
Improving Performance of the Differential Evolution
Algorithm Using Cyclic Decloning and Changeable

Population Size

Piotr Jędrzejowicz
(Gdynia Maritime University, Gdynia, Poland

pj@am.gdynia.pl)

Aleksander Skakovski
(Gdynia Maritime University, Gdynia, Poland

askakow@am.gdynia.pl)

Abstract: Differential evolution (DE) is a stochastic global optimization method that has been
under continuous development during the past two decades. It has been recognized that
preserving the diversification of population can significantly improve the performance of DE.
Although, several results and approaches to population diversification have been proposed, it
seems that this issue still has a potential for development. In this paper we have studied
experimentally the possibility of increasing the performance of DE. Our investigation aims at
identifying how the performance of DE depends on such factors as population diversity, size
and number of fitness function evaluations carried out by DE to yield a solution. In our
experiments we diversified the population in an intensive manner using the proposed decloning
procedure carried out in cycles, and also through increasing the population size. The choice of
how to preserve the diversification may depend on restrictions imposed on the population size,
response time, and the quality of solutions that should be met by a specific implementation of
the algorithm. The obtained results allowed us to propose a performance improvement policy
that might noteworthy improve both the efficacy and response time of the algorithm. The
discrete-continuous scheduling with continuous resource discretisation was used as the test
problem.

Keywords: performance improvement, differential evolution, population diversification,
decloning
Categories: D.1, G.1.6, I.6, I.2.8, J.0

1 Introduction

During search performed by the evolutionary algorithm (EA), it often comes to the
point when individuals in the population reach a configuration such that evolutionary
operators no longer produce offspring that can outperform their parents [Fogel, 94].
This phenomenon is known as convergence of EAs. The natural consequence of
convergence is that in the population grows the number of similar or identical
individuals. An important concern and shortcoming of EAs is premature convergence,
i.e. convergence to a local optima. EA operating on the population with low diversity
sticks in local optima, which impedes searching for global ones. Thus, ensuring high
diversity of the population is viewed by researchers as one of the essential factors that
affect EAs performance. To prevent getting trapped in local optimum, several

Journal of Universal Computer Science, vol. 22, no. 6 (2016), 874-893
submitted: 30/11/15, accepted: 28/5/16, appeared: 1/6/16 © J.UCS

approaches have been proposed in the literature. Short review of these approaches can
be found in [Section 2].

In this paper we study a special case of the evolutionary algorithm, which is
differential evolution algorithm. Differential evolution is a stochastic direct search
and global optimization algorithm proposed in [Storn, 97].

For our experimental research on preserving population diversity, we designed a
decloning procedure which is supposed to cyclically replace genetically identical
individuals (clones) with randomly generated ones, the detailed description of the
procedure is given in [Section 5.2].

The goal of our research was to investigate the extent to which performance of
the considered differential evolution algorithm depends on such parameters as the
population diversification rate, the size of the population, and the number of fitness
function evaluations carried out by the algorithm to yield a solution to the problem.

The goal of the experiments was to determine the most advantageous, in terms of
the algorithm’s performance, values of mentioned parameters. The results obtained
through our experiments allow us to state, that the main contribution of our work is
the increase the range of tools and methods for preserving diversity of the population
undergoing DE, as well as proposing the performance improvement policy which
takes advantage of experimentally determined relationships between the performance
of DE and considered parameters. We also propose a decloning procedure, that was
used in the experiments for cyclic population diversification. The procedure extends
packing technique proposed in [Kureichick, 96], ROG technique proposed in
[Rocha, 99], and ( + 1) EA with genotype diversity proposed in [Friedrich, 09]. In
the notation ( + ),  stands for the size of the population and  - for the number of
offspring generated at a time from parents.

As a test problem, we used the discrete-continuous scheduling problem with
continuous resource discretisation (DCSPwCRD), the brief definition of which is
given in [Section 3], whereas detailed description might be found in [Różycki, 00]
and [Jędrzejowicz, 14]. In order to conduct our tests, we adapted the differential
evolution algorithm proposed in [Damak et al. 09] for solving the DCSPwCRD. In the
paper, we denote this algorithm as DEA. A brief description of the DEA is given in
[Section 4] and the extended description might be found in [Jędrzejowicz, 14]. The
description of the policy for the DE’s performance improvement, assumptions of the
experiment, as well as discussion on the results and illustrating them charts are given
in [Section 5]. [Section 6] includes conclusions and idea for the future research.

2 Research on Preventing Premature Convergence in
Evolutionary and Genetic Algorithms

In the literature there have been proposed numerous approaches, methods, techniques
and mechanisms to cope with the issue of premature convergence in evolutionary and
genetic algorithms. A comparative review of approaches to prevent premature
convergence in GA is given in [Pandey, 14] and an overview of methods maintaining
diversity in genetic algorithms in [Gupta, 12]. In addition to the empirical work, there
has also been conducted theoretical research on population diversification.

875Jedrzejowicz P., Skakovski A.: Improving Performance ...

In [Friedrich, 09] it was investigated theoretically and empirically the global
exploration capabilities of mutation-based algorithms for sublinear population sizes.
Using a simple bimodal test function and rigorous runtime analyses, the authors
compared well-known genotype and fitness diversity preserving mechanisms,
deterministic crowding and fitness sharing with a plain ( + 1) EA without
diversification. It was shown that diversification is necessary for global exploration,
but not all mechanisms succeed to the same extent. According to the authors,
population is nearly useless for the algorithms with genotype and fitness diversity, as
it was experienced the same performance as for simple hill climbers like local search
or the (1 + 1) EA. On the other hand, algorithms with fitness sharing and deterministic
crowding performed better than with genotype and fitness diversity due to their higher
success probabilities. Their experimental results indicate a similar behavior of the
diversity preserving mechanisms also for larger populations.

In [Oliveto, 15] it was conducted the theoretical analysis and empirical study on
the ( + 1) EA operating on the Balance Function. It follows from the experiments
that linear population sizes are sufficient to make both the ( + 1) EA without
diversity and equipped with genotype diversity efficient for Balance function. Also
there appeared to be a sharp threshold at population size cn for some c > 0 at which
the expected performance of these two algorithms turns from exponential to
polynomial. On the other hand, the ( + 1) EA with fitness diversity appears to be
effective for population sizes considerably smaller than the sublinear ones required
for their proof to work. The authors stated also, that for larger population sizes the
crowding mechanism becomes detrimental.

It follows from the last two cited works that the effectiveness of EA, depends not
only on the diversification mechanisms used, but also on the size of the population
evolved. It seems that the authors of these two works differently conclude on the
effectiveness of genotype, fitness, and deterministic crowding mechanisms. For
example, according to [Friedrich, 09] the algorithms without diversity or with
genotype or fitness diversity preserving mechanisms were considered as weak and
performed worse than with deterministic crowding, which is not entirely consistent
with the results obtained in [Oliveto, 15]. Such inconsistency testifies to the fact that
the efficiency of diversification mechanisms still remains an open issue and requires
further theoretical and empirical research.

In [Kureichick, 96] it was proposed a Social Disasters Technique (SDT) where
packing catastrophic operator was used for fitness diversity preserving by replacing
individuals of the same fitness, except for one, with random individuals in the
situations when the level of population diversity dropped to some preset limit. In
[Rocha, 99] it was proposed a Random Offspring Generation (ROG) technique, aimed
at genotype diversity preserving, by which the crossover is carried out only on parents
with different genotypes, otherwise one or two offspring were generated at random.
Although this technique prevents the formation of clone-offspring from clones-
parents, it does not prevent the transition of clones from generation to generation,
since each individual with an old population has the right to go to the next one with
probability proportional to its quality. In [Friedrich, 09] it was proposed ( + 1) EA
with genotype diversity, which was based on (2 + 1) GA, described in [Storch, 04].
This algorithm does not allow an offspring to enter the population, if there already
exists its genetic duplicate.

876 Jedrzejowicz P., Skakovski A.: Improving Performance ...

3 Problem Formulation

The considered DCSPwCRD problem originates from a general Discrete-Continuous
Scheduling Problem (DCSP), first described in [Józefowska, 98]. The DCSP is to find
a sequence of jobs on machines and, simultaneously, a continuous resource allocation
to the jobs, that minimizes given scheduling criterion. In order to simplify the
allocation of a continuous resource to a feasible schedule the idea of continuous
resource discretisation was proposed in [Różycki, 00]. We use the same approach in
the paper. Namely, we assume that the number of possible continuous resource
allocations to a task Ji is Di, i.e. is fixed, and the amount of the continuous resource
for each li = 1, 2, … , Di is known in advance (in the original problem there was
infinite number of the continuous resource allocations to a task and the amount of the
continuous resource to be allocated was not known in advance). Because a different
amount of the continuous resource is allocated to task Ji for each li , li is called a
processing mode of task Ji. Such discretisation of the continuous resource allows to
treat it as a discrete resource and define a problem Z.

We define the problem Z in the same way as in [Różycki, 00]. Namely, let
J = {J1, J2, … , Jn} be a set of nonpreemtable tasks, with no precedence relations and
ready times ri = 0, i = 1, 2, … , n, and P = {P1, P2, … , Pm} be a set of parallel and
identical machines, and there is one additional renewable discrete resource in amount
U = 1 available. A task Ji can be processed in one of the modes li = 1, 2, … , Di (Di –
the number of processing modes of task Ji), for which Ji requires a machine from P
and amount of the additional resource known in advance. The processing mode of Ji
cannot change during the processing. For each task two vectors are defined: a

processing times vector],...,,[21 iD
iiii   , where il

i is the processing time of task Ji

in mode li = 1, 2, … , Di and a vector of additional resource quantities allocated in
each processing mode],...,,[21 iD

iiii uuuu  . The problem is to find processing modes

for tasks from J and their sequence on machines from P such that schedule length
Q = max{Ci}, i = 1, ... , n is minimized.

The formulated problem Z is a particular case of more general Multi-Mode
Resource Constrained Project Scheduling Problem (MMRCPSP), which is known to
be NP-hard [Bartusch, 88].

4 Differential Evolution Algorithm

For the purpose of our research we adapted the differential evolution algorithm for
solving the multi-mode resource-constrained project scheduling problem proposed in
[Damak, 09] for solving the discrete-continuous scheduling problem with continuous
resource discretisation (DCSPwCRD). In this section we give only a general idea of
the DEA for solving DCSPwCRD, and the extended description of the algorithm the
reader might find in [Jędrzejowicz, 14].

The DEA is an evolutionary algorithm that evolves population P1
k of target

vectors Stg in cycles k. In every cycle k, for every target vector Stg in P1
k a trial vector

T in P2
k is created. This way P2

k is filled with trial vectors T. The pseudo code of the
DEA is given below.

877Jedrzejowicz P., Skakovski A.: Improving Performance ...

The DEA:
For every target vector Stg in the current population P

1
k

do:
Create a mutant vector M from three vectors S0, S1, S2
randomly chosen from P1k, using formula:
M = S0 + A*r*(S1 – S2), where A > 0 - is a scale factor,
that controls the evolution rate of the population and
r  [0, 1].
Create a trial vector T in P2k applying crossover
operator to each element of mutant vector M and
corresponding element of target vector Stg according to
the rule:
if the random number r  Cr, Cr  [0, 1]), then the
trial element is inherited from mutant vector M,
otherwise from target vector Stg.

Create a new population P1k + 1 selecting the best vectors
from P1k and P

2
k.

Repeat evolution cycles until the stop criterion is met.
End.

The crossover constant Cr controls in the DEA probability, that trial vector T will
inherit the element either from target vector Stg, or mutant vector M.

5 Computational Experiments

5.1 Parameter Set Up

In our experiments on efficiency improvement, values of the parameters of the DEA
were assumed to be the same as in [Damak, 09], namely the scale factor A which
controls the evolution rate of the population was set to A = 1,5 and values of the
variable rand  [0, 1]. The crossover constants Crp and Crl which control the
probability that the trial individual will receive the actual individual’s tasks or modes
were set Crp = 0,2 and Crl = 0,1, where p and l in the notations Crp and Crl stand for
tasks positions and modes respectively. In our experiments, we considered the
following population sizes: 20, 50, 100, 200, 1000, and the numbers of the fitness
function evaluations necessary for the DEA to yield one solution: 37800, 450000, and
720000. An initial population of feasible individuals in the DEA was generated using
the uniform distribution equal 1/n for the tasks, and 1/D for the task’s modes. Our
assumptions concerning the test problem are as follows. We considered three
combinations of n x m: 10x2, 10x3, and 20x2, where n is the number of tasks and m is
the number of machines, and three levels of the continuous resource discretisation D:
10, 20, 50. This way we considered nine sizes n x m x D of the problem Z: 10x2x10,
10x2x20, 10x2x50, 10x3x10, … , 20x2x50. For each of the sizes, we considered 6
instances of the problem Z, which makes a test set of 54 instances of the problem in
total. This test set of 54 instances was used for testing each parameter configuration
under investigation, and the considered parameters were: the decloning period Td,
population size xP, and the number of fitness function evaluations carried out by the
algorithm to yield a solution to the problem #ev.

878 Jedrzejowicz P., Skakovski A.: Improving Performance ...

All tests were carried out on a PC under 64-bit operating system Windows 7
Enterprise with Intel(R) Core(TM) i5-2300 CPU @ 2.80 GHz 3.00GHz, RAM 4GB
compiled with aid of Borland Turbo Delphi for Win32. When #ev was set to 720000,
mean time required by the DEA to find a solution for the problem sizes 10x2 and
10x3 for all discretisation levels was approximately 2 - 3s and for the problem size
20x2 for all discretisation levels approximately 5 – 6s. The total time taken by the
DEA to process all 54 instances was approximately 206s.

5.2 Decloning Procedure

Our experiments on population diversification we conducted using the decloning
procedure (DP) that was invoked in regular cycles with the duration of the period
determined as the number of fitness function evaluations. The number of calls of the
DP depended on the duration of the decloning period and #ev that were allowed for
the DEA. We assumed, that the DP would remove 100% of identified clones, and
replace them by randomly generated individuals (solutions). In these new solutions,
the order of the tasks and task’s execution modes were determined at random.

The thorough identification of clones in the population might be time consuming
and therefore extend the time needed to execute the algorithm. In order to avoid that,
we designed a simpler and quicker decloning procedure that identifies clones in an
approximate way. We assumed, that a solution is a clone of another solution, if the
following conditions hold:

 The fitness function value of both solutions is the same.
 There exists the same task in both solutions, that is executed in the same

mode and that is placed at the same position, chosen at random from the
second half of the solution’s task list.

 The finish time of the task from the second condition in both solutions is the
same.

If at least one of the conditions is not met, then both solutions are different. While
the establishment of the first condition is obvious, the establishment of the second and
third conditions can be justified by the need to increase the probability of clones
identification. Considering tasks only from the second half of the solution in the
second condition, on the one hand, simplifies the identification process, on the other
hand, used together with the third condition, increases the probability that the
solutions under consideration are clones. It is obvious, that such method does not
ensure identification of all clones present in the population. In our experiments, the
amounts of clones identified in the same population by the Decloning procedure run
multiple times varied within 13% range.

5.3 Experiments on Decloning and Population Size

For the purpose of evaluating the effect of the considered parameters on DEA
performance we introduce the parameter sumCmax, which is the total of Cmax values
obtained for the test set of 54 instances of the problem. Thus, in order to carry out a
single test for a particular parameter configuration and, therefore, to obtain a single
value of sumCmax, the DEA was run 54 times, each time processing one of 54 test
instances. The total value of the obtained 54 schedule lengths created a single value of
sumCmax. To ensure the credibility of results, the tests were always carried out by the

879Jedrzejowicz P., Skakovski A.: Improving Performance ...

DEA with the same seed of the random number generator. Therefore, the only factor
that could cause a change in the results was the value of the parameter that was tested.
In cases, when the DEA had to be run with the randomized seed of random number
generator, for evaluation and comparison purposes we used average of the sumCmax
values (AVG sumCmax) obtained in multiple tests. The need of such aggregated
parameter is justified by the stochastic nature of the DEA, which causes yielding
different results for the same input data when the algorithm is run repeatedly. The use
of AVG sumCmax as a reference value will make our observations and further
conclusions more credible and allow for a reliable comparison of the algorithm’s
performance when run with different parameter settings.

Figure 1: The effect of decloning on sumCmax, xP = 20, #ev = 37800, Td  [20, 37800]

880 Jedrzejowicz P., Skakovski A.: Improving Performance ...

Figure 2: sumCmax yielded by the DEA without and with decloning, xP = 20,
#ev = 37800, Td = 20

An example of such comparison is given in [Fig. 2], where the values of
AVG sumCmax are shown for the cases when the algorithm was run with and without
decloning with the randomized seed of random number generator. In this example,
AVG sumCmax values in both cases were calculated as the average of 200 sumCmax
values obtained in 200 tests. We will discuss the results of our tests using figures
illustrating the influence of decloning and population size on the DEA’s performance.
In our experiment, results generated by DEA are considered to be better, the smaller
are the corresponding values of sumCmax.

5.3.1 Decloning

In order to reveal the influence of decloning on the results obtained by the DEA, we
run the algorithm multiple times, each time processing the test set of 54 instances of
the problem with different rate of decloning. The period of decloning Td was defined
as the number of fitness function evaluations that were carried out between the
successive calls of the Decloning procedure. The largest improvement effect of

881Jedrzejowicz P., Skakovski A.: Improving Performance ...

decloning on the results is observed when it is performed frequently, i.e. when
decloning period Td takes small values, [see Fig. 1, 2, 3, 4, 5, 6]. The curves
corresponding to the DEA with decloning, were built on the points, each of which is a
value of sumCmax obtained for different decloning periods. In order to validate the
effect of decloning we used AVG sumCmax as the reference value, that was determined
for presumably the best decloning period, e.g. [see Fig. 2], in which the curves for the
DEA with and without decloning were obtained for Td = 20. The improvement effect
of decloning on the results yielded by the DEA given in percent is shown in [Fig. 8].
In [Fig. 8], we compare values of AVG sumCmax determined for all considered
population sizes, when the DEA had at its disposal #ev = 37800, #ev = 450000, and
#ev = 720000. It follows from [Fig. 8], that the most significant improvement effect of
decloning on the results is observed when the DEA operates on small populations. For
example, the curve labeled “20d”, which stands for the population size xP = 20 in the
DEA with decloning, shows the greatest improvement effect of decloning among all
considered population sizes. The results yielded by the DEA with decloning and
xP = 20 were on average 5,79% (#ev = 37800), 7,01% (#ev = 450000), and
7,29% (#ev = 720000) better, than the results yielded without decloning.

Figure 3: The effect of decloning on sumCmax, xP = 20, #ev = 720000,
Td  [20, 238200]

882 Jedrzejowicz P., Skakovski A.: Improving Performance ...

Figure 4: The effect of decloning on sumCmax, xP = 50, #ev = 720000,
Td  [50, 249200]

The improvement effect of decloning gradually decreases with the increase of
population size resulting in no improvement at all when the DEA operates on large
population. The above observation can be drawn from comparing curves labeled
“50d”, “100d”, “200d”, and “1000d” in [Fig. 8], where the labels denote the population
sizes in the DEA with decloning. [Fig. 9 and 10] show the improvement effect of
decloning on AVG sumCmax, where values AVG sumCmax of the DEA with decloning
are compared to the values of AVG sumCmax yielded by the DEA without decloning
(letters “nd” in the upper index of the label denote the cases without decloning). It
should be also added, that in all considered cases, except for one, the DEA with
decloning performed better than without decloning. The exception is
xP = 200 (#ev = 37800), where AVG sumCmax of the DEA without decloning were
better by 0,02%. The decloning periods Td, presumably most advantageous for the
DEA’s performance, used in our experiments are given in [Tab. 1].

883Jedrzejowicz P., Skakovski A.: Improving Performance ...

#ev 20d 50d 100d 200d 1000d

37800 20 (1) 50 (1) 100 (1) 17400 (87) 19000 (19)

450000 420 (21) 50 (1) 100 (1) 200 (1) 21000 (21)

720000 440 (22) 3200 (64) 1000 (10) 2400 (120) 51000 (51)

Table 1: Decloning periods Td most advantageous for the DEA’s performance, given
as the number of fitness function evaluations and the number of generations in

parentheses respectively

Figure 5: The effect of decloning on sumCmax, xP = 100, #ev = 720000,
Td  [100, 249200]

884 Jedrzejowicz P., Skakovski A.: Improving Performance ...

5.3.2 Population Size

As it has been already observed, increasing the population size weakens the
improvement effect of the decloning. Nonetheless, population size is the second
important factor contributing to the results improvement. The general observation is
that with the population size growth, the DEA’s results become better. When the
population size was large, e.g. xP = 1000, [see Fig. 7], the results obtained were better
in comparison to the cases with the smaller population sizes, [see Fig. 3, 4, 5, 6]. It
might seem at this point, that the population size is a principal factor affecting the
results improvement, and that there is no need of decloning at all, since it is enough to
increase population size to achieve better results. However, this is not always true. It
turns out, that there are circumstances in which decloning ensures better results than
increasing population size. In order to determine the most beneficial strategy for the
results improvement, the third factor, namely #ev should be taken into consideration.

Figure 6: The effect of decloning on sumCmax, xP = 200, #ev = 720000,
Td  [200, 364200]

885Jedrzejowicz P., Skakovski A.: Improving Performance ...

5.3.3 The Number of Fitness Function Evaluations

Our experiments show, that #ev might also contribute to the algorithm’s performance
improvement. When the DEA without decloning operated on a large population, e.g.
xP = 1000nd, the results were improved over 8% merely by the increase of #ev from
37800 to 720000, [see Fig. 11]. The same figure shows an improvement of about
1,3% for xP = 200nd and no improvement at all for the population sizes
xP  {20nd, 50nd, 100nd}. When the DEA operated with decloning, the improving
effect, caused by the increase of #ev, was observed for all population sizes, [see
Fig. 12]. Although, the greatest improvement effect is observed again for xP = 1000d,
we must remind, that for this population size decloning does not contribute to the
results improvement, as the curves xP = 1000nd and xP = 1000d in [Fig. 9] are identical.

Figure 7: The effect of decloning on sumCmax, xP = 1000, #ev = 720000,
Td  [1000, 250000]

886 Jedrzejowicz P., Skakovski A.: Improving Performance ...

5.4 Performance Improvement Policy

The main goal of our experiments was to find out how to improve the ability of the
DEA to yield better solutions. We tried to achieve this goal by making use of
decloning and determining most advantageous Td, xP, and #ev. As it follows from the
experiment, all three factors, might improve the results, provided that they have been
assigned the most advantageous values. [Tab. 2] below shows in percent relative
difference between the actual AVG sumCmax, for particular #ev and xP, and the best
among all values of AVG sumCmax (obtained for #ev = 720000 and xP = 1000),
provided, that in each considered case, the decloning period Td was assigned the
values from [Tab. 1]. Thus, the relative difference between AVG sumCmax for the case
#ev = 37800, xP = 20 and the best AVG sumCmax is 3,77%. The smallest relative
differences for particular #ev are given in [Tab. 2] in bold font, with the purpose to
indicate values of xP that are most preferrable in terms of increasing the performance
of the DEA. Therefore, in order to achieve better results, xP should be determined
according to the #ev used. It follows from [Tab. 2], that if #ev increases, then most
advantageous values of xP increase as well.

Figure: 8 The improvement of the results due to decloning for different population
sizes xP compared to the case without declining

887Jedrzejowicz P., Skakovski A.: Improving Performance ...

Figure 9: The difference between AVG sumCmax values obtained by the DEA with and
without decloning for population sizes xP = 20, xP = 50, xP = 1000

#ev 20d 50d 100d 200d 1000d

37800 3,77% 2,62% 1,91% 2,83% 8,98%

450000 2,39% 1,69% 1,02% 0,48% 0,50%

720000 2,12% 1,91% 1,32% 0,83% 0,00%

Table 2: The relative difference between AVG sumCmax obtained for particular values
of #ev and xP, and the best AVG sumCmax, obtained for #ev = 720000 and xP = 1000

888 Jedrzejowicz P., Skakovski A.: Improving Performance ...

Figure 10: The difference between AVG sumCmax values obtained by the DEA with
and without decloning for population sizes xP = 100, xP = 200

Based on the above observations, we propose a policy for improving the DEA’s
performance in terms of the quality of results and, when possible, in terms of response
time. In our view the DEA’s performance can be improved by adjusting xP to the
available #ev, such that will ensure the best results, e.g. if #ev is limited to 37800,
then xP = 100, if #ev = 450000, then xP = 200, and if #ev = 720000, then xP = 1000,
[see Tab. 2].

The response time of the DEA can be improved as follows. Suppose, the DEA is
searching for a solution having at its disposal #ev = 720000, which, according to
[Tab. 2], assumes xP = 1000 for the maximal DEA’s performance. Although,
xP = 1000 ensures the best results at the end of the computing, however, setting
xP = 100 instead of 1000 ensures better AVG sumCmax value within #ev = 37800
(compare 1,91% vs. 8,98% in [Tab. 2] and lines 100d and 1000d in [Fig. 12]
respectively). The DEA with xP = 1000 yields the same AVG sumCmax value only
after #ev  200000 (observe two auxiliary perpendicular grey dashed lines in
[Fig. 12]). Therefore, setting xP = 100 instead of 1000 for the first #ev = 37800 is an

889Jedrzejowicz P., Skakovski A.: Improving Performance ...

opportunity for shortening the response time of the DEA. Thus, after carrying out
#ev = 37800, xP = 100 should be changed into xP = 1000, and the rest of the
computing would take #ev = 720000 – 200000  520000. Now, the same
AVG sumCmax as for #ev = 720000 would be yielded by the DEA carrying out only
#ev  37800 + 520000 = 557800, i.e. 720000/557800  1,29 times faster. If the DEA
had at its disposal only #ev = 450000, the speed-up would be
 450000/287800 = 1,56. At this point, we wish to draw attention to the fact that the
difference in the quality of the results obtained after the ev = 720000 and ev = 450000
is only 0,48%, [see Tab. 2]. This fact can be seen as an opportunity to shorten the
response time of the algorithm. If a loss of 0,48% on the quality of the results can be
tolerated, then carrying out only ev = 450000 instead of ev = 720000, could shorten
the response time of the algorithm 720000/450000 = 1,6 times.

Figure 11: AVG sumCmax of the DEA without decloning, considered for different xP
and #ev

890 Jedrzejowicz P., Skakovski A.: Improving Performance ...

Figure 12: The effect of decloning on AVG sumCmax, considered for different xP and
#ev

If we additionally apply the proposed policy to the case ev = 450000, this would
shorten the response time even 720000/287800  2,5 times. However, applying the
policy to the case with #ev = 720000 as well, would reduce the speed-up to
557800 / 287800  1,9 times. It follows from the above discussion, that the final
choice of the values of #ev and, therefore, xP should allow to meet someone’s
expectations as to the quality of results and the response time of algorithm.

Thus, to summarize the above discussion, the performance improvement policy
would consist of determining the intervals of #ev and corresponding most
advantageous xP such, that the desired quality of the results and response time of the
algorithm is assured. The approximate intervals of #ev and xP can be determined using
the approach as in [Tab. 2] and [Fig. 12], which has been described earlier. At this
stage of research, validity of the proposed policy should be proved experimentally in
each case.

891Jedrzejowicz P., Skakovski A.: Improving Performance ...

6 Conclusions

In the paper, we investigated the extent to which performance of the considered
differential evolution algorithm - the DEA depends on such parameters as the
population diversification rate, the size of the population, and the number of fitness
function evaluations to yield a solution. In the experiments, the most advantageous
values of these parameters, in terms of the algorithm’s performance, have been
determined, and the improvement policy was proposed. Population diversification
was carried out cyclically using the proposed decloning procedure. As the test
problem, the discrete-continuous scheduling problem with continuous resource
discretisation was used.

The obtained results allowed us to propose a performance improvement policy
that might noteworthy improve both the efficacy and response time of the DEA. The
idea is to choose the diversification rate, the population size and the number of fitness
function evaluations to yield a solution using [Tab. 1 and 2], given in [Sections 5.3.1
and 5.4] respectively. This might ensure the expected quality of the results and the
response time of the algorithm.

The results of our experiments show that the diversification of the population can
be preserved in an intensive manner, i.e. using dedicated diversifying mechanisms
and procedures, e.g. decloning, or extensive one, by increasing the size of the
population. The choice of how to preserve the diversification may depend on the
restrictions imposed on the population size, response time, and quality of solutions
that should be met by a specific implementation of the algorithm.

Our population diversification technique differs from the one proposed in
[Kureichick, 96] since it uses packing catastrophic operator for replacing genetic, not
fitness duplicates. Also, unlike ROG technique proposed in [Rocha, 99], it prevents
transition of clones to the next generation due to their fitness, which is allowed in
ROG, and unlike in ( + 1) EA with genotype diversity proposed in [Friedrich, 09], a
new random individual is introduced every time when a clone is identified, which is
not carried out in ( + 1) EA. Finally, decloning, i.e. population diversification, can
be carried out less frequently than every generation, which is the case in ROG and
( + 1) EA.

Our experiments also show that if a compromise between the quality of the
results and the response time of the algorithm can be allowed, then it is possible to
significantly reduce the response time using the performance improvement policy
proposed by us while only slightly losing on the quality of the results, e.g. if one can
accept a deterioration in the quality of results by 0,48%, then the response time of the
algorithm might be reduced, depending on the assumptions made, from 1,29 to 2,5
times, see [Section 5.4].

The main conclusion which results from our research is that the performance of
algorithm does not depend on any single factor considered in the paper, but from all
of them, combined together, i.e. is a function of several arguments rather than one.
Only the selection of appropriate values of these arguments could meet the
expectations as to the effectiveness and the response time of the algorithm. An
attempt to mathematically describe how the performance depends on the factors
examined in the paper might lay foundations for future work.

892 Jedrzejowicz P., Skakovski A.: Improving Performance ...

References

[Bartusch, 88] Bartusch, M., Rolf, H. M., Radermacher, F. J.: Scheduling Project Networks
with Resource Constraints and Time Windows, Annals of Operations Research, 16 (1988), 201-
240.

[Damak, 09] Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential Evolution for Solving
Multi-Mode Resource-Constrained Project Scheduling Problems, Computers & Operations
Research, 36, 9 (2009), 2653-2659.

[Fogel, 94] Fogel, D. B.: An Introduction to Simulated Evolutionary Optimization, IEEE
Transactions on Neural Networks, 5, 1 (1994), 3-14.

[Friedrich, 09] Friedrich, T., Oliveto, P. S., Sudholt, D., Witt, C.: Analysis of Diversity-
Preserving Mechanisms for Global Exploration, Evolutionary Computation, 17, 4 (2009), 455-
476.

[Gupta, 12] Gupta, D., Ghafir, S.: An overview of methods maintaining diversity in genetic
algorithms, International Journal of Emerging Technology and Advanced Engineering, 2, 5
(2012), www.ijetae.com

[Jędrzejowicz, 14] Jędrzejowicz, P., Skakovski, A.: Island-based Differential Evolution
Algorithm for the Discrete-continuous Scheduling with Continuous Resource Discretisation,
Procedia Computer Science, 35 (2014), 111–117.

[Józefowska, 98] Józefowska, J., Węglarz, J.: On a methodology for discrete-continuous
scheduling, European Journal of Operational Research, 107, 2 (1998), 338-353.

[Kureichick, 96] Kureichick, V. M., Melikhov, A. N., Miaghick, V. V., Savelev, O. V.,
Topchy, A. P.: Some New Features in the Genetic Solution of the Traveling Salesman Problem,
Proc. ACEDC'96, Plymouth (1996).

[Oliveto, 15] Oliveto, P. S., Zarges, C.: Analysis of diversity mechanisms for optimisation in
dynamic environments with low frequencies of change, Theoretical Computer Science, 561, A
(2015), 37-56.

[Pandey, 14] Pandey, H. M., Chaudharyb, A., Mehrotra, D.: A comparative review of
approaches to prevent premature convergence in GA, Applied Soft Computing, 24 (2014),
1047–1077.

[Rocha, 99] Rocha, M., Neves, J.: Preventing Premature Convergence to Local Optima in
Genetic Algorithms via Random Offspring Generation, LNAI (Lecture Notes in Artificial
Intelligence), 1611 (1999), 127-136.

[Różycki, 00] Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania
dyskretno-ciągłych problemów szeregowania, PhD diss, Poznań University of Technology,
Poland (2000).

[Storch, 04] Storch, T., Wegener, I.: Real Royal Road Functions for Constant Population Size,
Theoretical Computer Science, 320, 1 (2004): 123–134.

[Storn, 97] Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization, 11, 4 (1997), 341-
359.

893Jedrzejowicz P., Skakovski A.: Improving Performance ...

