
Clock-Skew-Based Computer Identification: Traps and

Pitfalls

Libor Polčák

(Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic

ipolcak@fit.vutbr.cz)

Barbora Franková

(Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic

xfrank08@stud.fit.vutbr.cz)

Abstract: Each clock has built-in deficiencies since the manufacturing process is not
precise on atomic level. These inaccuracies cause each clock to drift in a unique way.
Clock skew has been already studied and used to identify computers. Based on the
previous research in clock-skew-based identification, this paper provides a summary
of use cases and methods for clock-skew-based identification. Nevertheless, the main
contribution of the paper is following: (1) A formal evaluation of the requirements for
precise clock skew estimations. The formal approach is accompanied with an empirical
study of 24,071 clock skew measurements. (2) A method that links IPv4 and IPv6
addresses of a single computer. (3) A scenario, during which a malicious attacker mimics
clock skew of another computer and consequently, for example, penetrates through
authentication mechanisms considered during previous research. (4) Even though the
real network observations expose that current precision in clock skew estimation is not
sufficient to uniquely identify devices in moderately-sized network, some IPv4 and IPv6
addresses can be linked based on unique clock skew shifts of a computer, for example
caused by a running NTP daemon.

Key Words: Device fingerprinting, clock skew, security, counter-measures, IPv6.

Category: C.2.3

1 Introduction

A computer clock is typically controlled by a crystal oscillating with a specific

frequency. However, due to physical limitations of the manufacturing process,

each crystal is unique on the atomic level. The differences result in a small

deviation of the frequency of the crystal oscillation, and consequently, cause a

small inaccuracy in the time measurement. The inaccuracy is called clock skew.

During remote clock-skew-based computer identification, an observer (a fin-

gerprinter) gathers time stamps of computers to be identified (fingerprintees)

with the goal of unique identification of all or specific computers. Remote clock-

skew-based computer identification was first presented by [Kohno et al., 2005]

with applications in location tracking, device detection behind a network ad-

dress translator, and honeynet detection. Later, other applications followed,

Journal of Universal Computer Science, vol. 21, no. 9 (2015), 1210-1233
submitted: 23/9/14, accepted: 18/8/15, appeared: 1/9/15 © J.UCS

e.g. deanonymization [Murdoch, 2006], rogue access point detection [Jana and

Kasera, 2010], and multi-factor authentication [Huang et al., 2012].

This paper pursues the ideas that originally appeared in our previous paper

[Polčák and Franková, 2014]. The previous paper argued about the minimal

requirements to compute sound clock skew estimates and unveiled that unique

identification in real network is hardly possible. In this paper, we provide the

formal evaluation of requirements for sound clock skew estimates. The evaluation

supports the claims raised in the previous paper [Polčák and Franková, 2014].

The precision of the estimates does not solely depend on the number of packets

as previous studies suggested [Sharma et al., 2012]. Instead, the duration of

the measurement is more important as it allows a fingerprinter to detect time

stamps that compensate the variable time stamp delivery latency. As a side

effect, longer fingerprinting is correlated with higher number of packets. Higher

number of packets can reveal more information about processing and network

delay. To demonstrate the requirements, this paper provides a real-network study

consisting of 24,071 clock skew estimation samples.

Another contribution of this paper is in the exposure of a method to mimic

clock skew of another computer. Applying this method, an attacker may con-

fuse the multi-factor authentication discussed in the past [Huang et al., 2012].

Another applications of the method allows to protect a set of computers from

reconnaissance attacks based on clock skew estimation [Kohno et al., 2005] or a

single laptop can mimic a different clock skew each time the laptop reconnects

to the network and consequently limit the previously published location tracking

algorithm [Kohno et al., 2005].

The final contribution of this paper is the applicability of clock-skew-based

identification for linking IPv4 and IPv6 addresses of a single computer. Our

results confirm the expectation that the clock skew is not influenced by the IP

family. Therefore, it is possible to link the IPv4 address and all IPv6 addresses of

one computer. The laboratory results showed that the method is viable. However,

a real network deployment can fail since the clock skew is not unique enough to

identify several hundreds of computers [Polčák and Franková, 2014]. Neverthe-

less, the changes in clock skew are observable by a long-term fingerprinter if he

or she has enough time stamp samples spread in time. Consequently, the long-

term fingerprinter can link IPv4 and IPv6 addresses based on the synchronous

changes of clock skew measured for all addresses of the same computer.

This paper is organized as follows. Section 2 introduces the clock-skew-based

identification and overviews the previous research. Section 3 classifies fingerprint-

ers, lists their use cases for clock-skew-based identification, and overviews time

stamp sources. The conditions for computation of sound estimates are derived

in Section 4. Section 5 reveals a possibility to spoof clock skew by an attacker

trying to mimic a computer of a victim. Section 6 demonstrates how to use

1211Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

clock skew to reveal all IPv6 addresses of one computer. Section 7 covers real

network deployment and the study of clock skew distribution in real network.

Section 8 discusses the impact of this paper on clock-skew based identification

and Section 9 concludes the paper.

2 Clock skew estimation

Kohno et al. introduced the original idea behind clock skew computation to

identify network devices [Kohno et al., 2005] as follows. Let us denote the time

reported by clock C at time t (as defined by national standards, i.e. the true

time) as RC(t). The offset is the difference between two clocks: offC,D(t) ≡

RC(t) − RD(t). Assume that offC,D is a differentiable function in t, then, clock

skew sC,D is the first derivative of offC,D. Clock skew is measured in μs/s, often

referred as parts per million (ppm).

Consider C to be the clock of the fingerprinter and D to be the clock of the

fingerprintee as depicted in Figure 1. RD is not observable by the fingerprinter,

instead, it sees packets marked with time stamps delayed by ε(t), i.e. the delay

observed at time t. The delay ε(t) is composed of the processing time at both

the fingerprinter and the fingerprintee and the network delay. If ε were constant,

the first derivative of offε
C,D ≡ RC(t)− RD(t− ε(t)) would have been equal to

the first derivative of offC,D. Unfortunately, ε is not a constant.

Figure 1: Each time stamp of the fingerprintee is delayed by the network and

the network stacks of the end hosts.

Let us represent observed timestamps from the fingerprintee as offset points

(x, y) where x is the observation time, either RC(t) or the elapsed time since the

start of the measurement, i.e. RC(t) − RC(tstart); and y is the observed offset

offε
C,D(t). Kohno et al. proposed to estimate clock skew by the slope of the

upper bound of all offset points. They have shown that the slope of the upper

bound is similar to the slope of the offC,D. Consequently, the first derivatives

are similar and the clock skew can be estimated by computing the slope of the

upper bound of all offset points. See Figure 2 for an example.

The original paper [Kohno et al., 2005] studied the advantages and disad-

vantages of the clock-skew-based identification. Kohno et al. used two sources of

1212 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

Figure 2: Clock skew estimation.

time stamps: time stamps from TCP can be collected passively whereas gather-

ing time stamps from ICMP needs active probing.

Later, time stamps carried on the application layer were considered [Mur-

doch, 2006,Zander and Murdoch, 2008,Huang et al., 2012]. Zander and Murdoch

computed clock skew from time stamps present in the HTTP protocol. HTTP

defines Date header that typically contains the time stamp reflecting the time

when the reply was generated. Usually the resolution is 1 second and therefore

the frequency is 1Hz. While HTTP 1.0 recommended Date headers, since HTTP

1.1, the Date header is a mandatory header in almost all replies (except some 5xx

errors and 1xx replies). The dominant version of HTTP is 1.1 so the method is

generally applicable. However, the small frequency might result in a quantisation

error [Zander and Murdoch, 2008] of up to 1 second.

Nevertheless, the quantisation error can be compensated [Zander and Mur-

doch, 2008] with synchronized sampling. A fingerprinter employing synchronized

sampling tries to synchronize HTTP request probes with clock ticks of the fin-

gerprintee. As a result, active fingerprinters can remove the quantisation error

to determine clock skew even from low frequency time stamp sources.

Besides HTTP, many other application layer protocols carry time stamps,

e.g. XMPP, SMTP, and RTP. Usually, the resolution of these time stamps is

in seconds, therefore, the measurement is spoiled by quantisation error if the

fingerprintee does not remove it, e.g. by synchronized sampling [Zander and

Murdoch, 2008].

Ding-Jie Huang et al. [Huang et al., 2012] employed AJAX to send additional

time stamps to the web server that computes clock skew of its clients as one

1213Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

of the input of multi-factor authentication. In this case, the login web page

contains custom JavaScript code that periodically sends time stamps from the

fingerprintee to the fingerprinter.

Sharma et al. improved the detection by introducing a batch of ICMP packets

to compensate for the latency and losses on the network path [Sharma et al.,

2012]. We did not consider using this approach for the following reasons: (1) our

focus was also on passive detection, (2) ICMP time stamps are not supported

by Windows in a standard way, (3) ICMP time stamps are disabled by default

in Apple operating systems, and (4) the successor of ICMP for IPv6, ICMPv6,

does not define ICMPv6 Time stamp Request and Reply.

Although [Huang et al., 2012] improved the clock skew estimation by linear

regression and other techniques, the reported error was still in the range of

±1 ppm, i.e. the same as discussed by [Kohno et al., 2005]. Hence, we did not use

their improvements. However, in this paper, we derive a formula that quantifies

the error of the estimation. This formula can be used to reduce the ambiguity

of clock skew estimates during long-term measurements.

One of our previous works [Polčák et al., 2014] reported that time shifts of

Linux hosts are propagated to TCP time stamps, e.g. by NTP-enabled hosts.

Our following work [Polčák and Franková, 2014] studied the NTP influence on

other sources of time stamps. Time stamp inserted in user space are influenced

by NTP. The paper also presented that in the meantime, NTP-enabled BSD

hosts also propagate clock changes to TCP time stamps.

The previous paper [Polčák and Franková, 2014] already argued about the

minimal requirements to compute clock skew estimates. In this paper, we extend

the discussion by formal examination of the important factors influencing the

quality of a clock skew estimate. Additionally, this paper presents a study of

more than 24,071 samples of clock skew estimation to validate the examination.

In addition, separate line of study emerged in the field of rogue access point

identification [Jana and Kasera, 2010,Lanze et al., 2012]. This approach uses yet

another source of time stamps — IEEE 802.11 Time Synchronization Function

time stamps exchanged in Wi-Fi networks.

3 Use cases for clock-skew-based identification

The previous section shows that clock-skew-based identification has already been

tested for different applications. Specific applications have specific requirements

on the clock-skew-based identification. This section provides a classification of

fingerprinters that can employ clock skew based identification, the applications

and the methods to obtain time stamps.

A fingerprinter can be either passive or active.

– A passive fingerprinter monitors network traffic and detects time stamps

1214 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

carried in packets, mostly in protocol headers, e.g. TCP [Kohno et al., 2005]

or HTTP. As a passive fingerprinter does not modify network traffic, his or

hers activities are undetectable by fingerprintees.

– In contrast, an active fingerprinter injects time stamp probe packets to the

network that yields him or her additional time stamps, e.g. ICMP [Kohno

et al., 2005], JavaScript generated time stamps [Huang et al., 2012], or ad-

ditional information during synchronized sampling [Zander and Murdoch,

2008]. The main drawback of the active fingerprinting is the presence of the

additional traffic that consumes network bandwidth and creates a risk of a

fingerprintee revealing the additional traffic.

Depending on the time available to provide clock skew estimates, two possible

scenarios arise:

– A quick (rapid) clock-skew estimation allows an attacker to quickly compute

a clock skew estimation [Huang et al., 2012]. The goal is to identify the device

originating the traffic as fast as possible.

– During long-term measurements, a fingerprinter does not need to have the

results as fast as possible. Consequently, the fingerprinter can observe long

term clock skew development, such as small shifts in clock skew caused by

temperature changes [Murdoch, 2006].

Based on the previous two lists, there are four types of possible fingerprint-

ers, each type is suitable for different type of applications of clock-skew-based

identification.

1. A passive rapid fingerprinter can quickly identify a device during targeted

surveillance, e.g. for lawful interception (during which the observer cannot

alter the observed traffic). Another application is the identification of rogue

access points [Lanze et al., 2012], during which a user trying to access a

wireless network confirms the identity of the access point.

2. A passive long-term fingerprinter can monitor changes in clock skew caused

by NTP or temperature changes. Consequently, the fingerprinter can learn

all IP addresses used by a specific computer (see Section 6), track location

of a computer [Kohno et al., 2005], learn geographical location [Murdoch,

2006] or reveal computers behind network address translator [Kohno et al.,

2005].

3. An active rapid fingerprinter can use clock-skew-based identification during

multi-factor authentication [Huang et al., 2012] or to improve the estimates

[Sharma et al., 2012] compared with rapid passive fingerprinter.

1215Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

4. An active long-term fingerprinter can improve the quality of the clock skew

estimates compared to both active rapid fingerprinter and passive long-term

fingerprinter. Applications include deanonymization [Zander and Murdoch,

2008], virtual PCs and honeypot detection [Kohno et al., 2005].

So far, several sources of time stamps have been identified:

– TCP time stamps are one of the TCP options [Jacobson et al., 1992,Borman

et al., 2014]. TCP time stamps are present in each TCP segment header when

a client and a server negotiate this option during the initial TCP phase. Since

the original paper [Kohno et al., 2005], it is known that TCP time stamps are

not generated by Windows devices by default. We evaluated that this is valid

to this date and Windows 8.1 (and also Windows 10, pre-release build 10074)

still does support neither RFC 7323 nor the original RFC 1323 by default.

Kohno et al. injected time stamp into the first SYN packet, and consequently

forced Windows clients to include TCP time stamps into consecutive seg-

ments. Therefore, an active fingerprinter can trick Windows client to add

TCP time stamps. Linux, Mac OS X, iOS, and FreeBSD include TCP time

stamps by default. However, Linux and FreeBSD TCP time stamps are in-

fluenced by NTP [Polčák et al., 2014,Polčák and Franková, 2014] and Mac

OS X and iOS timestamps are influenced by unknown error [Polčák and

Franková, 2014] (valid also in Mac OS X 10.7.5 and iOS 8.3).

– ICMP defines Timestamp Request that asks a remote host to respond with

its current time stamp. Hence, ICMP time stamps are available only for an

active fingerprinter. The downside of the ICMP-based measuring is the non-

uniform implementation in current operating systems [Polčák and Franková,

2014]. Furthermore, ICMP Timestamp Request is defined in IPv4 but it is

not available in IPv6.

– HTTP, XMPP, and several other application layer protocols add time stamps

to all or specific messages. A passive fingerprinter can observe these time

stamps. However, these time stamps have usually the frequency of 1Hz and

suffer from high quantisation error [Murdoch, 2006]. An active fingerprinter

can synchronize probe requests with clock of the fingerprintee and effectively

remove the quantisation error [Zander and Murdoch, 2008].

– An adversary capable of executing code on the fingerprintee (e.g. via AJAX

– JavaScript code embedded to a web page [Huang et al., 2012]) can enforce

the fingerprintee to send time stamps either directly to the fingerprinter or

via a link that the fingerprinter observes.

– IEEE 802.11 (Wi-Fi) networks need synchronised clocks between an access

point and all hosts to maintain basic functionality such as frequency hop-

1216 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

ping. Access points send periodical beacons that a passive fingerprinter can

monitor [Jana and Kasera, 2010,Lanze et al., 2012].

Table 1 summarizes the time stamp sources, their type, and the frequency of

the clock value increments (clock ticks).

Method Type Frequency

ICMP Active 1 kHz

TCP Passive 10-1000Hz (OS-dependant)

Application layer protocols Active or passive Method/OS-dependant

Enforced time stamps Active Method/OS-dependant

IEEE 802.11 beacon frames Passive 1MHz

Table 1: Comparison of time stamp sources.

4 Quick availability of estimates

Before employing clock-skew-based computer identification, it is necessary to

be aware of the stability of clock skew and the accuracy of the computed es-

timates. This section revisits the discussion [Kohno et al., 2005, Sharma et al.,

2012,Polčák and Franková, 2014] about the requirements for accurate estimation

of the clock skew of a specific computer for rapid clock-skew-based identification.

This section proves that the quality of clock skew estimates depends on the

duration of the measurement and the stability of the time stamp observation

delay. Nevertheless, the number of observed packets influence the quality of the

estimate in two ways: 1) the longer the fingerprinting lasts the more packets are

available and 2) the more packets are available the more probable it is to get

time stamps shifted with such similar delay ε, so that the time difference between

the two packets forming the upper bound compensates for the difference in the

delay ε.

4.1 Formal evaluation

For simplicity, let us denote offC,D ≡ off and similarly offε
C,D ≡ offε in the

following text as both functions refer to the offset between the clocks of the

fingerprinter and the fingerprintee.

By the definition of the upper bound, there are at least two offset points

located on the upper bound. Let us refer one of these points as an offset point

X. Its coordinates are X = [tX , offε(tX)] where tX is the observation time.

1217Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

In addition, let us denote the amount of time elapsed during period T (of the

national standards true time) on clock C as EC(T). According to the equation 1,

the y-coordinate of X equals to off(tX)− ED(ε(tX)).

offε(t) = RC(t)− RD(t− ε(t)) =

= RC(t)− RD(t)− ED(ε(t)) =

= off(t)− ED(ε(t))

(1)

Figure 3 depicts the geometry of a clock skew estimation. Consider the two

offset points A′, B′ located on the upper bound b(t). The offset points were

observed at time t1 and t2, hence b(t1) = off(t1)−ED(ε(t1)). The points A′, B′,

and the point C ′ = [t2, b(t1)] form a right triangle. In addition, consider the

counter image triangle defined by points A,B, and C, such that A and B is

located on the line representing real offset, off(t), of the clocks. Hence, the points

A and B represent the real offset between the clock of the fingerprinter and the

fingerprintee at the time t1 and t2 that is not biased by the delay ε.

Figure 3: Outline of clock skew computation used for error estimation.

The formula 2 defines the observed clock skew whereas the real clock skew

1218 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

is defined by the formula 3.

sobserved ≡ tanα′ =
off(t2)− off(t1) + ED(ε(t1))− ED(ε(t2))

t2 − t1
, (2)

s ≡ tanα =
off(t2)− off(t1)

t2 − t1
. (3)

Combining equations 2 and 3, one can derive equation 4 that expresses the

dependency of the observed clock skew on the real clock skew and the error

introduced by the observed volatile latency ε.

sobserved = s+
ED(ε(t1))− ED(ε(t2))

t2 − t1
. (4)

Let us denote Δt ≡ t2 − t1 and Δε ≡ |ED(ε(t1))− ED(ε(t2))|. Additionally,

let us denote the expected precision of a clock skew measurement as P . To satisfy

the precision requirement, the observed error (introduced by the formula 4) has

to be lower than P as displayed in the formula 5.

Δε

Δt
≤ P. (5)

In contrast with the expectation of needing 70 packets to estimate reliable

clock skew [Sharma et al., 2012], the formula 5 shows that the quality of the

estimation depends on the instability of the network latency Δε and the elapsed

time Δt. Note that Δt is weakly lower than the total duration of the measure-

ment as Δt cannot be bigger than the measurement duration. Hence, a longer

measurements can yield more precise estimates as a longer measurement can

detect offset points with similar Δε and bigger Δt.

Supposing that the fingerprinter observes only packets going through one net-

work path, the latency introduced by wires and fibres is constant. Papagiannaki

et al. studied the single hop delay [Papagiannaki et al., 2002]. Their conclusion is

that there is at least one packet that experiences no queueing in each one minute

interval on a hop. Additionally, each middle box delays a packet with minimal

latency with certain probability. However, as their study is already more than

10 years old, their models for expressing the probability could have been inval-

idated by better routers and switches that does not experience the long delays

that Papagiannaki et al. observed.

Therefore, we do not continue in quantifying the error. Based on the study

of Papagiannaki et al., a higher number of packets can yield an upper bound

for which the Δε is low. Nevertheless, this effect is only indirect and additional

effects have to be considered. For example, the latency ε depends on the network

topology as each middle box adds to the total delay. In addition, network load or

packet size [Papagiannaki et al., 2002] also influence the queueing time. Longer

1219Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

duration of a measurement Δt relaxes the conditions on the fluctuation of ε as

shown in the formula 5 as well as additional packets that can experience lower ε.

Additionally, the software generating time stamps may increase the variance

of ε when an already obtained time stamp value is delayed by a data processing

algorithm that constructs the network message. For example, a user space code

can construct each message based on a different number of kernel calls or there

might be a garbage collector running that delays the execution of the program

code.

Even more, computer clocks are updated by a constant value. The exact value

depends on the underlying frequency of the clock source. This creates quantisa-

tion error and it is an important factor in the clock skew computation. Without

synchronized sampling, it takes longer to compute the clock skew of a source with

a frequency of 1Hz than 100Hz simply because the time that the clock value

does not change contributes to the ε. Consequently, the increased instability of

Δε has to be compensated with bigger Δt to achieve the same precision. Nev-

ertheless, an active fingerprinter can synchronize [Zander and Murdoch, 2008]

probe packets with clock ticks at the fingerprinter to remove the quantisation

error from ε.

4.2 Empirical evaluation

To examine the relation between fingerprinting duration and the number of

packets to compute reliable clock skew estimates, we set up two experimental

scenarios during which we monitored time stamps generated by our laboratory

computers, running Red Hat Enterprise Linux 6.6 with Linux kernel 2.6.32.

In the first experimental scenario, we fingerprinted 18 computers. We run a

Python script repeatedly calling the time.time() function. The script then sent

the time stamp to the fingerprintee in a TCP flow with TCP time stamping en-

abled. TCP time stamps had a frequency of 1 kHz whereas the Python inserted

time stamps had a frequency of 10MHz. We included the very high Python-

inserted time stamps to get as precise time stamps as possible. Since two suc-

cessive calls of time.time() yields different value, we removed the quantisation

error.

All computers generated time stamps with a Poisson distribution with ex-

pected number of requests between 1 and 10 per second. Time stamps were sent

to the fingerprinter in HTTP requests, each yielding one Python-inserted time

stamp and several TCP time stamps. The scenario simulated possibilities of a

passive fingerprinter observing some kind of interactive web application with

frequent communication with the web server. At the same time, it simulated the

possibilities of an active fingerprinter generating time stamps in a user space

application, e.g. for authentication purposes [Huang et al., 2012].

1220 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

The second experimental scenario aimed on JavaScript-inserted time stamps

in a Firefox browser. The fingerprinter repeatedly monitored 4 computers, each

one was periodically (with a period between 0.1 s and 1 s) sending its current time

stamp obtained from the Date.getTime() function. The function provides time

stamps with 1 kHz frequency. To minimize the quantisation error, we let the

JavaScript code to repeatedly obtain a new value from Date.getTime() while

the returned value did not change. Therefore the code detected a clock tick

and sent the time stamp to the fingerprinter. The second scenario studied the

possibilities of an active fingerprinter capable of running JavaScript code in a

user browser [Huang et al., 2012].

In total, we run 9,959 TCP experiments, 10,016 Python-inserted time stamp

experiments, and 4,096 JavaScript-inserted time stamp experiments. During each

experiment, we computed current clock skew of the computer based on the actual

conditions (e.g. temperature). Then, we determined the number of sent packets

and the elapsed time, after which the clock skew estimation did not leave the final

value ±1 ppm interval. Note that in both scenarios, TCP time stamps contained

quantisation noise as neither the fingerprinter nor the fingerprintees tried to

detect ticks from TCP time stamps.

Figure 4 shows that hundreds of packets carrying TCP or Python-generated

time stamps were needed in a majority of the experiments, some experiments

required thousands of time stamps before the clock skew estimate converged to

the ±1 ppm range of the expected value. We did not observe any special bound-

ary associated with 70 time stamps as reported in previous research [Sharma

et al., 2012]. Whereas 41.67% of experiments with JavaScript-inserted already

converged before detecting 70 time stamps, only 0.35% of TCP experiments and

only 0.28% of experiments with Python-inserted time stamps required 70 time

stamps or less.

Given a specific number of packets, the share of already converged exper-

iments with Python-inserted and JavaScript-inserted time stamps were higher

compared to the measurements based on TCP time stamps. Each HTTP request

yielded several TCP time stamps but only one Python-inserted or JavaScript-

inserted time stamp. Hence, there were a higher number of TCP time stamps

in a fixed interval during each measurement. Therefore, a measurement consist-

ing of a specific number of Python-inserted or JavaScript-inserted time stamps

generally took longer than a measurement computing clock skew from the same

number of TCP time stamps.

Figure 5 depicts the share of experiments converged to the final value ±1 ppm

interval at a specific time after the start of the measurement. As obvious, Python-

inserted time stamps took generally much longer to converge. 41.2% of TCP

experiments converged in 20 seconds, 70.6% converged in 30 seconds and 97.3%

converged in one minute. Only 2.8% of Python-inserted time stamp experiments

1221Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

Figure 4: Experiments with Python-inserted and JavaScript-inserted time

stamps required lower number of time stamps due to a higher frequency or

lower quantisation error.

converged in one minute and 95.1% converged in 6 minutes. JavaScript-inserted

time stamp experiments have different development: 38.1% of JavaScript-inserted

time stamp experiments converged in 20 seconds, 53.4% in one minute, 96.9%

in 3.5 minutes and 99.7% converged in 6 minutes.

Figure 5: TCP-time-stamp-based clock skew fingerprinting took shorter time

than fingerprinting based on Python-inserted time stamps.

1222 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

The slow convergence of the Python-inserted time stamps is caused by a high

volatility of ε. Even though the program received different time stamps after each

call of the time.time() function, the call of the time.time() function results in

the context switch from the kernel space to the user space after the time stamp

is obtained in kernel space, then the Python interpreter might schedule garbage

collector or another service routine during the construction of the HTTP request.

Finally, the context is switched to the kernel space to send the HTTP request

through the network stack. Since the context switching is not deterministic, the

variance of ε increases and clock skew estimates converge to its correct value

longer. JavaScript implementation in the Firefox browser seems to have lower

variance of the ε which resulted in a very fast convergence of about 40% of

experiments with the convergence pace similar to the pace achievable from TCP

time stamps. However, about 60% of experiments took longer time to converge

in comparison with TCP time stamp fingerprinting.

Figure 6 depicts the error during the first experimental scenario. The quality

of the estimation improves in time, as expected by the equation 5.

a) TCP time stamps. b) Python-inserted time stamps.

Figure 6: Minimal, maximal and median value of the error during clock skew

computation.

In summary, the observation confirms the expectations raised by the for-

mula 5. The longer an experiment lasts, the less likely it is to get a time stamp

that introduces an offset point that incorrectly shifts the upper bound of all

offset points.

5 Imitating clock skew of a victim computer

One of the use cases introduced by previous research [Huang et al., 2012] em-

ployed clock-skew-based identification as a part of a multi-factor authentication.

1223Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

In this scenario, a client authenticates to a server, for example, via Internet. The

server quickly estimates the clock skew value. In case of stolen credentials, even

though the provided primary authentication method, e.g. password, is correct, a

newly observed clock skew triggers an additional authentication method, e.g. via

SMS. Note that this scenario expects that it is hard or impossible to forge the

clock skew of a computer; hence the scenario expects that an attacker cannot

mimic clock skew of a computer that is regularly used to access the password-

protected service.

When an NTP daemon [Mills et al., 2010] is running, it tracks the current

correction for the built-in clock for the frequency of the local clock oscillator in

a special file called driftfile. Consequently, when an NTP daemon is restarted,

it can read the previously stored correction from the driftfile, modify the clock

to compensate its ticks according to the correction, and use the value as a basis

for future clock corrections.

Therefore, anyone trying to mimic a specific clock skew of another computer

can follow the consequent steps:

1. Run an NTP daemon and find the clock skew of the attacking computer,

e.g. from the driftfile.

2. Find the clock skew of the victim, preferably by fingerprinting the victim

computer by the attacking computer (still running the NTP daemon).

3. Add the clock skew learnt in step 2 to the value stored in the driftfile in

the step 1. Use the sum as the correction of attacking computer clock, for

example, by restarting the NTP daemon on the attacking computer and

immediately stopping the daemon.

By following the steps above, we were able to reproduce the built-in clock

skew of the computers in our laboratory by another computer. As a result, the

suitability of the clock-skew-based identification for the multi factor identifica-

tion is questionable as it can be evaded easily.

A rapid fingerprinter cannot differentiate the attacker and victim computer.

However, a long-term fingerprinter can observe differences in the clock skew

development in time, e.g. related to temperature [Murdoch, 2006]. Consequently,

the long-term fingerprinter can reveal that the attacking computer and the victim

computer are indeed different devices.

6 Multiple IPv6 addresses

The advent of IPv6 brings the need to redesign the computer identification: in

IPv4, every user used only one IP address at a single time. This enabled Internet

sites to apply specific policies to a specific IP address. For example, a botnet

1224 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

computer trying to send a huge number of e-mails during a short time period

can be blacklisted by the SMTP service.

A user that is connected via both IPv4 and IPv6 (dual stack) can connect

to any dual stack service through IPv4 or IPv6. The addresses of two different

families are not linked in any way. Therefore, the banned computer can evade

the policies by switching the address family. Moreover, while IPv4 computers

use only one address, IPv6-enabled computers can simultaneously use as many

addresses as they can generate [Narten et al., 2007]. This Section demonstrates

a novel use of clock skew estimates to link all IPv4 and IPv6 addresses of one

computer.

Since the network layer does not modify data from upper layers, TCP time

stamps and application-generated time stamps are present in IPv6 datagrams.

However, ICMPv6 does not define ICMPv6 Time stamp Request and Reply.

6.1 Improved Linkability

The clock skew of a computer is not stable, temperature [Kohno et al., 2005,

Murdoch, 2006] or time shifts [Polčák and Franková, 2014] influence its current

value. Instead of estimating single stable clock skew, we propose to compute a

sequence of clock skew values valid for a specific time frame. To improve the

linkability of addresses of a computer, we consider two clock skew sequences to

be similar, and consequently to be possibly of a single computer, if the following

holds:

1. either both clock skew estimates were stable and both estimates were within

the range of ±1 ppm (in this case, it does not make a difference if both

addresses were active during the same period or not),

or,

2. both clock skew estimates were within the range of ±1 ppm during the period

when both addresses were active (in this case, there has to be a period during

which both addresses were active; when clock skew of one of the addresses

changed the other clock skew changed soon to a similar value).

The first case covers the original identification [Kohno et al., 2005]. Every

computer with stable clock skew is identifiable even though it changes the IP

address. The second case covers time shifts [Polčák and Franková, 2014] caused

by NTP and user time manipulations. In principle the second case is similar to

the evaluation used to detect hidden services [Murdoch, 2006].

6.2 Laboratory evaluation

To evaluate the correctness of our hypothesis that all addresses used by the

same computer can be linked by matching their clock skew, we examined the

1225Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

data from the experiments described in subsection 4.2. During all fingerprinting

measurements, the computers sent time stamps employing both IPv4 and IPv6.

Both Python-inserted and JavaScript-inserted time stamps converged to the

same value as the TCP time stamps in both IPv4 and IPv6.

In addition, we evaluated an Apple Mac Mini, an Apple Mac Book (Mac OS

X 10.7.5 and earlier versions), an Apple iPad (iOS 8.3 and earlier versions), Win-

dows 7, Windows 8.1, and FreeBSD computers. JavaScript-inserted time stamps

converged to the same value for the same computer independently on the network

protocol, i.e. IPv4 and IPv6. Except Apple computers, the estimated clock skew

was within the ±1 ppm margin when computed from TCP time stamps. More-

over, the difference between the clock skew computed from TCP and JavaScript-

inserted time stamps were also within the expected error level of ±1 ppm.

Clock skew of Apple devices estimated from TCP was completely different

to the one computed from JavaScript-inserted time stamps. In our previous

work [Polčák and Franková, 2014], we discussed exceptionally high clock skew

of Apple devices when computed from TCP time stamps. This feature prevents

the linkage of IPv4 and IPv6 addresses based on TCP time stamps. Although

substantial changes of clock skew were detected in IPv4 and IPv6 packets at

roughly comparable time, the estimated clock skew of IPv4 and IPv6 packets

did not get to the expected error level. For example, the estimation computed

from IPv4 datagrams of the Mac Book were between −5127 and −1900 ppm

while estimated clock skew from IPv6 datagrams oscillated between −5032 and

−1923 ppm. Similarly, the IPv4 clock skew estimations of the Mac Mini were in

the range of −5152 and −1643 ppm while the IPv6 clock skew estimations varied

between −5177 and −1037 ppm.

There are two system calls that influence clock values of a Linux, a FreeBSD,

a Mac OS X, or an iOS computer:

– adjtime() slowly compensates the time difference so that the internal clocks

are synchronized to the desired value, usually advertised by NTP, without

a big jump of clock value. During this process, the system time exhibits

different clock skew. After the adjustment is completed, the system time

returns to the original clock skew value.

– settimeofday() replaces the local time at once without any influence on clock

skew.

Our laboratory experiments linked all IPv4 and IPv6 addresses simultane-

ously used by a single computer even when the time stamps were influenced by

the calls of settimeofday() and adjtime(). Clock skew estimations were stable and

comparable in between the calls. Again, the only exceptions were estimations de-

rived from TCP time stamps of Apple devices because of the exceptionally high

and unstable clock skew estimates.

1226 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

Although the addresses of the Apple devices were not linkable automatically,

it is possible to link the addresses by thorough examination of the observed time

stamps. Let us take Figure 7 as an example. It displays one fingerprintee that

has both an IPv4 and an IPv6 address. Even though the estimated clock skew

differs by hundreds of ppm, the shape formed by the observed offset points is

similar. Hence, it is possible to detect changes in the estimated clock skew and

correlate the addresses of the same computer even though the exact estimated

clock skew value do not match. Nevertheless, to do so, the fingerprinter needs

to have enough offset points, so that the clock skew changes are identifiable.

a) IPv4 address. b) IPv6 address.

Figure 7: Clock skew measurement of an Apple device based on TCP time

stamps.

7 Real network experiment

This section describes our experience from real network monitoring. For this

purpose, we fingerprinted devices in our faculty network. We mirrored traffic

going through the network link that connects our faculty with the University

network. We fingerprinted TCP segments with time stamp options enabled. Our

monitoring was completely passive and long term. For each detected address,

we computed clock skew and followed its development. Originally [Polčák and

Franková, 2014], we performed the experiment for IPv4 addresses. In this paper,

we include IPv6 data for the study and look at the data from the perspective of

a rapid and long-term fingerprinter.

We fingerprinted following devices:

– laboratory computers (Windows, Linux, and FreeBSD),

– desktops and laptops of the faculty staff (Windows, Linux, and FreeBSD),

1227Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

– mobile devices connected to the faculty Wi-Fi (e.g. Android, iOS),

– faculty servers (mostly Linux and FreeBSD),

– remote servers accessed by the above mentioned computers,

– remote clients that connected to local servers.

Since we focused only on TCP time stamps, we did not consider Windows

clients because they do not send TCP time stamps by default. In addition,

for privacy reasons, we did not look at the specific cases in detail and we did

not compare the gathered information to external sources. Table 2 reports the

number of addresses observed during the experiment. The goal of this experiment

was to gather more information about the feasibility of the clock-skew-based

identification in real network environment.

IPv4 IPv6

Working hours 350–649 100–196

Nights 120–170 15–40

Table 2: Number of IP addresses with computed clock skew during the real

network monitoring.

From the perspective of a rapid fingerprinter, clock skew distribution is very

important. With hundreds of devices, the clock skew needs to be spread over a

large ppm space so that every single computer is identifiable. Since the distri-

bution of clock skew did not change significantly during the experiment, let us

focus on one sampled state of the network as an example — an afternoon of a

working day.

At that point of time, 823 addresses sending TCP time stamps were detected

in the network (646 IPv4 addresses and 177 IPv6 addresses). The histogram of

all estimated clock skew in the network at that time, displayed in Figure 8, shows

that substantial part of addresses have clock skew close to zero. The addresses

with very high (over 1000 ppm) or low (less than −1000 ppm) clock skew showed

similar properties of the Apple operating systems, e.g. the clock skew was not

stable [Polčák and Franková, 2014].

The maximal number of IP addresses within the ±1 ppm range was 223 for

IPv4 and 72 for IPv6. It means that 34.5% of IPv4 addresses could have been

considered to be assigned to the same computer. In the IPv6 case, the ratio

of addresses possibly originating from the same computer is 40.7%. We believe

that this is caused by the time synchronisation through NTP.

1228 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

Figure 8: Histogram of clock skew distribution in real network. Note that the

closer a bin is to zero ppm the smaller clock skew range it covers.

Similarly to the observation made by [Lanze et al., 2012], most of the esti-

mated clock skew values are distributed between −100 ppm and 100 ppm, ap-

proximately 80% of devices for both IPv4 and IPv6. As discussed in our previous

work [Polčák and Franková, 2014], other researchers also detected that majority

of devices have clock skew close to 0 ppm. Since clock manufacturers aim at pro-

ducing clock as precise as possible, the fact that majority of devices have clock

skew close to 0 ppm in an about 200 ppm range is not very surprising.

A long-term fingerprinter linking IPv4 and IPv6 addresses can detect changes

in clock skew, e.g. made by NTP. Figure 9 displays an example of a computer

running NTP. The computer employs both IPv4 and IPv6, however, the amount

of the IPv4 traffic is much larger compared with the IPv6 traffic. Nevertheless,

an experienced fingerprinter operator can detect similar changes around similar

time. Hence a long-term fingerprinter can correlate the detected changes in the

clock skew and link IPv4 and IPv6 addresses of the same computer.

The distribution of the observed clock skew of the real devices makes tracking

a single computer in different locations hard, especially in large networks. Even

a long-term fingerprinter cannot determine if the detected device is indeed the

tracked device or a false positive, a device that happens to have a similar clock

skew to the tracked device.

1229Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

a) IPv4 address. b) IPv6 address.

Figure 9: Clock skew measurement of a Linux computer running NTP.

8 Discussion

As the previous research [Kohno et al., 2005,Murdoch, 2006,Polčák and Franková,

2014] highlighted, clock skew of a single computer is not completely stable. It is

influenced by a number of physical factors, including temperature and voltage.

Whenever a fingerprinter tries to compute the clock skew of a fingerprintee, the

fingerprinter needs to account also for the other factors hindering the identifica-

tion. These include:

– The operating system of the fingerprintee: the same computer have differ-

ent clock skew in different operating systems [Kohno et al., 2005,Polčák and

Franková, 2014] and the properties of time stamps vary, e.g. Windows clients

do not initiate TCP sessions by default [Kohno et al., 2005] and Apple oper-

ating systems produce [Polčák and Franková, 2014] time stamps influenced

by unstable, very high and volatile clock skew.

– Time adjustments: time changes on a fingerprintee are often propagated

[Polčák and Franková, 2014] to the time stamp values. Time stamps added

by user space applications are affected by both time synchronisation and

manual changes of clock values. TCP time stamps are affected by NTP in

Linux and FreeBSD; Mac OS X and iOS produce unstable and highly volatile

TCP time stamps.

– The variable observation delay ε: increases whenever any intermediate net-

work node experiences congestion. Additionally, depending on the time stamp

source, the delay includes time stamp processing at both the fingerprintee

and the fingerprinter. Moreover, the delay ε contains quantisation error, i.e.

the time between observable clock ticks. Without any counter-measures, the

quantisation error is higher for low frequency time sources.

1230 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

A rapid fingerprinter suffers by all factors. In contrast, a long term finger-

printer can compare the shifts of different computers, e.g. to match the traits of

different addresses of the same computer (see Figures 7 and 9 for examples). An

active fingerprinter can remove [Zander and Murdoch, 2008] the quantisation

error from ε by synchronized sampling.

Clock manufacturers try to make clock as precise as possible. Hence, the clock

skews values are usually bound to be close to 0 ppm. The fingerprinting of our

faculty network suggests that the clock skew of the majority of devices is in the

range from −100 ppm to 100 ppm. This prevents a rapid fingerprinter to uniquely

differentiate the devices. In contrast, a long-term fingerprinter can detect unique

devices by observing changes in clock skew related to NTP, temperature etc.

A privacy seeking user may consider permanent synchronisation with precise

time servers (which Apple devices do by default) to evade rapid fingerprinters.

However, as NTP uses adjtime(), a small changes of clock skew triggered by

the NTP daemon can help a long-term fingerprinter to detect unique comput-

ers. Nevertheless, frequent changes of clock value [Polčák and Franková, 2014]

can prevent a fingerprinter to estimate the clock skew with required precision

(see Figure 6). As 38.1% of clock skew estimations from JavaScript-inserted

converged in 20 seconds (during the experiments performed in Section 4), the

changes need to be very frequent. Another option for a privacy seeking user is to

deactivate TCP time stamps. As Windows clients do not initiate the inclusion

of TCP time stamps, many TCP flows do not include TCP time stamps.

The clock skew imitation method presented in Section 5 can also be applied

as a counter-measure for revealing computers behind network address translator

or linking IPv6 addresses of the same computer. When a group of computers

mimic the same clock skew value, the clock skew estimation results in a similar

value for all computers. The fingerprinter is likely to evaluate all clock skew to

belong to a single computer. Nevertheless, a long term fingerprinter can detect

trails suggesting that more than one computer was detected.

As a result, rapid fingerprinting is more useful in small networks, preferably in

networks where the fingerprinter can prevent time stamp manipulation and clock

skew mimicking. A long-term fingerprinter can benefit from the identification of

the precise moment and value of clock skew changes to link addresses of unique

devices.

9 Conclusion

Clock-skew-based computer identification [Kohno et al., 2005] covers many use

cases, such as deanonymization [Murdoch, 2006], fake wireless access point detec-

tion [Jana and Kasera, 2010], and web user identification [Huang et al., 2012].

The identification can be based on a detection of a stable clock skew that is

1231Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

unique for a single computer or by observing clock skew changes [Zander and

Murdoch, 2008]. Based on the previous research, this paper identifies specific

types of clock-skew-based fingerprinters and their requirements on clock skew

estimation.

One of the main contributions of this paper is the study of 24.071 clock

skew estimation samples. This study followed the findings of our previous paper

[Polčák and Franková, 2014] and increased the knowledge of the requirements

for getting sound clock skew estimates. This paper presents that the soundness

of the clock skew estimation does not depend merely on the number of packets

as previous studies suggested. Instead, the duration of the measurement is more

important as it enables to consider offset points with bigger time span to form

the upper bound (from which the clock skew estimation is derived). The bigger

time span consequently allows a fingerprinter to compensate bigger variance in

time stamp delivery time.

This paper covers a method allowing an attacker to mimic clock skew of

another computer and mislead especially a rapid fingerprinter. Whenever an

attacker can measure the clock skew of the victim computer, he or she can con-

figure own computer to pretend to have the clock skew of the victim computer.

The clock skew imitation method can also be used as a counter-measure from

previously proposed clock-skew-based identification methods, such as reconnais-

sance attacks via clock skew estimation; a group of computers can be configured

to display similar clock skew characteristics and thus confusing the fingeprinter

into evaluating that only one computer is detected.

In addition, this paper studies the linkage of IPv4 and IPv6 addresses of the

same computer using clock skew. The laboratory tests confirmed that the address

family, i.e. IPv4 or IPv6, does not have any influence on a clock skew. Hence, it

is possible to link IPv4 and IPv6 addresses of the same computer by estimating

the clock skew of the device using each address. However, the real network study

revealed the issues of real network clock-skew-based identification deployment

as clock manufacturers typically aim at producing clocks with as small skew as

possible.

One of the possibilities to improve the linkage of different IP addresses used

by the same computer lays in the correlation of clock skew changes. When a

fingerprinter has enough time stamps, he or she can correlate the IP addresses

by observing the same change in the clock skew or clock value in all clock skew

estimations computed for the addresses of the same computer.

Acknowledgements

This work is a part of the project VG20102015022 supported by Ministry of the

Interior of the Czech Republic. It was also supported by the project FIT-S-14-

2299 of Brno University of Technology.

1232 Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

We would like to thank the anonymous reviewers of this paper and the anony-

mous reviewers of our previous work [Polčák and Franková, 2014], their com-

ments improved our research.

References

[Borman et al., 2014] Borman, D., Braden, B., Jacobson, V., and Scheffenegger, R.
(2014). TCP Extensions for High Performance. IETF. RFC 7323 (Proposed Stan-
dard).

[Huang et al., 2012] Huang, D.-J., Yang, K.-T., Ni, C.-C., Teng, W.-C., Hsiang, T.-
R., and Lee, Y.-J. (2012). Clock skew based client device identification in cloud
environments. In Advanced Information Networking and Applications, pages 526–
533.

[Jacobson et al., 1992] Jacobson, V., Braden, B., and Borman, D. (1992). TCP Ex-
tensions for High Performance. IETF. RFC 1323 (Obsoloted by RFC 7323).

[Jana and Kasera, 2010] Jana, S. and Kasera, S. (2010). On fast and accurate detec-
tion of unauthorized wireless access points using clock skews. IEEE Transactions on
Mobile Computing, 9(3):449–462.

[Kohno et al., 2005] Kohno, T., Broido, A., and Claffy, K. (2005). Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure Computing,
2(2):93–108.

[Lanze et al., 2012] Lanze, F., Panchenko, A., Braatz, B., and Zinnen, A. (2012). Clock
skew based remote device fingerprinting demystified. In Global Communications
Conference, pages 813–819.

[Mills et al., 2010] Mills, D. L., Martin, J., Burbank, J., and Kasch, W. (2010). Net-
work Time Protocol Version 4: Protocol and Algorithms Specification. IETF. RFC
5905 (Proposed Standard).

[Murdoch, 2006] Murdoch, S. J. (2006). Hot or not: Revealing hidden services by their
clock skew. In Computer and Communications Security, pages 27–36, New York, NY,
USA. ACM.

[Narten et al., 2007] Narten, T., Draves, R., and Krishnan, S. (2007). Privacy Ex-
tensions for Stateless Address Autoconfiguration in IPv6. IETF. RFC 4941 (Draft
Standard).

[Papagiannaki et al., 2002] Papagiannaki, K., Moon, S., Fraleigh, C., Thiran, P., To-
bagi, F., and Diot, C. (2002). Analysis of measured single-hop delay from an op-
erational backbone network. In INFOCOM 2002. Twenty-First Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 535–544.

[Polčák and Franková, 2014] Polčák, L. and Franková, B. (2014). On reliability of
clock-skew-based remote computer identification. In International Conference on
Security and Cryptography. SciTePress - Science and Technology Publications.

[Polčák et al., 2014] Polčák, L., Jirásek, J., and Matoušek, P. (2014). Comments on
”Remote physical device fingerprinting”. IEEE Transactions on Dependable and
Secure Computing, 11(5):494–496.

[Sharma et al., 2012] Sharma, S., Hussain, A., and Saran, H. (2012). Experience with
heterogenous clock-skew based device fingerprinting. In Workshop on Learning from
Authoritative Security Experiment Results, pages 9–18. ACM.

[Zander and Murdoch, 2008] Zander, S. and Murdoch, S. J. (2008). An improved
clock-skew measurement technique for revealing hidden services. In Proceedings of
the 17th Conference on Security Symposium, pages 211–225, Berkeley, CA, USA.
USENIX Association.

1233Polcak L., Frankova B.: Clock-Skew-Based Computer Identification ...

