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Abstract: Algebraic-Geometric (AG) codes are new paradigm in coding theory with
promising performance improvements and diverse applications in point to point com-
munications services and system security. AG codes offer several advantages over state-
of-the art Reed-Solomon (RS) codes. Algebraic-Geometric Codes are proposed and im-
plemented in this paper. The design, construction and implementation are investigated
and a software platform has been developed. Simulation results are presented for the
first time showing significant performance improvements of AG codes over RS codes
using different modulation schemes. The superiority in error correcting and security of
AG codes over RS codes has been demonstrated clearly when Rayleigh fading channel
is used. Also the results show an obvious improvement when using higher modulation
schemes, namely 16QAM and 64QAM.
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1 Introduction

The main challenges of communication systems are: security, error performance,

energy efficiency and implementation costs. Error correcting codes has recently

attracted lots of research attention with respect to approaching Shannon bound

at lowest computational complexity possible. However, Algebraic-Geometric (AG)
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codes did not receive enough attention due to the fact that an advanced math-

ematical background is required in order to implement them. AG codes offer

attractive properties such as large code length.

1.1 Problem Definition

Despite its great mathematical properties and powerful error detection/correction

performance, AG codes are still in their infancy in secure wireless communica-

tion systems. They are yet to be applied in main stream secure wireless networks

- such as Wide band Code Division Multiple Access (WCDMA) and Orthogonal

Frequency Division Multiple Access (OFDMA) - based air interfaces e.g Long

Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A). The only

previous attempt to evaluate the Bit Error Rate (BER) performance of AG codes

in comparison to traditional RS codes in a simulation environment was presented

in [Justesen at el. 1989]. However, [Justesen at el. 1989] did not provide a com-

prehensive procedure and methodology for evaluating such performance in other

secure wireless systems. The results presented in [Justesen at el. 1989] were lim-

ited to BPSK modulation over AWGN and Rayleigh fading channel models. It

remains an open research problem to find how AG codes behave in different

secure wireless systems characterized by variable channel conditions and data

rates.

Another issue in AG codes implementations is the parameterization of these

codes. Namely how to select the code length, finite field size and coding rate

to ensure fair comparison [Goppa 1981]. How these parameters affect the BER

performance results is often ignored, however, in fact they greatly alter the con-

clusions drawn which is proven by the results of this paper.

1.2 Proposed Evaluation Framework

This paper sets itself apart from the few existing works by providing a framework

for AG codes performance evaluation. The proposed framework includes param-

eterization, encoder construction, decoder construction and a detailed Hard de-

cision decoding algorithm. It also provides detailed procedure for end-to-end

performance evaluation that can easily be applied to various wireless systems

and channel models.

The first issue is addressed by providing a general hard-decision AG decoding

algorithm that is capable of allowing change in the modulation index, code rate

and channel model. The proposed algorithm presented in this paper, for the first

time, as a flow chart to facilitates its implementation in various wireless systems.

The Second issue is addressed in this framework by providing an accurate

parameterization procedure to enable better BER performance comparison fair-

ness. This is achieved by keeping the same data block size, relatively the same
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code rate assuming different finite field for both AG and RS codes. This is in

contrast to the [Justesen at el. 1989] work where the finite field is kept the same

at the expense of different data block length. In this paper, we argue that this

would lead to different results and consequently alters the conclusions made.

2 System Model

This paper considers a comprehensive decoder implementation of AG codes. The

investigation considers the BER performance using various modulation schemes

and under varying channel conditions. The system model employs different code

designs and compares BER performance of AG codes with RS codes. In contrast

to existing work a fairer comparison criteria was adopted. The simulations use

almost same data block size, relatively same code rate assuming different finite

field for both AG and RS codes due to the fact that it is impossible to get RS

codes of same size as AG codes at same finite fields. This is different from existing

work where the same finite field and almost same code rate are employed while

the data block size is different. We believe such assumption is of greater impact

on the accuracy of the results and same data block size is the corner stone for

making any like-for-like comparisons.

2.1 Parametrization of AG Codes

In [Justesen at el. 1989] a simple method for constructing AG codes was in-

troduced by choosing an irreducible affine smooth curve over a finite field.

This method attracts huge research interest and employed by many researchers

[Alzubi 2015, Carrasco and Johnston 2008]. Several types of curves can be used

- such as Hermitian curves, elliptic curves, hyperelliptic curves, ... etc - for AG

codes construction [Ozbudak and Stichtenoth 1999]. In this paper, in order to

produce long AG codes Hermitian curves have been used in the following form:

C(x, y) = xr+1 + yr + y (1)

Where r =
√
q and q is the finite field length. To find the message length (k)

and the designed minimum Hamming distance (d∗), n = r3 points that satisfy

C(x, y) = 0 has to be found. Hasse - Weil bound defines the upper bound of the

number of point [Justesen at el. 1989] as a function of γ the genus of the curve

as,

n ≤ 2γ
√
q + 1 + q (2)

When this bound becomes tighter, Hermitian curves starts to saturate Hasse

- Weil bound and called maximal curves. Those codes are then suitable for gen-

erating long AG codes. Justesen’s construction method suggests a non negative

integer j which is bounded by [Alzubi-Omar 2015, Johnston and Carrasco 2005]:
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m− 2 ≤ j ≤
∣∣∣∣n− 1

m

∣∣∣∣ (3)

Calculating the code parameters (n, k, d) for AG codes is different from nor-

mal RS codes. The designed minimum Hamming distance of AG codes is char-

acterized by inverse relationship to the genus of the curve. This is in contrast

of RS codes where the minimum Hamming distance is independent of the genus

[Alzubi 2015, Carrasco and Johnston 2008]. For AG codes, the lower bound of

the Hamming distance must be calculated and named the designed minimum

Hamming distance d∗ as the Hamming distance (d) cannot be calculated al-

ways accurately. To find the optimal designed minimum Hamming distance cal-

culations should meet singleton bound as suggested by [Wicker 1995] and is

given as a function of the genus by [Pretzel 1998, Johnston and Carrasco 2005,

Feng and Rao 1993]:

d∗ = n− k − γ + 1 (4)

The AG code parameters can then be written as [Johnston and Carrasco 2005]:

k = n−mj + γ − 1 (5)

d∗ = mj − 2γ + 2 (6)

where the codeword length n is equal to the number of affine points on the

curve.

2.2 Encoding of AG Codes

In order to design the AG encoder, a generator matrix must be constructed first.

This can be done by finding all the points on the curve (C(x, y) = 0 excluding

the point at infinity). An interesting property of Harmitian curves is that the

number of these points equals to n = r3 where r is
√
q and q is the finite field

size [Johnston and Carrasco 2005].

The next step in the encoder design is to define a k two variables monomial

basis as following: F = xayb where 0 ≤ a < m and b ≥ 0 and ordered using total

graduated degree (<T ). The total graduated degree used here follows a certain

criterion which is:

First-degree pair (a, b) = (0, 0). Next-degree pair (a′, b′) is [Sakata 1988,

Kirwan 1992]:

(a′, b′) =

{
(a− 1, b+ 1), if a > 0

(b+ 1, 0), if a = 0
(7)
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Therefore, degree pairs ordering is:

(0, 0) <T (1, 0) <T (0, 1) <T (2, 0) <T (1, 1) <T (0, 2) <T (3, 0) <T (2, 1) <T

(1, 2) <T (0, 3) <T (4, 0) <T (3, 1) <T (2, 2)...etc

This gives monomial basis (φi):

{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, y4, x5, ...

}
(8)

Next step, the monomial basis φi, i = 1, 2, ..., k in L(aQ) must be computed

at affine point on the curve in order to get the final non-systematic generator

matrix of the code as below:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(p1) φ1(p2) · · · φ1(pn−1) φ1(pn)

φ2(p1) φ2(p2) · · · φ2(pn−1) φ2(pn)

φ3(p1) φ3(p2) · · · φ3(pn−1) φ3(pn)
...

...
. . .

...
...

φk−1(p1) φk−1(p2) · · · φk−1(pn−1) φk−1(pn)

φk(p1) φk(p2) · · · φk(pn−1) φk(pn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The last step in encoder design is to convert the constructed non-systematic

generator matrix to a systematic one because the extraction process of the orig-

inal message out of the decoded codeword is difficult and complex. The de-

signed code produced is - in fact- a non cyclic code, a technique known as

Gauss-Jordan elimination must be used. However, the traditional multi-stage

shift register technique is only appropriate in case of cyclic codes like RS codes

[Alzubi 2014, Carrasco and Johnston 2008, Massey 1969].

Its worth to notice here that in the process of applying Gauss-Jordan elim-

ination, any interchange in columns must followed by same pattern on points

[Johnston and Carrasco 2005, Atkinson 1989].

2.3 Decoding of AG Codes

In this section, a complete description of the decoding algorithm is presented

in depth. This algorithm is used to decode the AG codes that are made up of

Hermitian Curves [Johnston and Carrasco 2005].

STEP 1: Calculation of known syndromes:

(a) The known syndromes S0,0 till S0,j can be found using the following equation

[Justesen at el. 1992]:

Sa,b =

n∑
i=1

rix
a
i y

b
i =

n∑
i=1

(ci + ei)x
a
i y

b
i =

n∑
i=1

eix
a
i y

b
i (10)
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where ri is a received element within the received codeword r, ci is a coded

symbol, ei is the corresponding error magnitude in the i-th position, and

(xi, yi) is the i-th affine point. Where i ∈ I, I ⊆ {1, 2, 3, ..., n}.
(b) The known syndromes Sj+1,0 till Sm,j−m+1 will be calculated by applying

the following equation [Carrasco and Johnston 2008]:

Sa,b = Sa−m,b+1 + Sa−m,b+m−1 (11)

STEP 2: Allocating error location:

In order to find errors locations the known syndromes S0,0 till Sm,j−m+1 and

some of the unknown ones up to S0,j+m must be computed in the following

pattern:

(a) Feed the known syndromes found in step 1 to Sakata’s algorithm [Sakata 1988].

(b) All the unknown syndromes of the form Sa,b for b ≥ m − 1 can be found

using equation (11).

(c) The unknown syndromes obtained from steps 2-a and 2-b are fed again to

Sakata’s algorithm in order to find any unknown syndromes of the form

Sa,b,for a ≥ m.

(d) Any unknown syndromes of the form Sa,b, a < m can be found using majority

voting scheme (MV).

(e) All other unknown syndromes can be obtained using equation (11).

(f) The unknown syndromes obtained from steps 2-d and 2-e are fed again to

Sakata’s algorithm in order to find more unknown syndromes of the form

Sa,b, for b ≥ m− 1.

(g) At the end of this step, a set of minimal (error-locating) polynomials is

produced which is denoted by F [Sakata 1988]. The roots obtained from

substituting the points on the curve in any element of F constitute the

errors locations.

STEP 3: Errors magnitudes calculation:

It is necessary to have all elements in the two dimensional syndrome array calcu-

lated (from Sj+1+m,0 to the last unknown syndrome Sq−1,q−1)in order to com-

pute the error magnitudes in the following manner:

(a) The value of any unknown syndromes of the form Sa,b,for a ≥ m can be

obtained using equation (11).
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(b) The value of any unknown syndromes of the form Sa,b, for a < m will

be computed using a recursive relationship between the syndromes. This

relationship is formed by substituting last minimal polynomial in the set F

in the following equation [Carrasco and Johnston 2008, Sakata at el. 1995]:

∑
f
(i)
k,lSa−t

(i)
1 +k,b−t

(i)
2 +l

= 0 (12)

(c) By applying Inverse Discrete Fourier Transform (IDFT) the value of the

errors can be calculated [Sakata at el. 1995, Liu 1999]:

– If the error location is at the origin point Px,y = (0, 0) then its magnitude

calculated by equation (11).

– If the error location is at a point with zero x- coordinate and nonzero

y-coordinate Px,y = (0, y) then its magnitude calculated using following

equation:

En =

q−2∑
i=0

S0,q−1−iα
ni (13)

where α is the primitive element of the finite field and En is the sum-

mation of all error values occurred at the points of nonzero y-coordinate

αn. Luckily Hermitian curves - the subject of this paper - have a prop-

erty that whenever there is a point on the curve of zero x-coordinate and

nonzero y-coordinate then there will be no points on the curve of same y-

coordinate value with nonzero x-coordinate (αm, αn), which means that

En is in fact the error magnitude of the error took place at the point

P(0,y) = (0, αn).

– If the error location is at a point with nonzero x- coordinate and zero

y-coordinate Px,y = (x, 0) then its magnitude calculated by following

equation:

Em =

q−2∑
i=0

Sq−1−i,0α
mi (14)

where α is the primitive element of the finite field and Em is the summa-

tion of all error values happening at the points of nonzero x-coordinate

αm. The above mentioned property of Hermitian curves still applying

which indicates that there are no points on the curve with same x-

coordinate value αm and nonzero y-coordinate. So, Em is in fact the

error magnitude of the error took place at the point P(x,0) = (αm, 0).
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– if the error location is at a point with nonzero x- coordinate and nonzero

y-coordinate Px,y = (x, y) then its magnitude calculated by following

equation:

ei =

q−2∑
a=0

q−2∑
b=0

Sa,bx
−a
i y−b

i (15)

where ei is the error magnitude of the error that happened at the point

Pi, and q is the size of the finite field.

STEP 4: Correcting errors:

After locating the errors in step 2 and the errors magnitudes in step 3, now simply

these magnitudes are added into the same locations within the received codeword

to form the decoded codeword. Since the code is systematic it is obvious that

the original message is the first k symbols.

2.4 Channel Model

In addition to ensuring fairer comparison, we aim to investigate the BER perfor-

mance of AG codes under various channel conditions. Both AWGN and Rayeliegh

fast fading models are employed.

The channel model can be described by the canonical discrete time model

as:

Y = xh+ n (16)

where Y is the received signal, x is the transmitted signal( i.e. the modulated

codeword), n is the complex additive white Gaussian noise again taken from

CN(0, N0/2), and h is the Rayleigh fading channel coefficient. The generation

of h follows a complex circularly symmetric Gaussian distribution and written

as CN(0, σ2), where σ2 is the fading variance [Sklar 1998].

The fading coefficient represents fast fading phenomena where the coherence

time (τ) is far less than the system maximum codeword length. In particular we

set the coherence time to one bit duration.

This fast fading channel model represents the instances of extremely bad

channel conditions which we used in order to better characterize the AG code

BER performance. In reality, though, a block(slow) fading channel model is

usually assumed, in which, the coherence time (τ) is higher than the maximum

codeword length. The AWGN channel can be considered as a special case of the

fading channel model by setting h = 1 in equation (16) [Peter-Sweeney 2004].
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3 Numerical results

In order to validate the correctness of the proposed AG code implementation

(software platform), simulation results using BPSK modulation scheme were

carried out over AWGN and Rayleigh fast fading Channels and compared to

those published in literature [Johnston and Carrasco 2005].

In this research, the results confirm the superiority of the AG codes over RS

codes and were completely matching with [Johnston and Carrasco 2005]. Those

results are shown in (Fig.1) for AWGN channel. Moreover, due to the proposed

parameterization procedure, the coding gain of AG codes at finite field GF (24)

for BER of 10−6 of 0.4, 1.05 and 1.4 dBs with code rates of 0.77, 0.69 and 0.61

respectively in comparison to RS code of code rate 0.74 at finite field GF (28).

These gains were 1.6, 0.9 and 1.6 dBs respectively for the same code rates above

using the old parameterization approach in [Johnston and Carrasco 2005].

In addition, in [Johnston and Carrasco 2005] gains were obtained with re-

spect to different reference RS code rates unlike our procedure where we keep the

reference constant. Note due to our more accurate parameterization, the coding

gains of AG code are lower than those reported in the literature. Those gains

are still of significant magnitudes and offer great transmission reliability. QPSK

curves - not shown in this paper - shows similar gains to the BPSK with slight

improvements.

From the channel capacity perspective, the AG codes result in 0.226, 0.298,

0.364 Bits per Channel Use shift from the Shannon capacity at BER 10−6 for

code rates 0.77, 0.69 and 0.61 respectively, whereas the RS codes is 0.258 Bits

per Channel Use Shift from the Shannon capacity at same BER using BPSK.

The simulation results for AG codes using 16QAM modulation scheme over

the AWGN channel are presented for the first time in this paper. As shown in

(Fig.2), the coding gains of AG codes at finite field GF (24) for BER of 10−6

are 0.6, 1.25 and 2.05 dBs with code rates of 0.77, 0.69 and 0.61 respectively

in comparison to RS code of code rate 0.74 at finite field GF (28). Those results

clearly emphasize the superiority of AG codes over RS codes even for lower code

rates. A code gain of 2.05 dB is a remarkable result that is being acquired for

the first time.

From the channel capacity perspective, the AG codes result in 0.9, 1.17, 1.42

Bits per Channel Use shift from the Shannon capacity at BER 10−6 for code

rates 0.77, 0.69 and 0.61 respectively , whereas the RS codes is 1.03 Bits per

Channel Use Shift from the Shannon capacity at same BER.

In addition to this, the 64QAM modulation scheme results are obtained by

comparing the BER performance of AG codes having same code rates and finite

fields - which used with the 16QAM modulation - with the RS code at rate 0.74.

Those results are illustrated in (Fig.3). The obtained code gains are 1.1, 1.9 and

2.8 dBs at BER of 10−6 for code rates of 0.77, 0.69 and 0.61 respectively.
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RS(31,23),R=0.74, BPSK, AWGN
AG(64,49),R=0.765, BPSK, AWGN
AG(64,44),R=0.687, BPSK, AWGN
AG(64,39),R=0.609, BPSK, AWGN

Figure 1: BER of AG codes vs. RS codes using BPSK over AWGN
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100

Eb/N0(dB)
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RS(31,23),R=0.74, 16QAM, AWGN
AG(64,49),R=0.765, 16QAM, AWGN
AG(64,44),R=0.687, 16QAM, AWGN
AG(64,39),R=0.609, 16QAM, AWGN

Figure 2: BER of AG codes vs. RS codes using 16QAM over AWGN

To further validate the effectiveness of the developed software platform, sim-

ulations over Rayleigh fast fading channel model were performed. This includes

results using 16QAM and 64QAM modulation schemes which have not been

presented before in literature.

Observing the trend of the BER performance results over different modu-
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RS(31,23),R=0.74, 64QAM, AWGN
AG(64,49),R=0.765, 64QAM, AWGN
AG(64,44),R=0.687, 64QAM, AWGN
AG(64,39),R=0.609, 64QAM, AWGN

Figure 3: BER of AG codes vs. RS codes using 64QAM over AWGN
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RS(31,23),R=0.74, BPSK, Rayleigh Fading
AG(64,49),R=0.765, BPSK, Rayleigh Fading
AG(64,44),R=0.687, BPSK, Rayleigh Fading
AG(64,39),R=0.609, BPSK, Rayleigh Fading

Figure 4: BER of AG codes vs. RS codes using BPSK over Rayleigh fading

cahnnel

lation schemes and adverse channel conditions is useful in giving insights into

the parameterization of the new AG codes developed in this paper. The results

over different modulation schemes using Rayleigh fading channel are presented

in (Fig.4), (Fig.5), and (Fig.6).
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Figure 5: BER of AG codes vs. RS codes using 16QAM over Rayleigh fading

cahnnel
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AG(64,44),R=0.687, 64QAM, Rayleigh Fading
AG(64,39),R=0.609, 64QAM, Rayleigh Fading

Figure 6: BER of AG codes vs. RS codes using 64QAM over Rayleigh fading

cahnnel

Using BPSK modulation scheme as shown in (Fig.4), the coding gains of

AG codes at finite field GF (24) for BER of 10−6 of 2.5, 7.3 and 9.9 dBs

with code rates of 0.77, 0.69 and 0.61 respectively, in comparison to RS code

563Alzubi O.A., Chen T.M., Alzubi J.A., Rashaideh H., Al-Najdawi N.  ...



of code rate 0.74 at finite field GF (28). These gains are significantly higher

than those achieved over the AWGN channel. Those results matches the ones

in [Johnston and Carrasco 2005] and emphasize the effectiveness of our devel-

oped software platform while confirming the benefits of AG codes over adverse

channel conditions.

The obtained BPSK fading results motivated us to explore the BER perfor-

mance using higher modulation schemes such as 16QAM and 64QAM.

Regarding 16QAM modulation scheme results which are shown in (Fig.5).

The coding gains of AG codes at finite field GF (24) for BER of 10−6 are 3.1, 8.7

and 11.4 dBs for the code rates of 0.77, 0.69 and 0.61 respectively in comparison

to RS code of code rate 0.74 at finite field GF (28). Once again the effectiveness

of AG codes is manifested under fading channel conditions.

However, for 64QAM, the coding gains for code rates of 0.77, 0.69 and 0.61

are 3.55, 9.35 and 12.75 respectively, in comparison to RS code of code rate 0.74

at BER of 10−6. Those results are shown in (Fig.6).

We notice that the higher the modulation index, the more coding gain is

obtained for the same code rate. This phenomena is shown in both AWGN and

Rayleigh fast fading channel models, making the AG codes very attractive at

high throughput applications and services currently needed in next generation

wireless systems such as 4G, High Speed Packet Access (HSPA) and Long Term

Evolution (LTE).

4 Conclusions

In this paper, the software platform to evaluate the BER performance of AG

codes is established and compared with the performance of RS codes. Simulation

results confirmed the correctness and security of developed software platform by

providing the exact published results in the literature for the case of BPSK

modulation over both AWGN and Rayleigh fast fading channel conditions.

The results of BER performance of AG codes over Hermitian curves using

16QAM and 64QAM modulation schemes - to the best of this paper authors’

knowledge - are obtained over both AWGN and Rayleigh fast fading channels

for the first time.

The obtained simulation results provide a sufficient evidence of the supe-

riority (in terms of both error correcting and security) of the AG codes over

RS codes even for higher order modulations such as 16QAM and 64QAM over

AWGN channel. Interestingly, the behaviour of coding gains achieved is directly

proportional to the modulation index.

In the case of Rayleigh fast fading channel using 16QAM and 64QAM mod-

ulation schemes, the obtained results once again confirm that a great gain is

achieved using AG codes. These results highlight the robustness and security
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of AG codes to sever fading conditions as the coding gains obtained are higher

than those achieved for the AWGN channel. Also the trend of increased coding

gains with the modulation index increase applies.
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