPU. Every test was repeated
ten times to finally get averaged value. The generation of one quad takes 19.527

848 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

milliseconds including 4.456 ms for creating Voronoi map with area types, 9.065 ms
for performing Gaussian blur for smoothing areas borders (kernel size = 20), 2.608 ms
for preparing structure with data for a quad (assumed height to be 0 to make it
independent from noise generator), 3.044 ms for saving quad to a file, and finally
0.354 ms sending quad data to GPU.

These results show that in the case of a terrain with 17 layers and using the Gauss
kernel size equal to 20 all 1089 quads are generated in about 21 seconds. In effect this
time is much shorter because when moving over the terrain we need to generate only
quads at one edge or two – if moving diagonally. Therefore, only 33 (or 65) quads
should be generated. We can move over the terrain very quickly because it takes only
0.644 sec (or 1.269 sec). The second observation is that half of the time is needed to
perform the Gaussian blur, so the implementation of blurring has a great influence on
the total performance time. The last observation is that the quads already generated
are saved into a file, so coming back to already visited parts of the terrain is limited to
the loading of the quad in only around 1.156 milliseconds.

The graphics on Figures 3–6 present frame times of chosen actions. For each
action we gathered results from first 1000 frames and then created groups consisting
of 5 values for which we calculated an average, so overall we have got 200 points.
The terrain included 4 different biomes.

Figure 3 shows results from idling, that is standing still and looking at the terrain.
The average value for this action was 8.542 ms.

Figure 3: Frame times when idling

Figure 4 shows the results from moving straight on terrain towards one direction.
The average value for this action was 6.740 ms. Average value is smaller than when
idling, because when moving we are getting closer and closer to the next quad which
hides little by little the quads with the highest quality until we reach the next quad.
Frame times are getting smaller and at some points it jumps increasing the frame time
when we moved into adjacent quad.

Figure 4: Frame times when moving

849Choros K., Topolski J.: Parameterized and Dynamic Generation ...

Figure 5 represents results from turning around very quickly. Our engine handles
quick turnarounds without displaying any incomplete geometry. The part of the graph
is with bigger values because our generated testing scene contained a hill next to the
camera, which exposed more pixels to draw. The average value was 8.325 ms.

Figure 5: Frame times when rotating quickly

Figure 6 represents results when performing moving together with rotating. The
results may be a bit sharper than on previous graphs, because we are using lazy
approach to send data to the GPU. It means that when we moved to adjacent quad
moving backwards, the generated quads are not sent immediately to GPU, but it is
done when a quad gets into view of camera. The average value of this test was 8.626
ms.

Figure 6: Frame times when moving together with rotating quickly

All functions have one characteristic property – they are similar to periodical
functions (more or less), so that means the frame rate is stable and does not produce
surprising freezing. However, the values range between 3.41 ms and 14.876 ms at
some peaks. This is due to the mapping main thread on the GPU to be able to send
data from the CPU to the GPU (when generating new quads), this is why we have to
reduce the data as much as possible.

Figure 7: Frame times for a given number of biomes

850 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

Using a lot of biomes incorporates sampling a lot of textures, especially when
many biomes are adjacent to each other. For example in the case of a square with four
biomes of the same size inside filling up the whole space, the pixel will need to
sample textures from all biomes in the centre of the outer square (where all of the
inner squares are connected). The function on Figure 7 presents averaged frame time
according to the number of biomes visible at once. From the graph we can notice that
adding new biomes increases frame time almost linearly – about 2 ms. Although this
is also affected by the Gaussian kernel size, therefore on Figure 8 we present frame
times using different sizes for kernel, we took averaged value of 5,000 frames during
idling. We repeated the test with different cell sizes – 100 and 40.

Figure 8: Frame times for different kernel sizes

It may be easily noticed that at some points the performance penalty starts to
soften. It is due to the fact that many pixels have already sampled most of the
textures, so in result we can see smoother terrain with less frame time impact. We can
also see that the frame times are getting converged further we go.

Then we have tested the spiral rendering method. We used terrain generated with
many hills that were hiding some parts of terrain and we were rotating the camera.
The results were compared with using simple iterating over the quad matrix (from top
left to right bottom) and presented on Figure 9. On that Figure we can clearly see that
frame times from about 15 to 50 and from 155 to 200 are much higher for non-spiral
method. This is the situation that some parts of terrain were hidden behind hills, but
were still rendered completely. The inconvenience here is that we have to check all
quads whether they are visible on the screen.

Figure 9: Frame times for rotating action for cases when spiral order rendering is
turned on and on

851Choros K., Topolski J.: Parameterized and Dynamic Generation ...

Regarding to the quadtree method it is able to eliminate the quads behind us
almost without any cost, but it has to check more "virtual" quads when the real quad
is in view. This is because the quadtree approach packs the smaller quads into bigger
ones, so before it determines whether the quad is visible it has to check whether those
bigger ones are visible too.

Unfortunately, as it was already observed this method requires a lot of memory.
However, we may discontinue to generate next new layers at around 500 MB memory
usage and the generated terrain will be large enough for most cases. The graph on
Figure 10 [Choroś, 15] shows memory usage depending on the number of layers.

Figure 10: Memory usage

7 Conclusions and Future Work

The method presented and analyzed in the paper provides an intelligent solution for
generating an infinite terrain with various biomes. It ensures a smart way for
determining a biome landscape shape and ground texturing as well as exposed
information necessary for spreading flora and fauna very easily. We used the CPU for
generating terrain final data as the current CPUs are fast enough to generate it in
runtime particularly while reducing the data as much that it is small enough to send it
to the GPU when crossing terrain quads.

Firstly, we described a method for storing, updating, and in general managing
terrain data. We used pretty common approach which is based on patched terrain
concept, that is terrain mesh is divided into smaller parts individually rendered. Then,
we described an algorithm for updating quad parameters for a terrain with a variable
number of layers. Finally, we have applied an uncommon way for rendering order by
using spiral order rendering method which gave us front-to-back rendering without
any additional quad parameters.

The concept of generating borders and positions for the biomes is described in the
paper. A position, in our assumptions, had to involve parameters like latitude,
dispersion, or biome size. The method with applying latitude into terrain type
produces more realistic results as it has been demonstrated on Figure 2. This is the
main advantage of the proposed method. It has been achieved using the extended
Voronoi diagram algorithm with extra parameterization. The method for generating
landscape shape for a biome can smoothly blend between other biomes, even if they
use different shape generators, and does not fit each other. It has been solved by using
the Gaussian blur to smooth transitions between biomes. Moreover, we can use the

852 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

kernel size of the Gaussian algorithm as an extra parameter to specify the strength of a
smoothness. Lastly, we presented and discussed an approach for texturing the biomes.
Our approach also easily gives us information to perform the placement of biome-
specific stuff like flora or fauna. To be able to test the performance of our engine a
special tool was created that shows us our generated terrain in different modes like
simple heightmap or normal map.

Combining all the mentioned functionalities gives us a great flexibility to control
the look of a terrain and an efficiency for handling all of the terrain data. Firstly,
handling terrain by parts gives us the possibility to memorize them in a file and after
all this allows us to deform terrain in runtime. Furthermore, we are able to generate
the parts of terrain independently, therefore we may use separate thread for
computations in order to avoid freezing when moving over terrain. This is also a very
scalable method because it is pretty simple to implement the algorithm for updating
parameters of the parts with a variable number of layers, thus our terrain may exists in
different sizes. Secondly, by having an information about the biome in every vertex,
we are actually able to define biome-specific stuff in an every place of the terrain or
use it as an extra information with more complex algorithms. Moreover, to achieve
the smoothly blended biomes we used the standard Gaussian blur algorithm for
blurring which is decoupled as one of the steps necessary for preparing the terrain,
therefore we may replace it with a different one to speed up the process (by dropping
some quality) or to obtain different visual results. In our approach we also used a non-
invasive way to extend the Voronoi diagram (which is just getting data from original
algorithm and process it further), so the extended algorithm still contains the basic
part which may be modified or extended without any deep knowledge of what we
added. Biomes are also affected by other parameters like the distance from ocean, so
this would be a great next step to incorporate such feature into our approach.

The proposed engine also contains few inconveniences. The main problem is that
although including a new biome is not difficult we have to modify pixel shader in
order to include a newly added biome. Another uncomfortable situation is that
adaptive mesh cannot be applied for the terrain geometry because the engine is
texturing terrain according to vertex information and on flat areas adaptive algorithm
may produce only few vertices. Another inconvenience is the important memory
usage.

However, the performed tests showed that this approach meets our criteria and it
is efficient enough for real time rendering, although demands more memory. We
measured time of generating quad of terrain, basic actions that are generally available
to the users as well as used techniques like spiral order rendering or using different
number of biomes.

References

[Akenine-Moller, 02] Akenine-Moller, T., Haines, E.: Real-Time Rendering, 2nd ed., AK
Peters/CRC Press 2002.

[Berg, 08] de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry:
Algorithms and Applications, ed., Chapter 7, Springer Berlin Heidelberg 2008.

853Choros K., Topolski J.: Parameterized and Dynamic Generation ...

[Cassol, 11] Cassol, V.J., Marson, F.P., Vendramini, M., Paravisi, M., Bicho, A.L., Jung, C.R.,
Musse, S.R.: Simulation of autonomous agents using terrain reasoning. In Proc. of the Twelfth
IASTED International Conference on Computer Graphics and Imaging (CGIM 2011),
IASTED/ACTA Press 2011, 101–108.

[Choroś, 08] Choroś, K., Kaczyński, K.: Time and quality of 3D rendering process using
programming code optimisation techniques, International Journal of Intelligent Information and
Database Systems 2008, 2(3), 309–319.

[Choroś, 15] Choroś, K., Topolski, J.: A method of the dynamic generation of an infinite terrain
in a virtual 3D space, In Proc. of the 7th Asian Conference on Intelligent Information and
Database Systems, Part II, LNAI 9012, Springer International Publishing, 377–387.

[Cozzi, 14] Cozzi, P., Ring, K.: 3D Engine Design for Virtual Globes, CRC Press 2011.

[Deussen, 98] Deussen, O., Hanrahan, P., Lintermann, B., Pharr, M., Prusinkiewicz, P., Mech,
R.:. Realistic modeling and rendering of plant ecosystems. In Proc. of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, ACM 1998, 275–286.

[Dollins, 02] Dollins, S.C.: Modelling for the Plausible Emulation of Large Worlds, Ph.D.
thesis, Brown University 2002, http://cs.brown.edu/~scd/world/dollins-thesis.pdf

[Fernando, 04] Fernando, R., Haines, E., Sweeney, T.: GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics. Addison-Wesley Professional 2004.

[Greuter, 03] Greuter, S., Parker, J., Stewart, N., Leach, G.: Real-time procedural generation of
‘pseudo infinite’ cities. In Proc. of the 1st International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia, ACM 2003, 87–94, 295.

[Hammes, 01] Hammes, J.: Modeling of ecosystems as a data source for real-time terrain
rendering, In: Digital Earth Moving, LNCS 2181, Springer Berlin Heidelberg 2001, 98–111.

[Hendrikx, 13] Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content
generation for games: a survey, ACM Transactions on Multimedia Computing,
Communications, and Applications 2013, 9(1), 1–22.

[Kopácsi, 13] Kopácsi, S., Kovács, G. L., Nacsa, J.: Some aspects of dynamic 3D
representation and control of industrial processes via the Internet, Computers in Industry 2013,
64(9), 1282–1289.

[Li, 15] Li, H., Tuo, X., Liu, Y., Jiang, X.: A parallel algorithm using Perlin noise superposition
method for terrain generation based on CUDA architecture. In Proc. of the International
Conference on Materials Engineering and Information Technology Applications (MEITA),
Atlantis Press 2015, 967–974.

[Lin, 09] Lin, J.C., Wan, W.G., Cui, B., Ding, H.: An algorithm for real-time rendering of very
large-scale terrain. Computer Simulation 2009, 11, 059.

[Liu, 11] Liu, C., Fan, L.: On a method of infinite terrain generation in XNA. Journal of
Shenyang Aerospace University 2011, 28(2), 12–15 (in Chinese).

[Livny, 09] Livny, Y., Kogan, Z., El-Sana, J.: Seamless patches for GPU-based terrain
rendering, The Visual Computer 2009, 25(3), 197–208.

[Losasso. 04] Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested
regular grids, ACM Transactions on Graphics 2004, 23(3), 769–776.

[Luna, 06] Luna, F.D.: Introduction to 3D Game Programming with DirectX 9.0c: A Shader
Approach. Wordware Publishing, Inc. 2006, Chapters 17–18: Terrain Rendering.

854 Choros K., Topolski J.: Parameterized and Dynamic Generation ...

[Mali, 11] Mali GPU Application Optimization Guide, ARM 2011, Section 3.2.2.

[Mat, 09] Mat, R.C., Shariff, A.R.M., Mahmud, A.R.: Online 3D terrain visualization: a
comparison of three different GIS software. In Proc. of the International Conference on
Information Management and Engineering ICIME'09, IEEE 2009, 483–487.

[Minecraft, 14] Minecraft Blueprints: Step by Step Guide for Building Houses & Other
Structures, Minecraft Books 2014.

[Nixon, 08] Nixon, M.: Feature Extraction & Image Processing. Elsevier Academic Press 2008.

[Okabe, 09] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, Vol. 501. John Wiley & Sons, New York 2009.

[Parberry, 14] Parberry, I.: Designer worlds: procedural generation of infinite terrain from real-
world elevation data. Journal of Computer Graphics Techniques 2014, 3(1), 74–85.

[Perlin, 02] Perlin, K.: Improving noise. ACM Transactions on Graphics 2002, 21(3), 681–682.

[Raffe, 12] Raffe, W.L., Zambetta, F., Li, X.: A survey of procedural terrain generation
techniques using evolutionary algorithms, In Proc. of the IEEE Congress on Evolutionary
Computation CEC 2012, 1–8.

[Reed, 10] Reed, A.: Learning XNA 4.0: Game Development for the PC, Xbox 360, and
Windows Phone 7. O'Reilly Media, Inc. 2010.

[Ruzinoor, 12] Ruzinoor, C.M., Shariff, A.R.M., Pradhan, B., Rodzi Ahmad, M., Rahim,
M.S.M.: A review on 3D terrain visualization of GIS data: techniques and software. Geo-spatial
Information Science 2012, 15(2), 105–115.

[Schneider, 06] Schneider, J., Boldte, T., Westermann, R.: Real-time editing, synthesis, and
rendering of infinite landscapes on GPUs, In Proc. of the 11th International Workshop on
Vision, Modeling, and Visualization, IOS Press 2006, 145–152.

[Shiau, 07] Shiau, Y.H., Liang, S.J.: Real-time network virtual military simulation system. In
Proc. of the 11th International Conference on Information Visualization (IV'07), IEEE 2007,
807–812.

[Sinclair, 10] Sinclair, D.: S-hull: a fast sweep-hull routine for Delaunay triangulation 2010,
http://www.s-hull.org (accessed July 31, 2014).

[Smelik, 09] Smelik, R.M., De Kraker, K.J., Tutenel, T., Bidarra, R., Groenewegen, S.A.: A
survey of procedural methods for terrain modelling. In Proc. of the CASA Workshop on 3D
Advanced Media In Gaming And Simulation (3AMIGAS), 2009, 25–34.

[Wei, 13] Wei, W., Dongsheng, L., Chun, L.: Fixed-wing aircraft interactive flight simulation
and training system based on XNA. In Proc. of the International Conference on Virtual Reality
and Visualization (ICVRV), IEEE 2013, 191–198.

[Wolf, 01] Wolf, M.J.P. (ed.): The Medium of the Video Game, University of Texas Press
2001.

[Yannakakis, 15] Yannakakis, G.N., Togelius, J.: A panorama of artificial and computational
intelligence in games. IEEE Transactions on Computational Intelligence and AI in Games
2015, 7(4), 317–335.

855Choros K., Topolski J.: Parameterized and Dynamic Generation ...

