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ivan.milentijevic@elfak.ni.ac.rs)

Oliver Vojinovic
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Abstract: Motivated by the large number of vertices that future technologies will
put in the front of path-search algorithms, and inspired by highly regular 2D mesh
structures that exist in the domain applications, in this paper we propose a new all-
pairs shortest paths algorithm, for any given regular 2D mesh topology, with complexity
O(|V|2), where |V| is the number of vertices in the graph. The proposed algorithm
can achieve better runtime than other known algorithms at the cost of narrowing
the scope of the graphs that it can process to the graphs with regular 2D topology.
The algorithm is developed into formalism by algebraic transformations in tropical
algebra of the well-known Floyd-Warshall’s algorithm. First we prove the equivalency
of the Floyd-Warshall’s algorithm and its tropical algebraic representation, and put the
transformations of the algorithm into the algebraic domain. Secondly, having in mind
the structure of the target class of graphs, we transform the original algorithm in the
algebraic domain and develop a simple, low-complexity iterative algorithm for all-pairs
shortest paths calculation. Decreasing of computational complexity can contribute to
better exploitation of the algorithm in the wide range of applications from hardware
design in new emerging technologies to big data problems in information technologies.
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1 Introduction

One of the most studied problems in algorithmic graph theory is the problem of

finding distances and paths in graphs. Many algorithms exists [Warshall 1962,

Zwick 2001, Cormen et al. 2001, Zwick 2002, Hougardy 2010, Han et al. 2012].

The algorithms that calculate the distances of all vertices from one starting
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point are called Single-Source Shortest Paths (SSSP) algorithms, while the al-

gorithms that give the distances of all vertex pairs are known as All-Pairs

Shortest Paths (APSP) algorithms [Zwick 2001]. Regardless to SSSP and APSP

classification, the algorithms can be further categorized as data-structure ori-

ented, vertex-relaxation algorithms, such as well known Dijkstra’s, Bellman-

Ford’s, or Johnson’s algorithm [Cormen et al. 2001], and matrix based algo-

rithms, like Warshall’s ”theorem on Boolean matrices”, or Zvick’s ”rectangular

matrix multiplication” [Zwick 2002]. These algorithms have worst case runtime

from O(|V|3) for graphs with |V| vertices in the case of Floyd-Warshall’s al-

gorithm [Warshall 1962], through O (|V| (|E|+ |V| log |V|)) for Johnson’s algo-
rithm [Cormen et al. 2001], to O(|V|3 log log |V| / log2 |V|) reported by Han et

al. [Han et al. 2012], and O
(
|V|2.376

)
obtained by Zwick [Zwick 2002]. The re-

duced complexity is usually achieved at the cost of more complicated data struc-

tures, compared with relatively simple Warshall’s algorithm [Hougardy 2010].

The latest development of technology introduced high requirements related

to the number of vertices in search algorithms. The computational demands

are getting higher and higher, starting with the emergence of ”big trajectory

data”, as a subset of the big data problem, raised by world-wide population

of GPS-equipped mobile devices and the data that they produce on a daily

basis [Luo et al. 2013], until the error propagation analysis in emerging nan-

otechnology, where the number of devices that should be analyzed count 1012

or more devices [Stan et al. 2003, Ciric et al. 2009, Verma et al. 2016]. However,

regular structures of some domain applications can be exploited in the algorithm

design. For example, systolic arrays are computational modules with highly

regular structures [Kung 1988, Parhi 1999]. Likewise, nanotechnology compo-

nents are built of the huge number of devices ordered in highly regular mesh

structures [Ciric et al. 2009]. The applications of nanotechnology that are under

development include increasing of the density of memory chips, with a pro-

jected density of one terabyte of memory per square inch [Verma et al. 2016].

It is likely that such components will have highly regular 2-D mesh structures

[DeHon 2002, Stan et al. 2003, Ciric et al. 2009, Verma et al. 2016].

Motivated by the large number of devices that can be fabricated using nan-

otechnology [Verma et al. 2016], and inspired by their regular 2D structures

of the processing elements and interconnections [DeHon 2002, Stan et al. 2003,

Ciric et al. 2013, Peng et al. 2016], with particular application in the computer

architectures and systolic processing arrays design [Parhi 1999, Ciric et al. 2009,

Ciric et al. 2010], in this paper we propose new all-pairs shortest paths algo-

rithm, for any given regular 2D mesh topology, with worst runtime O(|V|2).
The reduced complexity, compared to known algorithms, will be achieved un-

der the assumption of regularity of graph topology. The algorithm will be de-

veloped into formalism by algebraic transformations in tropical algebra of the
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well-known Floyd-Warshall’s algorithm, and it will be given as a generaliza-

tion of the algorithm for error-propagation analysis within the array of hexag-

onal systolic multiplier [Ciric et al. 2013]. Tropical algebra will be chosen as a

good candidate for algebraic representation [Simon 1988], which can enable al-

gebraic transformations of the algorithm [Lu et al. 2012, Ciric et al. 2013]. It is

a relatively new area in mathematics, considering the efforts that have been

made since the late 1990s to consolidate the basic definitions of the theory

[Simon 1988, Draisma 2008, Izhakian 2009, Izhakian and Rowen 2009]. We start

with the proof of the equivalence of Floyd-Warshall’s algorithm and its tropical

algebraic representation, and proceed by putting the transformations of the al-

gorithm into the algebraic domain. Having in mind the structure of the target

class of graphs, we will transform the original algorithm in the algebraic domain

and we will develop a simple, low-complexity iterative algorithm for all-pairs

shortest paths calculation.

The paper is organized as follows. Section 2 gives a brief background on

Warshall’s transitive closure of Boolean matrices, and Floyd’s shortest paths

algorithm. In Sections 3 and 4 the introduction to tropical algebra is given, along

with the equivalency proof of the tropical representation of Floyd-Warshall’s

algorithm. Section 5 is the main section where we present the development of

a new iterative algorithm for shortest paths calculation of any given 2D mesh

structure. Concluding remarks are given in Section 6.

2 Transitive Closure of Boolean Matrices and Shortest Paths
Algorithm

Given a directed graph G = (V,E), where V = {v1, . . . , vn} is a finite set of

vertices and E is a finite set of edges, an edge e ∈ E is an ordered pair (vi, vj),

where vi, vj ∈ V and an edge (vi, vj) means that vertices vi and vj are connected.

Let vi and vj be vertices and let ei,j denote (vi, vj) ∈ E. A path is ordered subset

of edges P ⊂ E,P = {ei,k1 , ek1,k2 , . . . , ekn,j}, which connects nodes vi and vj
through nodes vk1 , vk2 , . . . , vkn . The path length is equal to the cardinality |P|.

A Boolean adjacency matrix M with elements (mi,j) of graph G is defined

as

mi,j =

{
1, ei,j ∈ E

0, otherwise
. (1)

The dimensions of the matrixM are dxd, where d is cardinality ofV, i.e. d = |V|.
Given two Boolean matrices A and B, the Boolean product A

∧
B is matrix

whose (i, j)-th entry is
∨

k(ai,k ∧ bk,j) [Warshall 1962]. The Boolean sum A
∨
B

is matrix whose (i, j)-th entry is ai,j ∨ bi,j .

The construction for transitive closure M∗, well-known as Warshall’s transi-

tive closure of Boolean matrix, is the following [Warshall 1962]:
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0. Set M∗ = M .

1. Set i = 1.

2. (∀j) if m∗
j,i = 1 then (∀k) set m∗

j,k = m∗
j,k ∨m∗

i,k.

3. Increment i by 1.

4. If i ≤ d, go to step 2; otherwise stop.

The construction gives the Boolean transitive closure matrix such thatm∗
i,j =

1 if and only if either mi,j = 1 or there exist integers k1, . . . , kn such that

mi,k1 = mk1,k2 = · · · = mkn,j = 1; m∗ = 0 otherwise [Warshall 1962]. In other

words, m∗
i,j = 1 if there is an edge in graph G from node vi to vj (ei,j), or there

is a set of connected edges ei,k1 , ek1,k2 , . . . , ekn,j that creates a path from node

vi to vj via nodes vk1 , vk2 , . . . , vkn .

In words, Warshall’s algorithm fixes one vertex vi in the step 1, and calculates

all possible paths with length equal to 2 that pass through the vertex vi (step 2),

i.e. vj → vi → vk, while updating the values mj,k. The main idea which reduced

the complexity from O(|V|4) to O(|V|3) is the fact that there is a recursion in

the algorithm, because the value mj,k is reused in the next iterations in the form

of mj,i, and new edges mi,k are added to it one by one.

Let us consider the formulation of the algorithm proposed by Robert Floyd

in [Floyd 1962]. Let graph Gw be a weighted graph, and let wi,j ∈ (R ∪+ {∞})
denote the weight of edge ei,j . The elements of adjacency matrix Mw of graph

Gw are not Boolean values, but rather mw
i,j ∈ (R ∪+ {∞}), such that

mw
i,j =

{
wi,j , ei,j ∈ E

∞, otherwise
. (2)

In such a setting the Warshall’s construction of Boolean transitive closure

gets the form of Floyd’s shortest paths algorithm [Floyd 1962]:

Algorithm 1 R.Floyd’s shortest paths algorithm ”Algorithm 97” [Floyd 1962]

1: procedure ShortestPath(M)

2: for i := 1 to d step 1 do

3: for j := 1 to d step 1 do

4: if mw
j,i ≤ ∞ then

5: for k := 1 to d step 1 do

6: if mw
i,k ≤ ∞ then

7: s← mw
j,i +mw

i,k;

8: if s ≤ mw
j,k then

9: mw
j,k ← s;
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Algorithm 1 transforms matrix Mw into the shortest paths matrix, whose

(i, j)-th entry is a sum of all weights

wi,k1 + wk1,k2 + · · ·+ wkn,j

of edges ei,k1 , ek1,k2 , . . . , ekn,j on the shortest among all paths that exists between

nodes vi and vj . In the other words, the algorithm 1 computes shortest paths

for all pairs of vertices in the given graph.

Both Warshall’s and Floyd’s algorithms [Floyd 1962, Warshall 1962] have the

complexity O(|V|3), for the total of |V|2 possible vertex pairs.

3 The Tropical Representation of the Shortest Paths
Algorithm

In order to introduce the algebraic representation of the algorithm, and en-

able the transformations of the algorithm in algebraic domain, we’ll give a brief

introduction to tropical semirings, and tropical representations of Floyd’s and

Warshall’s algorithms.

The Min-Plus semiring is M = (N0 ∪ {∞} , min,+). The sum in M is de-

fined as minimum, and the product is usual addition. Note that ∞ is the zero

of this semiring and 0 is its unit. This semiring was introduced by Simon in

[Simon 1978], in the context of automata theory. Similar semiring was introduced

by Mascale in [Mascle 1986]. He extended the set, and replaced the minimum

with the maximum as P = (N0 ∪ {−∞} , max,+). Leung [Leung 1988] proposed

the semiring M̄ = (N0 ∪ {ω,∞} , min,+), where the minimum is defined with

the respect to the order 0 ≤ 1 ≤ 2 ≤ · · · ≤ ω ≤ ∞, and addition of Min-Plus

is completed by setting x + ω = ω + x = max{x, ω} for all x. All these semir-

ings are called tropical semirings. Other extensions include the tropical integers

Z = (Z ∪ {∞} , min,+), the tropical rationals Q = (Q ∪ {∞} , min,+), and the

tropical reals R = (R ∪ {∞} , min,+) [Pin 1998].

In the rest of the paper we will use the following definition.

Definition 1 Min-Plus tropical algebra. Min-Plus tropical algebra is the al-

gebraic structure (N0 ∪ {∞} , min,+) with basic arithmetic operations of addi-

tion (⊕) and multiplication () defined by

x⊕ y := min (x, y) , x y := x+ y.

In words, the sum of two numbers is their minimum, and the product of two

numbers is their usual sum. For example, the tropical sum of 4 and 9 is 4⊕9 = 4.

The tropical product of 4 and 9 equals 4 9 = 13.

Many of the familiar axioms of arithmetic remain valid in tropical settings

[Izhakian 2009].
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Lemma2. (N0 ∪ {∞} ,⊕) and (N0 ∪ {∞} ,) are commutative semigroups with

units, and operation of  is distributive in respect to ⊕.

For instance we have:

x⊕ y = y ⊕ x, x y = y  x.

These two arithmetic operations are also associative, and the times operator

 takes precedence when plus ⊕ and times  occur in the same expression. The

distributive law holds for tropical addition and multiplication:

x (y ⊕ z) = x y ⊕ x z. (3)

Both arithmetic operations have a neutral element. Infinity is the neutral element

for addition and zero is the neutral element for multiplication:

x⊕∞ = x, x 0 = x.

In order to express the results, we need extensions of the operations ⊕ and

 on matrices. We consider matrices, A = [ai,j ], with the elements in N0 ∪ {∞}
[Izhakian 2009, Izhakian and Rowen 2009].

Definition 3 Matrix addition. Tropical addition, denoted ⊕, of matrices A

and B is matrix C = A⊕B such that ci,j = ai,j ⊕ bi,j .

Definition 4 Matrix multiplication. Tropical product of matrices A, of type

NxK, and B, of type KxM , is matrix C = A  B = AB, of type NxM , such

that

ci,j =

K⊕
k=1

(ai,k  bk,j) , (4)

where i = 1, . . . , N , j = 1, . . . ,M , and the tropical sum
⊕K

k=1 νk represents the

sum ν1 ⊕ ν2 ⊕ · · · ⊕ νK .

From definition 4, the element m2
i,j of the matrix M2 = M M , is equal to

m2
i,j = (mi,1 m1,j)⊕ (mi,2 m2,j)⊕ · · · ⊕ (mi,K mK,j),

or in usual (R ∪ {∞} ,+, ·) algebra

m2
i,j = min (mi,1 +m1,j ,mi,2 +m2,j , . . .mi,K +mK,j) ,

which represents shortest path between vertices vi and vj from the graph G

with length 2, in the case when the matrix M is adjacency matrix of the graph

G.

The properties of the operations ⊕ and  can be summarized in the following

lemma.
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Lemma5. Let Mn be the set of all matrices of type NxM with elements in

R∪{∞}. (Mn,⊕) and (Mn,) are commutative semigroups with identity. Op-

eration  is distributive in the respect to ⊕.
For example, matrix multiplication is associative operation, i.e.

A (B  C) = (AB) C.

A neutral elements for tropical matrix addition and multiplication are zero

matrix O = [∞]NxN and identity matrix I = [δi,j ], with elements

δi,j =

{
0, i = j

∞, i �= j
.

As usual, we have A⊕O = A, AO = O, and A I = A.

Let a tropical k-th power of matrix M be matrix Mk with elements mk
i,j ,

where M1 = M and M i+1 = M i M .

Now we are in the position to state the algebraic representation of the shortest

paths algorithm in tropical algebra.

Theorem 6. Let M be adjacency matrix of the graph G. The computation of

the matrix

S =

∞⊕
i=1

M i, (5)

with elements S = (si,j), and the Floyd’s algorithm 1 on the matrix M are

equivalent.

Proof In order to prove the equivalency, we will substitute the computations

from algorithm 1 with tropical equivalents.

Let us consider the central computational part of the algorithm 1. As the

matrix M is adjacency matrix of the weighted graph Gw, in the 7th line of

algorithm 1 the weight of the path from the vertex vj to the vertex vk that pases

through exactly one additional vertex vi is computed. The computation from

the 7th line can be represented in tropical algebra as

s = mw
j,i mw

i,k. (6)

After the execution of lines 8 and 9 in algorithm 1, mw
j,k will hold the mini-

mum of the value previously contained in mw
j,k and the minimum given in (6),

i.e.

mw
j,k = min

{
mw

j,k, s
}
= mw

j,k ⊕
(
mw

j,i mw
i,k

)
. (7)

The weight mw
j,k is computed only if there is a path from the the vertex vi

to the vertex vk (line 6 in algorithm 1), as well as if there is a path from the the

vertex vj to the vertex vi (line 4 in algorithm 1). Due to the fact thatmw
p,q =∞ if
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the path between vertices vp and vq doesn’t exist, and the fact that∞ is neutral

element for tropical addition, the tropical equation (7) holds whether the values

of mw
j,i and mw

i,k are less-than or equal ∞. Thus, algorithm 1 then becomes:

Algorithm 2 The tropical form of algorithm 1

1: for i := 1 to d step 1 do

2: for j := 1 to d step 1 do

3: for k := 1 to d step 1 do

4: mw
j,k = mw

j,k ⊕
(
mw

j,i mw
i,k

)
;

We will show that algorithm 2 is equivalent to (5).

The equation (5) can be rewritten in iterative manner as

S(p+1) = M 
(
I ⊕ S(p)

)
, (8)

where S1 = M , and p = 1, 2, . . . represents the current iteration.

By direct application of definitions 3 and 4 to the tropical product (8) of

matrices M and
(
I ⊕ S(p)

)
, for the elements of the matrix S(p+1) =

(
s
(p+1)
i,j

)
we

have:

s
(p+1)
i,j =

d⊕
k=1

(
mi,k 

(
δk,j ⊕ s

(p)
k,j

))
=

=

d⊕
k=1

(
(mi,k  δk,j)⊕

(
mi,k  s

(p)
k,j

))
=

=

d⊕
k=1

(
mi,j ⊕

(
mi,k  s

(p)
k,j

))
=

= mi,j ⊕
d⊕

k=1

(
mi,k  s

(p)
k,j

)
. (9)

If we assume that the elements s
(1)
i,j = mi,j , the elements s

(p+1)
i,j can be com-

puted, according to (9), by the following algorithm:
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Algorithm 3 Computation of the elements s
(p)
i,j according to (9)

1: for p := 1 to ∞ step 1 do

2: for i := 1 to d step 1 do

3: for j := 1 to d step 1 do

4: for k := 1 to d step 1 do

5: s
(p+1)
i,j = mi,j ⊕

(
mi,k  s

(p)
k,j

)
;

If we accept the premise given in the construction of the Floyd’s algorithm in

[Floyd 1962] that there are no negative cycles in the graph G, then the shortest

paths in the graph G can include at most d = |V| nodes. This is because of the

fact that a path with more than d vertices must contain a loop (according to

a premise, a positive cycle), which can’t be the shortest path. The corollary is

that the p-loop in the first line from algorithm 3 can be given as p := 1 to d,

instead of 1 to ∞. In this case the complexity of algorithm 3 is finite and it is

equal to O(|V|4).
It is obvious that the complexity of algorithm 3 is greater than the com-

plexity of algorithm 2 for the order of the magnitude (O(|V|4) vs. O(|V|3)). In
order to avoid the need to iterate through the matrices S(p) and consequently

reduce the complexity of algorithm 3, we will use the key Warshall’s idea from

[Warshall 1962] to store each newly computed value into the same variable. Thus,

every new value s
(p)
i,j , p = 1, 2, . . . , d, will be stored in the same variable mi,j ,

overriding the previous intermediate value, as given in Algorithm 4.

Algorithm 4 Noniterative form of algorithm 3

1: for i := 1 to d step 1 do

2: for j := 1 to d step 1 do

3: for k := 1 to d step 1 do

4: mi,j = mi,j ⊕ (mi,k mk,j) ;

The tropical operations are commutative, thus the loops in algorithm 4 can

be sequenced as the loops from algorithm 2, which proves the theorem. �

4 Tropical GF(2) algebra and Warshall’s algorithm

In order to put Warshall’s algorithm for transitive closure computation of Boolean

matrices into the tropical framework, we need to define tropical algebra over

GF(2) = ({0, 1} ,+, ·), where + and · are addition and multiplication by mod-
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ule 2. Tropicalization of this algebraic structure is performed by the following

definition.

Definition 7. For every x, y ∈ {0, 1} we define

x⊕ y = max {x, y} = x ∨ y

and

x y = x · y = x ∧ y.

Next lemma shows that algebraic structure G = ({0, 1} ,⊕,) is commutative

algebra with units.

Lemma8. ({0, 1} ,⊕) and ({0, 1} ,) are commutative semigroups with units,

and operation  is distributive in respect to ⊕.

Since ⊕ and  are algebraic operations of conjunction and disjunction, we

know that the operations are associative, commutative, and the unit for con-

junction is 1, and for disjunction the unit is 0. Furthermore, distributive law

holds for  in respect to ⊕.
Now we are in the position to prove the equivalency of Warshall’s algorithm

over Boolean adjacency matrix and the tropical representation (5).

Using definitions 3 and 4 we introduce matrix operations over the tropical

algebra G. Also, we use the well know abbreviation for the matrix exponentiation.

Theorem 9. Let M be adjacency matrix of the graph G. The computation of

the matrix

S =

∞⊕
i=1

M i, (10)

with elements S = (si,j), and the Warshall’s algorithm for finding the transitive

closure of M are equivalent.

Proof We note that the step 2 in the Warshall’s algorithm

(∀j) if m∗
j,i = 1 then (∀k) set m∗

j,k = m∗
j,k ∨m∗

i,k (11)

can be rewritten as

(∀j)(∀k) set m∗
j,k = m∗

j,k ∨
(
m∗

j,i ∧m∗
i,k

)
, (12)

having in mind that condition
(
if m∗

j,i = 1 then
)
represents neutral element for

the operation ∧.
We recognize that the algorithm has the same structure as the Floyd’s algo-

rithm, but over the tropical algebra G. �
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By introducing the algebraic representation (5) we enabled transformations

of the algorithm using familiar algebraic axioms, and we introduced the possibil-

ity to transform the algorithm and further reduce its complexity by exploiting

the properties of the domain application. In the next section we will demon-

strate how the complexity of the original algorithm can be reduced by algebraic

manipulations of algorithm representation.

5 The development of All-Pairs Shortest Paths Algorithm in
tropical domain

In [Ciric et al. 2013], the shortest paths algorithm that strongly relays on only

one particular array structure, namely orthogonal array for integers multiplica-

tion, is developed with complexity O (∣∣V2
∣∣). Here we will consider a general case

of any given regular 2D mesh topology, using the proposed algebraic represen-

tation (5).

First, we define 2D mesh topology, and related terms of rows and columns

of vertices.

Let G be an oriented graph, and let G1 = (V1,E1) and G2 = (V2,E2) be

oriented subgraphs of the graph G. We define graph Ĝ1,2 = G1∇G2 to be an

oriented subgraph of the graph G with the set of vertices V̂1,2 = V1 ∪V2, and

the set of edges Ê1,2 = {ei,j |vi, vj ∈ V1 ∪V2}, and G1,2 = G1 ∪G2 to be an

oriented subgraph of the graph G with the set of vertices V1,2 = V1 ∪V2, and

the set of edges E1,2 = E1 ∪E2.

In words, Ĝi,j = Gi∇Gj represents the union of the subgraphs Gi and Gj ,

including edges from the graph G that connect them, and Gi,j = Gi ∪ Gj

represents the regular union of the graphs Gi and Gj without any additional

edges between them.

Let the difference between graphs Gp = (Vp,Ep) and Gq = (Vq,Eq) be

defined as a graph Gp \Gq = (Vp \Vq,Ep \Eq).

Definition 10 The connectivity of subgraphs. Two disjoint oriented sub-

graphs Gi and Gj are connected if and only if Ĝi,j \Gi,j �= ∅. The connectivity
is oriented from Gi to Gj if all edges from Ĝi,j \Gi,j �= ∅ are oriented from

Gi to Gj .

Motivated by the extremely large number of devices that can be fabricated us-

ing nanotechnology [Verma et al. 2016], and inspired by their highly regular 2D

mesh structures of the processing elements and interconnections [DeHon 2002,

Stan et al. 2003, Ciric et al. 2013, Peng et al. 2016], we give the following defi-

nition.

Definition 11 Graph with regular 2D mesh topology. Let G be a direct-

ed graph. The graphG has a regular 2D mesh topology if and only if there exists
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disjoint partition Gi, i = 1, 2, . . . , R, each with C vertices, where we call every

subgraph Gi the i-th row of the graph G, such that:

1. (isomorphism of rows) all rows are isomorphic,

2. (connectivity of neighboring rows) for every row k, except one row, there

exists row i such that the row i has directed connectivity to row k; for

every row k, except one,there exists row j such that the row k has directed

connectivity to row j,

3. (isomorphism of edges that connect rows) there exists graph H such that for

every i and j, i �= j , Ĝi,j is isomorphic to H or Gi,j .

The total number of vertices in G is |V| = R · C.

The example of graph G with arbitrarily 2D mesh structure and corre-

sponding adjacency matrix A is shown in Fig. 1. The graph G in the ex-

ample from Fig. 1 has four subgraphs Gi, i = 1, 2, 3, 4, i.e. rows, where each

row has three vertices. We have G1 = ({v1, v2, v3} , {e1,2, e2,3, e1,3, e2,1}), G2 =

({v4, v5, v6} , {e4,5, e5,6, e4,6, e5,4}), G3 = ({v7, v8, v9} , {e7,8, e8,9, , e7,9, e8,7}),
G4 = ({v10, v11, v12} , {e10,11, e11,12, , e10,12, e11,10}), H ≈ Ĝ1,2 ≈ Ĝ2,3 ≈ Ĝ3,4 =

({v1, v2, v3, v4, v5, v6} , {e1,2, e2,3, e1,3, e2,1, e4,5, e5,6, e4,6, e5,4, e1,4, e2,6, e3,6}),
G1,2 ≈ G2,3 ≈ G3,4 = ({v1, v2, v3, v4, v5, v6} , {e1,2, e2,3, e1,3, e2,1, e4,5, e5,6, e4,6,
e5,4}).

Figure 1: The example of the graphG (left) and corresponding adjacency matrix

A (right)

Let Gi be the i-th row of the graph G, and let AR be an adjacency matrix of

type CxC of the row Gi. Also, let AC represent an adjacency matrix containing

the edges ei,j , which connect rows i and i+ 1.
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Lemma12. The graph G with regular 2D mesh topology has an adjacency ma-

trix A = [Ap,q], where Ap,q is a submatrix of type CxC at the position (p, q).

The submatrices Ap,q have the following form:

Ap,q =

⎧⎨⎩
AR, p = q

AC , p = q − 1

O, otherwise

, (13)

i.e.

A(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
AR AC O · · · O

O AR AC O

O O AR O
...

. . .

O O O AR

⎤⎥⎥⎥⎥⎥⎥⎦
(R·C)x(R·C)

, (14)

Proof Directly from the isomorphism (1) of the definition 11 we have that all

submatrices Ap,p of the matrix A are equal to AR. From the properties (2) and

(3) given in definition 11 we have that Ap,p+1 of the matrix A are equal to AC ,

and all other Ap,q, q �= p, p+ 1, are O. �
The submatrices Ap,q of the adjacency matrix A are square matrices of type

CxC. There are total of R submatrices Ap,q in each row, and R submatrices Ap,q

in each column of the matrix A, of the type R · C x R · C.

In order to obtain the shortest paths matrix according to Theorem 6, we can

use the structure of the adjacency matrix (14) to obtain the matrix Ak. The

matrix Ak can be obtained in iterative manner, which we give in the following

lemma.

Lemma13. Let A = [Ap,q] given with (14) be the adjacency matrix of the graph

G, where Ap,q, p = 1, 2, . . . , R, q = 1, 2, . . . , R is the submatrix at the position

(p, q) within the matrix A. The submatrix Ak+1
p,q of the matrix Ak+1 =

[
Ak+1

p,q

]
can be obtain using the following iterative formula:

Ak+1
p,q =

⎧⎨⎩
Ak

p,q AR, p = q(
Ak

p,q−1 AC

)⊕ (Ak
p,q AR

)
, p ≤ q − 1

O, p > q

. (15)

Proof For any given matrix Ak =
[
Ak

p,q

]
, from (13) and the definition and

properties of matrix multiplication, the iterative formula (15) directly follows.

�
From Theorem 6 and the properties of matrix multiplication we have

Sp,q =

∞⊕
i=1

Ai
p,q. (16)
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Using (15) and (16) it is straightforward to show that the shortest paths matrix

S(G) has the following form:

S(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
S0 S1 S2 · · · SR−1

O S0 S1 SR−2

O O S0 SR−3

...
. . .

O O O S0

⎤⎥⎥⎥⎥⎥⎥⎦
(R·C)x(R·C)

. (17)

The submatrices Sm,m = 0, 1, . . . , R− 1 from (17), where m = q− p, are of the

same type CxC as the submatrices Ap,q.

We give a general method for calculation of the submatrices Sm of any given

graph G that satisfies the terms of definition 11, in the form of the following

theorem.

Theorem 14. The submatrix Sm,m = q−p, of the shortest paths matrix S(G) =

[Sp,q] of any given graph G with regular 2D mesh topology can be obtained as

Sm = Sm−1AC (I ⊕ S0) , (18)

where m = 2, 3, . . . , R− 1,

S0 =

C⊕
k=1

Ak
R, (19)

and

S1 = AC ⊕ACS0 ⊕ S0AC ⊕ S0ACS0. (20)

Proof For p = q, i.e. m = 0, from (15) we have

Ak+1
0 = Ak

0 AR, (21)

which, after substitution in (16), proves (19):

S0 =

∞⊕
k=1

Ak
0 =

∞⊕
k=1

Ak
R =

C⊕
k=1

Ak
R. (22)

For p ≤ q − 1, i.e. m ≥ 1, from (16) we have

Sm =

∞⊕
k=1

Ak
m = A1

m ⊕
∞⊕
k=1

Ak+1
m , (23)
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and from (15) we have

Sm = Am ⊕
∞⊕
k=1

Ak+1
m =

= Am ⊕
∞⊕
k=1

((
Ak

m−1AC

)⊕ (Ak
mAR

))
=

= Am ⊕
( ∞⊕

k=1

Ak
m−1

)
AC ⊕

( ∞⊕
k=1

Ak
m

)
AR =

= Am ⊕ Sm−1AC ⊕ SmAR. (24)

If we recursively unfold the form (24), we get

Sm = Am ⊕ Sm−1AC ⊕ (Am ⊕ Sm−1AC ⊕ SmAR)︸ ︷︷ ︸
Sm

AR =

= (Am ⊕AmAR)⊕ (Sm−1AC ⊕ Sm−1ACAR)⊕ SmA2
R =

· · ·
= Am

(
I ⊕

∞⊕
k=1

Ak
R

)
⊕ Sm−1AC

(
I ⊕

∞⊕
k=1

Ak
R

)
⊕ SmA∞

R . (25)

As matrix A∞
R contains all paths with length equal to ∞ from any subgraph

Gi, i = 1, 2, . . . , R, we have A∞
R = O, thus (25) becomes

Sm = Am (I ⊕ S0)⊕ Sm−1AC (I ⊕ S0) . (26)

For m = 1, from (14) we have A1 = AC , thus

S1 = AC (I ⊕ S0)⊕ S0AC (I ⊕ S0) =

= AC ⊕ACS0 ⊕ S0AC ⊕ S0ACS0, (27)

which proves (20). For m = 2, 3, . . . , R− 1 we have Am = O, thus (26) becomes

(18), which proves the theorem for m ≥ 2. �
Theorem 14 gives the calculation method for the shortest paths matrix S(G)

of any given graph G with regular 2D mesh topology. Algorithm 5 directly

interprets the result of the Theorem 14.

Algorithm 5 The shortest paths algorithm for regular 2D mesh

1: S0 = AR;

2: for i := 2 to C do

3: S0 = S0 ⊕ (S0 AR) ;

4: S1 = AC ⊕ACS0 ⊕ S0AC ⊕ S0ACS0;

5: T0 = AC  (I ⊕ S0);

6: for i := 2 to R − 1 do

7: Si = Si−1  T0;
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Using algorithm 5 for the graph G from Fig. 1, we obtain the shortest paths

matrix as

S(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 2 1 2 2 2 3 3 3 4 4

2 3 1 3 4 1 4 5 2 5 6 3

∞∞∞∞∞ 1 ∞∞ 2 ∞∞ 3

∞∞∞ 3 1 2 1 2 2 2 3 3

∞∞∞ 2 3 1 3 4 1 4 5 2

∞∞∞∞∞∞∞∞ 1 ∞∞ 2

∞∞∞∞∞∞ 3 1 2 1 2 2

∞∞∞∞∞∞ 2 3 1 3 4 1

∞∞∞∞∞∞∞∞∞∞∞ 1

∞∞∞∞∞∞∞∞∞ 3 1 2

∞∞∞∞∞∞∞∞∞ 2 3 1

∞∞∞∞∞∞∞∞∞∞∞∞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

We will evaluate the complexity of the algorithm 5 by considering the com-

plexity of matrix multiplication and addition. Having in mind that the type of

the submatrices Ap,q is CxC, the complexity of matrix multiplication is O (C3
)
,

while the complexity of matrix addition is O (C2
)
. Thus, the overall complexity

of the Algorithm 5 is

O

⎛⎜⎝(C − 1)
(
C3 + C2

)︸ ︷︷ ︸
lines 2 and 3

+4C3 + 3C2︸ ︷︷ ︸
line 4

+C2 + C3︸ ︷︷ ︸
line 5

+(R− 2)
(
C3
)︸ ︷︷ ︸

lines 6 and 7

⎞⎟⎠ =

= O (C4 + C3R
)
. (29)

If we denote the aspect ratio of the rows and columns as α = C/R, having in

mind that |V| = R · C, from (29) we get for the complexity

O
((

α2 + α
) |V|2) . (30)

Due to the fact that the algorithm complexity (30) depends on the graph

G proportions, we will evaluate the ratio (α) of the rows (R) and columns

(C) for which the algorithm 5 has better runtime than widely used Johnson’s

algorithm [Cormen et al. 2001]. The Johnson’s algorithm has the complexity

O (|V| (|E|+ |V| log |V|)). The maximum number of edges within the regular

graph from Def. 11 is

|E| = C2 · R︸ ︷︷ ︸
max.edgs.in a row x num.of.rows

+ C2 · (R − 1)︸ ︷︷ ︸
edgs. between the rows

= O (C2 ·R) .
Having in mind that α = C/R and |V| = R · C, the maximum number of

edges can be expressed as |E| = O
(√

α · |V|3/2
)
Thus, the complexity of the
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Johnson’s algorithm is O
(
|√α ·V|2.5

)
. We will set this as a boundary for the

proposed algorithm as

O
((

α2 + α
) |V|2) < O

(√
α · |V|2.5

)
. (31)

The inequality (31) is a cubic inequality of the following form:(√
α
)3

+
√
α−

√
|V| ≤ 0, (32)

which has two imaginary and one real root. Fig. 2 shows the area in |V|−α space,

bounded by the real root of (32), i.e. the area where the proposed algorithm has

better runtime then O
(√

α · |V|2.5
)
.

Figure 2: The ratio α for which the proposed algorithm has better runtime then

Johnson’s algorithm

For example, if α = 1 the complexity of the proposed algorithm is equal

to O
(
|V|2

)
, and the complexity of the Johnson’s algorithm is O

(
|V|2.5

)
. As

α represents the ratio between the number of rows (R) and columns (C) of

the graph G with |V| = R · C vertices, α = 1 represents the special case of

the ”square” graph G with C = R, typical for nano-FPGA arrays (nFPGA)

[Dong et al. 2007]. This case is denoted with dashed line in Fig. 2.

If we choose a graph G with α which is outside of the area illustrated in

Fig. 2, i.e. R ∈ Θ(1), then we have C ∈ Θ(|V|) and α ∈ Θ(|V|), thus (30)

leads to a running time of O
(
|V|4

)
. However, it is straightforward to show

that Def. 11 holds when the graph is transposed, as well. This is due to the

isomorphism of both rows and columns, introduced in Def. 11. Hence, if the

ratio of the rows and columns (α) of the graph gives worse runtime, the graph
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can be simply transposed, which reduces the complexity back to the values below

O
(√

α · |V|2.5
)
.

6 Conclusion

In this paper we proposed a new all-pairs shortest paths algorithm, for any given

regular 2D mesh topology, with worst case complexity of O(|V|2). The algorithm
is developed into formalism by algebraic transformations in tropical algebra of

the well-known Floyd-Warshall’s algorithm. We explored the possibility to trans-

form the algorithm and provide further reduction of its complexity by exploiting

the properties of the domain application. The proposed algorithm can achieve

better runtime than other known algorithms at the cost of narrowing the scope

of the graphs that it can process to the graphs with regular 2D topology. First,

we proved the equivalency of the Floyd-Warshall’s algorithm and its tropical

algebraic representation, and put the transformations of the algorithm into the

algebraic domain. Secondly, having in mind the structure of the target class of

graphs, we transformed the original algorithm in the algebraic domain and de-

veloped a simple, low-complexity iterative algorithm for all-pairs shortest paths

calculation.
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