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Abstract: Distribution planning in urban areas faces a lack of available parking space
at customer sites. One approach to mitigate the issue is to cluster nearby customers
around known parking locations. Deliveries from each parking location to its assigned
customers occur by a second mode of transport (for example by foot). These lead to long
service times at each of the clusters. However, long service times in conjunction with
time windows can lead to inefficient routes as nearby customer clusters with overlapping
service times may not be connected. As a consequence, assigning additional service
workers to each vehicle is a strategy to reduce service times. The additional workers
can do the last mile deliveries in parallel to reduce the service time of a cluster and
hence permit more efficient routing. The trade-off between paying additional workers to
reduce costs for vehicles and driving creates a new decision problem called the vehicle
routing problem with time windows and multiple service workers (VRPTWMS).

The present work introduces a stochastic cluster first, route second algorithm. The clus-
tering takes care of assigning and scheduling customers to parking locations. Its goal
is to allow the routing algorithm to obtain high quality results. These two stages are
linked together with a feedback loop based on the well established ant colony optimiza-
tion metaheuristic. This allows learning from prior results and leads to vastly improved
solution quality. For each of the used benchmark instances new best known solutions
were generated. Furthermore, it is shown that applying the concept of bi-modal trans-
portation potentially reduces both cost and environmental impact in regular vehicle
routing problems with time windows.

Key Words: vehicle routing, clustering customers, time windows, metaheuristic, ant
colony optimization
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1 Introduction

Given the importance of transportation, vehicle routing problems (VRP) and

vehicle routing problems with time windows (VRPTW) have been studied for

about half a century. Consequently, the literature proposes sophisticated solution

methods including a series of local search operators and metaheuristics [Bräysy

and Gendreau, 2005a,Bräysy and Gendreau, 2005b].

Like with most other related problems, the published articles rely on a strong

assumption when proposing solution algorithms. They assume the availability

of parking spaces directly at customer sites large enough to host any delivery

truck. However, in urban areas of many modern cities this assumption doesn’t

hold true. Space is scarce and housing as well as smaller stores cannot provide
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any designated parking spaces for delivery vehicles. Even though such a lack of

parking space is evidently an issue in distribution planning, comparably little

academic work has dealt with it.

A good way to adopt to this lack of parking spaces is to drop the assumption

that trucks can park directly at customers sites. Instead, it can be presumed that

a delivery vehicle can stop close enough to a customer site that the goods can

be transported between the parking location and the customer in another mode.

Such a mode could be a hand trolley, delivery bike or any other transportation

device small enough to be transported by the main truck. Note that the usual

assumption about the availability of parking locations is not entirely dropped. It

is only loosened by assuming that designated parking space is available at given

locations close enough to the customers instead of directly at the customer sites.

This is closer to reality because many large cities already provide designated

loading zones for trucks.

If the geographic density of the customers is big enough, it pays off to de-

liver goods to more than one customer from a single parking space. However,

clustering multiple customers together with known parking locations leads to

long service times. These can be reduced by employing additional personnel on

the delivery trucks to allow parallelizing the deliveries between parking sites and

customers. This leads to a series of questions which have to be answered properly

in order to allow efficient delivery:

– How should the customers be clustered together around each of the known

parking locations?

– In which order should each cluster’s customers be served?

– Which customer cluster should be served by which delivery truck?

– How many workers should be added to any given truck?

– In which order should each truck visit its assigned customer clusters?

The novel decision problem trying to answer all of these questions is called

the vehicle routing problem with time windows and multiple service workers

(VRPTWMS). Figure 1 illustrates a small instance with an optimal solution1.

The VRPTWMS was originally motivated by the South-American soft drink

industry trying to deliver beverage crates to small stores in Brazilian megaci-

ties [Pureza et al., 2011]. Transportation cost is particularly important to the

soft drink industry as the distribution accounts for up to 70% of the value added

costs [Golden and Wasil, 1987]. However, related problems occur for any good

being small and light enough to be transported in an alternative mode. This par-

ticularly includes most packages sent by electronic commerce companies. Also,

1 All illustrations were generated with matplotlib 1.3.1 [Hunter, 2007].

1144 Senarclens de Grancy G.: An Adaptive Metaheuristic ...



the customers in this problem are not limited to small stores but may be indi-

viduals awaiting postal deliveries.

The VRPTWMS occurs in urban areas around the world including a number

of European cities. The affected places share some common patterns: congested

streets, slow average driving speed and a lack of parking space. For example,

the most recent London streets performance report at the time of this writing

announced that the average driving speed across central London dropped to

14.16 km/h (8.8 mph) [Transport for London, 2014]. Another real-life application

of the VRPTWMS relates to extensive pedestrian areas prohibiting direct vehicle

delivery.
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Figure 1: An example VRPTWMS instance solved to optimality. The numbers

next to the depot designate the number of workers used on each truck. [Senar-

clens de Grancy and Reimann, 2015]

Given the rising importance of the VRPTWMS, this paper introduces the

first metaheuristic based on stochastic extensions to existing heuristics for solv-

ing this decision problem. The stochastic elements help to prevent myopic deci-

sions made by deterministic greedy heuristics. A heuristic approach was preferred

since exact solutions, even when limited to the routing part, were not possible

within a reasonable computation time for most instances. For example, [Pureza
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et al., 2011] report that only one out of 12 of their instances could be solved to

optimality using CPLEX 11 on an Intel i7@2.67GHz with 12 GB RAM given

a time limit of 10 hours. Their instances are derived from the classic VRPTW

problems introduced by [Solomon, 1987]. The key difference is that the nodes

have been adjusted to represent customer clusters instead of single customers.

The paper at hand makes multiple contributions concerning VRPTWMS.

The introduced metaheuristic allows to obtain high quality solutions for the

VRPTWMS and to better understand this novel problem. So far, it is the only

metaheuristic ever proposed for the complete VRPTWMS. The key contribution

is an adaptive learning mechanism that guides the cluster creation with infor-

mation from routing solutions. Hence, the lack of an explicit objective function

for clustering customers around known parking locations is alleviated. Further-

more, the introduced feedback loop also guides the routing process despite the

fact that the routing problem is different in each iteration. Consequently, the

proposed algorithms considerably improve the solution quality of each bench-

mark instance by allowing vast cost reductions. In addition, the applicability of

the VRPTWMS and the introduced algorithm is demonstrated for more generic

problems. The most important contribution is that this paper shows that al-

lowing bi-modal transportation has the potential to improve reduce cost and

environmental impact at the same time. Finally, the a research gap with regard

to the customer clustering is addressed. This is done by suggesting that the

average clusters size should be much larger than proposed by the literature.

The paper is organized as follows. Related literature is described in Section

2. Section 3 presents the details of the proposed algorithm. Experimental results

on the benchmark instances from the literature are given in Section 4. Finally,

conclusions and directions for future research are discussed in Section 5.

2 Problem Description and Literature Review

The VRPTWMS consists of a single depot, a set of customers and a set of

available parking locations including the depot site. Each of the customers has

to be served within their respective time window. Any of the parking spaces

may be used more than once. A solution to the VRPTWMS constitutes a set

of customer clusters and a set of truck routes visiting these clusters. A cluster

consists of exactly one parking location and at least one customer. Each customer

must be assigned to exactly one cluster and each cluster must be visited by

exactly one vehicle. Deliveries may not be split.

The volume and weight of the deliveries is assumed to be transportable with-

out a truck directly between a cluster’s parking location and its customers. At

the same time they are considered too heavy / bulky to service more than one

customer without returning to the vehicle in between. The fleet is homogeneous
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and each vehicle can transport one (the driver) to γ service workers. The vehicle

capacity υ is higher than any customer’s demand but less than the accumulated

demand of all customers. The quality of a solution is determined by the number

of vehicles employed, the required total number of service workers and the total

distance driven by the vehicles. Note that neither the number of customer clus-

ters nor the distance used by the second transportation mode directly affects

the solution quality. The reason is that the workers performing the second mode

of transportation are paid by shift without variable costs for gas or road taxes.

This leads to a function for evaluating the quality of obtained solutions.

t required number of trucks

s required total number of service workers

d total distance driven by all trucks

ct fixed cost per truck

cs fixed cost per service worker

cd cost per driven distance unit

C(t, s, d) = t · ct + s · cs + d · cd (1)

The cost ct per truck includes all fixed cost for the truck including possible

tolls for entering a city center on a given day. The variable truck cost cd includes

distance based road tolls. One way to obtain feasible solutions is a cluster first,

route second approach. In this case, the clusters are presented as black boxes to

the routing heuristic. During cluster creation it is not known how many workers

will serve the cluster. Obviously, this has nothing to do with cluster first, route

second approaches to the VRP that arrange customers into subsets and solve a

TSP for each of these subsets. In the VRPTWMS a cluster is a combination of a

single parking space and one or more customers. Internally, each cluster requires

a schedule for each possible number of workers. The sole paper to describe this

situation is [Senarclens de Grancy and Reimann, 2015]. To allow efficient routing,

each cluster has to provide information about its service times for each possible

number of workers. The cluster service times increase with the distance between

the parking location and the customers, the customer service times and the

number of customers in the cluster. If the customer time windows inside a cluster

are not overlapping, potential waiting times are also represented in the cluster

service times. Finally, the speed of the second mode also affects the cluster

service time. Additional workers generally reduce a cluster’s service times by

splitting up the customers in the cluster. Consequently, a cluster with a single
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customer will have the same service time no matter how many workers are used.

For further details please refer to [Senarclens de Grancy and Reimann, 2015].

The first paper attempting to formulate and solve a simplified version of the

VRPTWMS only investigated the routing stage [Pureza et al., 2011]. The au-

thors assumed the clusters to be part of the input and presume the cluster service

time to be a simple linear function of the combined demand and the number of

service workers. The authors showed that this simplified problem is NP-hard.

They created a mixed integer programming model. In order to obtain high qual-

ity results for the all instances, the authors implemented a tabu search and an

ant colony optimization (ACO) metaheuristic. Another paper investigating the

same subproblem implemented both a greedy randomized adaptive search pro-

cedure (GRASP) and an ACO [Senarclens de Grancy and Reimann, 2014]. In

the paper, the two metaheuristics’ performance was systematically compared.

Doing so, the authors were able to provide new best results for all of the prior

benchmark instances that had not been solved to optimality.

The first and besides the paper at hand sole publication allowing to solve

the complete VRPTWMS is [Senarclens de Grancy and Reimann, 2015]. It in-

troduces problem-specific clustering heuristics and made available a new set of

designated benchmark instances for this problem. The authors defined character-

istics of customer clusters and provide feasible solutions for all of the new bench-

mark instances. Their objective function’s parameter setting (ct = 1, cs = 0.1,

cd = 0.0001) is in-line with prior literature [Pureza et al., 2011]. In order to

make the results presented in this paper comparable, the same parameters will

be used. However, the presented algorithms also work well for other settings.

Even though few papers have been dedicated to the VRPTWMS, similar

problems have been studied more in depth. The problem at hand resembles

the two-echelon VRP (2E-VRP) [Hemmelmayr et al., 2012] which also occurs in

large cities and considers two levels. The main differences to the VRPTWMS are

that the 2E-VRP does not consider time windows and solves sub-routing prob-

lems on the second level. Other problems resembling the VRPTWMS include

the multi depot VRP (MDVRP) [Salhi and Nagy, 1999], location routing prob-

lem [Escobar et al., 2013], location-arc routing problem (also known as “park and

loop” problem) [Doulabi and Seifi, 2013] as well as the truck and trailer routing

problem (TTRP) [Villegas et al., 2011]. Among these problems, particularly the

2E-VRP and the park and loop problem also combine two modes of transporta-

tion. However, besides one exception [Lin et al., 2011], the author of this paper

is not aware of any publications with regard to related problems that also deal

with time windows. Finally, city logistics also addresses problems related to city

planning with regard to a scarcity of large parking spaces, pedestrian areas and

reduced maneuverability. An overview of related models can be found in [Crainic

et al., 2009].
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The metaheuristic described in the next section is based on the ACO method

[Colorni et al., 1991,Dorigo and Stützle, 2004]. This method is inspired from the

natural behavior of real ants laying out a pheromone trail to find shortest paths

to good food sources. The metaheuristic relies on a problem-specific stochastic

algorithm to repeatedly calculate solutions. The best prior solutions are then

used to guide the stochastic component in order to find solutions with lower

overall cost. ACO has been used successfully to provide high quality solutions to

a wide range of NP-hard problems. It is known to work very well in all kinds of

routing applications including non-traditional applications like routing of data

packages [Junior et al., 2012].

3 Solution Method

Due to the problem’s complexity, exact approaches suffer from limitations of

computer memory as well as prohibitive computation time for all but the small-

est instances. For proper operation, improvement-based metaheuristics require a

sizable number of local search operators. Given the novelty of the VRPTWMS,

no such operators exist for combined clustering and routing. Hence, a multi-start

metaheuristic that allows learning from the best prior results is the method

of choice. Multi-start metaheuristics include ACO and GRASP [Feo and Re-

sende, 1995] - both of which have successfully been applied to the routing-only

VRPTWMS. Among these two, only ACO has a native pheromone memory

structure that facilitates learning. Consequently, the presented solution method

is based on the ACO metaheuristic.

However, there are two issues with designing an ACO for the problem at

hand. First, cluster creation cannot be supported directly with ACO’s underlying

concept of shortest paths. Second, the key idea of ACO is to solve the same

problem multiple times and learn from prior results. Unfortunately, different

clusters are created in each iteration and the routing algorithm has to deal with

a different problem every time. Both issues have been resolved by abstracting

ACO’s long term pheromone memory. These modifications are detailed in the

corresponding Subsections 3.1 and 3.2. The subsequent explanations are based

on the notation outlined in table 1.

The basic mode of operation of the combined ACO algorithm is detailed

in Listing 1 below. First, all pheromone matrices are initialized. As long as no

stopping criterion (runtime limit or maximum number of generated solutions) is

met, the solver continues. For a configurable number of ants, a complete solution

is generated by first solving the clustering problem and then solving the routing

based on the clustering solution. An improvement procedure allows removing

superfluous service workers. If a new best solution is found that solution is stored

for future reference. Once each ant has generated a solution, the pheromone
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Table 1: Used notation

l0 depot

N set of customers n ∈ N

P set of available parking locations p ∈ P

L set of locations l ∈ L (N ∪P )

δij distance between location i and j

z cluster (set of assigned customers n ∈ z)

|z| cardinality (number of customers in z)

zp cluster (set of assigned customers including parking location p)

wmin
z minimum number of workers required to serve z

nz customer n is a candidate for addition to cluster z

tz,w time required to service cluster z with w workers

tcunp accumulated service time of servicing customer n from parking loca-

tion p

tcuz accumulated service time of cluster z

tcun∈z accumulated service time of cluster z after adding customer n

ζij pheromone link between location i and j

τnz total pheromone between candidate n and cluster z

τzizj total pheromone between cluster zi and zj
τ l0 z / τz l0 total pheromone between cluster z and the opening / closing depot

κnp attractiveness of creating a cluster with client n and parking loca-

tion p

κnz attractiveness of adding client n to cluster z

κl0 zi l0 attractiveness of selecting cluster zi as seed

κzizjzk attractiveness of inserting cluster zj between clusters zi and zk
γ maximum number of workers on a single vehicle

υ vehicle capacity

memory is updated with the best incumbent solution. Then, while no stopping

criterion is met, each ant generates a new solution before the pheromone is

updated again and so on. However, the newly created solutions will already be

influenced by the pheromone memory. This means that decisions taken in the

best solution known to the algorithm will have a higher attractiveness in future

solutions. Hence, they are more likely to be taken again. This leads to focusing

on exploring the neighborhood of good solutions as well as combining parts of

the best recent solutions.
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Listing 1: Overview of the ACO metaheuristic

def solve_aco(problem ):
pheromone = initialize_pheromone()
while proceed (): # stopping criterion not met

for ant in ants: # each ant calculates a solution using pheromone
clustering_solution = solve_clustering(problem , pheromone)
routing_solution = solve_routing(problem , pheromone ,

clustering_solution)
solution = improve_solution(routing_solution)
if solution .total_cost() < problem .best_solution.total_cost():

problem .best_solution = solution
pheromone.update(problem .best_solution)

3.1 Clustering

The customers are clustered around the known parking locations via a stochastic

version of sequential insertion heuristic. The deterministic version of the heuristic

was introduced by [Senarclens de Grancy and Reimann, 2015]. It creates one

cluster after the other. Once the heuristic decides to create a new cluster, all

prior clusters are not considered for inserting further clients. In each iteration,

the heuristic decides whether to create a new cluster or to insert a customer into

the current cluster.

The stochastic modification is guided via a pheromone trail from the best

incumbent solution. It is used for selecting which combination of a customer

and a parking space should be used to start a new cluster. Subsequently, it

is used for selecting which customer to add to the current cluster or whether

to create a new one. The stochastic element is based on a weighted roulette

wheel mechanism. Each action is assigned an attractiveness based on a value the

heuristic calculates as well as the pheromone trail. The higher this attractiveness,

the higher the chance for an action to be executed. Any impossible action like

combining a customer with a parking location that is too far away results in an

attractiveness value of 0.0 and will not be considered.

For selecting which customer n - parking space p pair is used for a new cluster,

each customer is combined with its closest parking location. The attractiveness

κnp of the combination is defined by the product of the inverse total service time

and the pheromone trail between the two locations:

κnp =
1

tcunp
· ζnp (2)

In the above equation, tnp is the sum of the service time for 1 to γ workers.

A cluster’s service time is the same for any number of workers if the cluster

only contains a single customer. Hence, the total service time is γ times the

sum of the time required to walk back and forth between the parking space and

the customer plus the customer’s service time. ζnp is high if parking location

p and customer n were part of the same cluster in the best known incumbent
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solution. It requires a single lookup in the clustering pheromone data structure

(see Subsection 3.3). This attractiveness calculation is summarized using the

name pick_seed(.) in Listing 2.

The attractiveness κnz of adding customer n to the existing cluster z which

already has one or more customers is defined by

κnz =
1

tcun∈z − tcuz
· τnz (3)

For each number of service workers that can feasibly serve cluster z, the

service time is added to tcuz (=
∑γ

w=wmin
z

tz,w). The same is done after adding

n to z (tcun∈z =
∑γ

w=wmin
n∈z

tn∈z,w). If adding n to z requires an additional service

worker (wmin
z �= wmin

n∈z), it is not possible to calculate the new cluster’s service

time with the prior minimum number of workers. To accommodate for this,

a proxy value is required. In order to relate the missing value to the cluster,

the original service time value before adding n is taken and multiplied by a

penalty factor. The choice of proxy was tested during the setup phase of the

computational experiments and delivered the best results.

This allows to calculate a delta of the accumulated service times. The higher

this delta, the lower is the likelihood that a customer will be added to a cluster.

Therefore, the inverse of the accumulated delta increases the attractiveness of

the addition.

Should the accumulated delta be 0 or close to 0, 1
tn∈z−tz

is set to a prede-

fined maximum value. This avoids divisions by zero and preserves a reasonable

probability of selecting other feasible insertions with small attractiveness values.

The latter is important because it allows the algorithm to explore the entire so-

lution space. Typical additions have values for the inverse delta between 0.0 and

0.1. Occasionally these values reach up to about 0.4. Very small deltas should

be favored while allowing other decisions to be made. Hence, setting the max-

imum attractiveness value to 0.5 is a good choice which was confirmed in the

computational study.

The attractiveness κ is then altered to honor the long-term pheromone mem-

ory. τnz is directly proportional to the attractiveness and describes the pheromone

between the members of cluster z and the candidate n. τnz is the normalized

sum of all links between the candidate n and all elements of zp (see Figure 2).

Even though only the direct link between n and the cluster’s parking location

p is actually walked, it is important to consider all other elements of the clus-

ter as well. This is mainly because a parking space may be used by more than

one cluster. Ignoring the other members would falsely result in high pheromone

values for adding n to other clusters using the same parking space. Normaliz-

ing (dividing by the number of elements in zp) the value is required to avoid a

pheromone bias for big clusters. Consequently, the pheromone for adding n to z
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Figure 2: Illustration of two strategies of calculating a pheromone trail between

a new customer (143) and an existing cluster.
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is defined as

τnz =

∑
l∈zp ζnl
|zp| (4)

This value requires |zp| lookups in the clustering pheromone data structure.

In Listing 2 the attractiveness calculation implicitly takes place in the procedure

pick_customer(.). This procedure either returns the selected customer or a

value that evaluates to False. In the latter case no additional customer should

be added and a new cluster started. This is in-line with the sequential clustering

heuristic defined in [Senarclens de Grancy and Reimann, 2015].

Listing 2: Clustering heuristic

def solve_clustering(problem , pheromone):
solution = ClusteringSolution() # create new solution
unassigned_customers = problem .all_customers()
while unassigned_customers: # as long as there are unassigned customers

seed = pick_seed(problem , pheromone , unassigned_customers)
cluster = Cluster (seed , seed.closest_parking) # create new cluster
unassigned_customers.remove(seed)
while unassigned_customers:

new_customer = pick_customer(problem , pheromone ,
cluster , unassigned_customers)

if (new_customer): # the stochastic has selected a customer
cluster .add(new_customer)
unassigned_customers.remove(new_customer)

else: # no additional customers should be added to the cluster
break

solution .clusters .append(cluster )
return solution

3.2 Routing

A routing heuristic for the VRPTWMS with constant clusters as input was de-

veloped by [Senarclens de Grancy and Reimann, 2014]. It is based on Solomon’s

I1 heuristic [Solomon, 1987]. However, in each iteration, the proposed long-term

memory relied on the same clusters. Hence, in order to use this routing heuristic,

the pheromone memory needs to be re-designed. In each iteration it must cor-

rectly cope with different customer / parking space associations. Furthermore,

a different subset of the available parking locations P may be used. Finally, the

number of times each parking location is employed can also change.

As a consequence, it is necessary to take advantage of the structure of the

problem. In order to allow a long-term memory to work, static elements have to

be identified. These are all the customers to be served as well as the available

parking spaces. The pheromone memory must be based on these locations instead

of the higher-level clusters. This requires designing new pheromone lookup and

update procedures. Other than that, the routing pheromone matrices described

in [Senarclens de Grancy and Reimann, 2014] can be applied accordingly.
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The depot is static over all the clustering solutions and does not pose new

problems. For calculating the pheromone for a routing seed, it suffices to check

if any of the customers or the parking space in a given cluster were served suc-

ceeding or preceding the depot. However, to ensure that the considered parking

space and customers are inserted into the correct route, the depot needs to be

abstracted to be different for each route. That implies that a pheromone matrix

with a row for each potential route as well as a column for each parking location

and each customer is required. Furthermore, it must be possible to distinguish

if a cluster should be inserted after the “opening” or before the “closing” de-

pot. Hence, two separate matrices are required to represent the depot adjacency

pheromone. Note that there is only a single depot. To emphasize that the al-

gorithm must distinguish whether a cluster is inserted at the beginning or the

end of a route, the depot is referred differently for both situations. It is called

opening depot at the beginning of a route and closing depot at the end.

Both the insertion and seed attractiveness values are calculated based on

the Solomon I1 heuristic attractiveness multiplied by a trail. The trail consists

of a number of pheromone values indicating if two clusters were adjacent in

the best incumbent solution. In this respect it is identical to the attractiveness

used by [Senarclens de Grancy and Reimann, 2014]. However, the pheromone

between two clusters cannot be stored directly as the clusters change in each

iteration. Hence it is represented by the sum of all the pheromone links between

the clusters’ locations. This sum is normalized to be neutral to the cluster size

to avoid a bias for large clusters. The normalization is performed by dividing

the sum of the pheromone links by the number of links occurring between the

evaluated clusters. The described concept is shown in Figure 3.

The pheromone trail influencing the likelihood of a seed cluster to be se-

lected is the sum of the opening and closing depot pheromone. The opening

depot pheromone is the normalized sum of all the pheromone links between

the members of the currently investigated cluster and the opening depot. The

pheromone between the closing depot and the investigated cluster is calculated

in a corresponding fashion. The attractiveness of cluster zi to be selected as a

seed depends on its parking location’s distance from the depot and its pheromone

trail.

κDzpD = δDp ∗(τDz + τzD) (5)

The procedure using this κDzpD is called pick_routing_seed(.) in Listing 3

summarizing the routing algorithm. In the above equation, the pheromone values

consist of the average of |zp| matrix look-ups to avoid the bias for large clusters.

They are defined as

τDz =

∑
l∈zp ζDl

|zp| and τzD =

∑
l∈zp ζ lD
|zp| (6)
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Figure 3: Application of ACO on varying clusters.
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Clusters are inserted into existing routes only at the position with the highest

attractiveness. That leaves the selection of the cluster to insert as a stochastic

decision. The attractiveness depends on the driving distance saved by the inser-

tion as well as the pheromone trail. To insert cluster zj between clusters zi and

zk, the saved distance is

2 · δDzj − δzizj − δzjzk + δzizk (7)

The first part means that it is no longer necessary to serve zj directly from

the depot. The pheromone trail influencing the insertion is increased by the

pheromone on the newly created route section. It is indirectly proportional to

the replaced section (see Figure 3a).

τ zizj + τzjzk
2 · τzizk

(8)

Therefore, the attractiveness of an insertion is defined by

κzizjzk = (2 · δDzj − δzizj − δzjzk + δzizk) ·
τ zizj + τzjzk
2 · τ zizk

(9)

The pheromone between any pair of clusters zi and zj is defined as the

normalized sum of all links between the clusters. This concept is depicted in

Figure 3b.

τ zizj =

∑
li∈zp

i

∑
lj∈zp

j
ζlilj

|zpi | ·
∣∣zpj

∣∣ (10)

Should a cluster be inserted adjacent to the depot, one of the formulas from

Equation 6 has to be used instead. The procedure using the above attractiveness

values is called pick_cluster(.) in the routing algorithm’s code listing below.

Listing 3: Routing heuristic

def solve_routing(problem , pheromone , clustering_solution):
solution = RoutingSolution() # create new solution
unrouted_clusters = set(clustering_solution.clusters )
while unrouted_clusters: # while there are unrouted clusters

route = Route(pick_routing_seed(problem , pheromone , unrouted_clusters))
while unrouted_clusters: # fill the current route

insertion = pick_cluster(problem , pheromone , unrouted_clusters)
if (not insertion.is_feasible):

break
route.insert(insertion)
unrouted_clusters.remove(insertion.cluster )

solution .add_route(r)
return solution
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3.3 Pheromone Data Structure and Update

The long term memory is divided into two parts - one for the clustering and

one for the routing. Concerning the creation of clusters, high pheromone values

indicate that locations were clustered together in the best recent solutions. That

means that any customer can be linked to a number of other customers and

a parking space. The most straight-forward way to store such information is a

|N | × |L| matrix. That means that for each customer, linkage information to

each other customer as well as each parking space can be stored. As no cluster

can have more than one parking space, it is not required to store linkage data

between parking spaces for the clustering heuristic.

The routing pheromone requires more data. The goal is to indicate whether

pairs of clusters were immediate successors in the best incumbent solution. In

this implementation, three matrices suffice to store the required information.

The first is a |L| × |L| square matrix which stores high values if two locations

were members of directly succeeding clusters on the same route. Although the

depot requires separate treatment it is also needed in this matrix as it may serve

as a parking space for a cluster in the middle of a route.

Even though all routes share the same depot to start and end their routes,

the depot’s pheromone requires special attention. Modelling the depot as a regu-

lar element of a route would mislead the pheromone guidance. It would increase

the chance of a cluster to be inserted between the depot and one of its currently

adjacent clusters if the cluster to be inserted was adjacing to the depot in the

best incumbent solution. However, on each route one cluster succeeds and one

preceeds the depot. Hence, different clusters would benefit from a higher like-

lyhood to be inserted before or after the depot, even though they were on a

different route in the best incumbent solution. To avoid this problem, each route

gets two distinct virtual depots – one for the opening and one for the closing

depot. As detailed in [Senarclens de Grancy and Reimann, 2014], this allows the

algorithm to take advantage of the knowledge on which route a cluster is to

be inserted. In the worst case, every customer is in a separate cluster and every

cluster on a separate route. Therefore, up to |N | routes are theoretically possible.

Because the clusters change in each iteration, it is required to store the depot

adjacency information for each possible location. A separate matrix is required

for the starting and ending depot, hence two additional |N | × |L| matrices are

needed.

In total, four matrices are required to store all information for the long-term

memory. The asymptotic memory requirement is O (|N | · |L|) for the clustering

and 2 ·O(|N | · |L|)+O
(
|L|2

)
for the routing. Since O (|N | · |L|) < O

(
|L|2

)
and

a ·O(b) = O (b) if a is a constant, the memory requirement can be summarized

as 3 ·O(|N | · |L|)+O
(
|L|2

)
= O

(
|L|2

)
(see [Hetland, 2010, pp 13-16] or [Weiss,
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2006, pp 43-45] for details on the O notation).

All values in these matrices are initialized to 1.0. After each ant has calcu-

lated a solution (compare listing 1), the evaporation is simulated by multiplying

all values by a constant ρ < 1. This constant is called the pheromone persis-

tence factor. To avoid divisions by zero, no value in a matrix is allowed to be

smaller than a predefined minimum > 0. In the reference implementation for the

introduced algorithm, this value is called MIN DELTA and is set to 0.01.

Thereafter, the best solution available to the algorithm is used to lay out new

pheromone. This is done by adding 1− ρ to all links occurring in the best solu-

tion. First, for each of the clusters the links between the cluster parking location

and its customers as well as between the customers are reinforced (clustering

pheromone matrix). Then, for each of the routes the links between the opening

/ closing depot and the members of the corresponding first / last clusters are

intensified. This is done in the designated matrices for opening / closing de-

pot pheromone. Finally, for each of the routes, the links between the adjoining

clusters are strengthened in the |L| × |L| matrix.

4 Computational Study

The goal of the computational experiments was to find good settings for the

required parameters and to test whether the introduced learning mechanism is

capable of reliably improving the overall solution quality.

All experiments in this paper have been performed using the C++11 pro-

gramming language2. Nevertheless, the presented code examples in this paper

are based on the Python programming language version 3.4. It offers a much

easier to read and to understand syntax than C++. The key advantage of using

Python instead of pure pseudo-code is the elimination of syntactic ambiguities

(e.g. undefined operators or precedence rules). While the code examples in this

paper intend to make the introduced concepts easy to understand, possibly re-

maining questions about implementation details are addressed as well. In order

to facilitate re-implementation and further work based on the presented results,

the source code created for this article is available on the author’s website3 using

an open source software license.

The computational experiments were performed on a single core of an Intel

Core i5-4570 CPU @ 3.20GHz. The stopping criterion for the metaheuristic was

a runtime limit of 900 seconds. The algorithm’s implementation did not exceed

8752 kilobytes of memory4 for any of the tested instances.

2 The GNU C++ compiler version 4.8.2 was used on Kubuntu 14.04.
3 http://senarclens.eu/~gerald/research/
4 The maximum resident set size was measured using /usr/bin/time -v.

1159Senarclens de Grancy G.: An Adaptive Metaheuristic ...



4.1 Parameter Settings

The key parameters when it comes to ACO are the number of ants and the

pheromone persistence ρ. The first of them should correlate with the size of

the used input. Experimental executions generated the best average results with

the number of ants set to the number of available parking spaces (instead of

the number of locations). The second parameter allows to control how fast the

metaheuristic converges towards good solutions. If set too low, convergence is fast

but not enough of the solution space is examined. This could lead to premature

saturation of the pheromone leading to the algorithm getting stuck in a local

optimum. If set too high, convergence is too slow to finish before the runtime

is over. The selection of a persistence value depends on the CPU time required

to generate a single solution, the total allowed runtime as well as the number

of ants (responsible for the number of pheromone updates). Given a rather low

number of 30 to 60 solutions per second, ρ has been set to 0.9 in the performed

computational experiments. 30 to 60 solutions per second and a pheromone

update occurring every 50 to 150 solutions lead to the update occurring roughly

every 1-5 seconds. This means it occurs approximately 180 to 900 times during

the whole runtime. Setting ρ to 0.9 requires 29 pheromone updates to reduce

the initial values below 5% or 44 updates to reduce them below 1%. Under the

above circumstances, an intensification of the search process around or between

promising incumbent solutions can occur up to about 30 times which allows a

good trade-off between exploration and intensification.

4.2 Results

In-line with prior papers on the subject all instances have been solved five

times [Pureza et al., 2011, Senarclens de Grancy and Reimann, 2014]. To show

the robustness of the metaheuristic, the best, average and worst result values are

shown in Table 2. Given the small number of samples, the range denoted by the

best and worst results provides a better measure of dispersion than the standard

deviation. Notably, in all but two cases even the worst generated result is better

then the prior best known result.

For all benchmark instances, the introduced feedback loop for learning from

past results generated new best known solutions. Considering solely the best out

of 5 runs, the aggregated total cost was reduced by 13.76%. The average solution

quality still improves the prior best known results by reducing cost by 11.18%.

Even the worst results outperform the best prior solutions on average by a cost

reduction of 8.14%.

Table 3 shows details about each instance’s currently best known solution.

These values are published on the author’s website5 and will be regularly updated

5 http://senarclens.eu/~gerald/research/
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Instance Prior BKS ACO

Best (%) Average (%) Worst (%)

c200.050.n.1 47.53 40.91 (13.92) 42.01 (11.60) 43.33 (08.83)
c200.050.n.2 33.72 28.02 (16.90) 29.41 (12.77) 31.13 (07.68)
c200.050.n.3 26.56 21.59 (18.71) 21.95 (17.37) 22.99 (13.44)
c200.050.t.1 54.98 48.78 (11.27) 49.70 (09.60) 50.06 (08.94)
c200.050.t.2 42.17 35.80 (15.10) 36.25 (14.04) 37.68 (10.64)
c200.050.t.3 35.33 27.11 (23.25) 28.67 (18.84) 29.85 (15.53)
c200.050.w.1 44.55 38.70 (13.14) 40.45 (09.20) 42.11 (05.47)
c200.050.w.2 29.44 25.49 (13.40) 26.56 (09.77) 27.84 (05.42)
c200.050.w.3 24.26 20.16 (16.88) 20.59 (15.13) 21.57 (11.08)
c200.100.n.1 45.87 40.15 (12.47) 40.34 (12.05) 40.55 (11.61)
c200.100.n.2 32.13 26.93 (16.18) 27.84 (13.36) 28.84 (10.24)
c200.100.n.3 27.19 22.60 (16.88) 22.93 (15.68) 23.71 (12.79)
c200.100.t.1 55.27 44.36 (19.75) 45.60 (17.49) 48.39 (12.45)
c200.100.t.2 40.69 31.95 (21.49) 33.27 (18.23) 35.17 (13.58)
c200.100.t.3 35.23 25.98 (26.25) 26.94 (23.54) 27.65 (21.52)
c200.100.w.1 39.65 34.48 (13.05) 35.27 (11.06) 35.68 (10.02)
c200.100.w.2 28.78 23.08 (19.79) 23.77 (17.41) 24.08 (16.35)
c200.100.w.3 23.84 20.19 (15.32) 20.35 (14.64) 20.47 (14.13)
c200.150.n.1 42.21 36.22 (14.19) 36.43 (13.70) 36.83 (12.74)
c200.150.n.2 30.95 23.92 (22.72) 24.72 (20.12) 25.33 (18.16)
c200.150.n.3 24.70 20.47 (17.12) 21.06 (14.74) 21.49 (13.01)
c200.150.t.1 49.80 40.66 (18.35) 42.02 (15.61) 44.43 (10.79)
c200.150.t.2 37.00 30.30 (18.10) 31.09 (15.97) 31.77 (14.13)
c200.150.t.3 32.89 26.54 (19.32) 27.22 (17.24) 27.87 (15.27)
c200.150.w.1 36.17 32.42 (10.36) 33.04 (08.66) 33.83 (06.47)
c200.150.w.2 25.30 22.82 (09.79) 23.52 (07.03) 24.12 (04.66)
c200.150.w.3 21.90 20.17 (07.88) 20.62 (05.82) 21.51 (01.79)
r200.050.n.1 65.58 56.86 (13.30) 58.60 (10.64) 60.77 (07.33)
r200.050.n.2 44.83 38.85 (13.33) 40.84 (08.91) 42.85 (04.41)
r200.050.n.3 34.47 32.10 (06.88) 33.52 (02.76) 35.12 (-1.89)
r200.050.t.1 70.90 64.48 (09.06) 65.37 (07.80) 66.60 (06.07)
r200.050.t.2 54.01 48.61 (10.00) 50.56 (06.39) 52.43 (02.93)
r200.050.t.3 45.63 38.75 (15.08) 40.86 (10.46) 44.37 (02.77)
r200.050.w.1 62.29 56.65 (09.05) 57.56 (07.60) 58.87 (05.50)
r200.050.w.2 40.48 37.13 (08.29) 37.30 (07.85) 37.54 (07.26)
r200.050.w.3 31.85 28.20 (11.45) 30.11 (05.48) 30.81 (03.27)
r200.100.n.1 59.60 52.15 (12.50) 52.99 (11.09) 54.28 (08.93)
r200.100.n.2 40.92 35.35 (13.61) 36.33 (11.22) 37.68 (07.91)
r200.100.n.3 33.67 29.22 (13.22) 29.71 (11.77) 30.44 (09.58)
r200.100.t.1 67.58 58.70 (13.14) 60.23 (10.88) 63.12 (06.60)
r200.100.t.2 50.98 44.55 (12.62) 45.85 (10.06) 46.31 (09.17)
r200.100.t.3 40.93 36.67 (10.41) 38.49 (05.95) 39.95 (02.38)
r200.100.w.1 53.17 48.15 (09.45) 48.98 (07.88) 50.26 (05.46)
r200.100.w.2 36.17 30.72 (15.06) 32.18 (11.04) 33.44 (07.53)
r200.100.w.3 28.46 27.02 (05.06) 27.77 (02.41) 28.10 (01.25)
r200.150.n.1 58.11 50.66 (12.81) 53.12 (08.59) 55.11 (05.16)
r200.150.n.2 40.96 35.57 (13.16) 37.19 (09.20) 39.01 (04.77)
r200.150.n.3 34.24 30.06 (12.20) 31.03 (09.37) 32.05 (06.40)
r200.150.t.1 65.09 55.72 (14.40) 56.44 (13.29) 57.53 (11.61)
r200.150.t.2 46.48 39.30 (15.44) 40.84 (12.13) 42.33 (08.93)
r200.150.t.3 39.06 34.05 (12.83) 35.32 (09.57) 36.16 (07.43)
r200.150.w.1 50.19 45.64 (09.07) 47.43 (05.50) 49.48 (01.42)
r200.150.w.2 34.70 32.67 (05.85) 33.09 (04.65) 33.88 (02.36)
r200.150.w.3 28.76 27.54 (04.24) 28.58 (00.63) 29.23 (-1.64)

average 41.24 35.65 (13.76) 36.70 (11.18) 37.89 (08.33)

Table 2: Objective function values by instance (% deviations to prior BKS)
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with fellow scientist’s results. It can be noted that only a small number of clusters

is created in relation to the number of trucks. That means that most routes only

have very few clusters. However, these clusters include many customers and

usually require the maximum number of service workers possible on the vehicles.

This is due to the low cost of workers in relation to vehicles which was proposed

by prior literature on the VRPTWMS [Pureza et al., 2011,Senarclens de Grancy

and Reimann, 2015].

The values from Table 3 are aggregated by spacial distribution ((c)lustered

vs. (r)andomly distributed locations), number of parking spaces (050 / 100 /

150), velocity ratio (10% / 20% / 30%) and time window width ((t)ight /

(n)ormal / (w)ide) in Table 4. The results shown in both tables are as antic-

ipated. If the customers and parking locations are closely spaced in separate

districts, the overall cost is lower than for randomly distributed locations in the

same gross area. The higher the velocity of the second mode of transportation in

relation to the truck velocity, the lower the total cost gets. To a smaller extent,

the same holds true for an increase in the number of available parking loca-

tions. Finally, the total cost is reduced the wider the time windows are (tight →
normal → wide). All of these results are in-line with [Senarclens de Grancy and

Reimann, 2015]. The strong improvements in solution quality as well as having

the solution quality follow anticipated patterns strongly indicates that learning

from past results pays off in the two-stage VRPTWMS. Finally, the results sug-

gest that prior clustering heuristics created too many small clusters. The prior

best known solutions used 89.46 clusters on average. The average size was hence

2.24 customers per cluster. The improved results obtained via the proposed feed-

back loop only use 47.92 clusters on average. This means that an average number

of 4.66 customers per cluster (more than twice as many compared with the prior

best known results) allowed for better routing results.

4.3 Comparison with Classic VRPTW Results

While the last subsection demonstrates that the proposed algorithm is clearly

capable of providing vastly improved solutions, this subsection points out the

relevance of allowing bi-modal transportation. The VRPTW has been thor-

oughly researched since more than 30 years. Publications propose highly efficient

heuristics for creating solutions and local search operators for improving solu-

tions. These are exploited by many different metaheuristics including simulated

annealing, tabu search, ant colony optimization, adaptive large neighborhood

search and variable neighborhood search to create top quality solutions. Pub-

lications concerning the VRPTW are summarized by [Bräysy and Gendreau,

2005a] and [Bräysy and Gendreau, 2005b].

The VRPTWMS is a recent extension of the VRPTW and received very

little attention in comparison to the general VRPTW. Nevertheless, using the
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Inst Clusters Vehicles Workers Distance Cost

c200.050.n.1 58 32 86 3136.81 40.91
c200.050.n.2 30 21 59 2078.78 27.11
c200.050.n.3 28 17 45 1801.40 21.68
c200.050.t.1 59 38 104 3822.65 48.78
c200.050.t.2 43 27 74 2675.85 34.67
c200.050.t.3 34 21 59 2143.91 27.11
c200.050.w.1 48 29 85 3020.36 37.80
c200.050.w.2 35 20 53 1942.47 25.49
c200.050.w.3 33 16 40 1643.25 20.16
c200.100.n.1 57 30 81 3139.47 38.41
c200.100.n.2 45 21 57 2314.87 26.93
c200.100.n.3 44 17 42 1929.03 21.39
c200.100.t.1 57 34 93 3355.20 43.64
c200.100.t.2 42 25 66 2530.89 31.85
c200.100.t.3 30 20 58 1819.26 25.98
c200.100.w.1 60 27 71 2757.90 34.38
c200.100.w.2 41 18 46 1958.80 22.80
c200.100.w.3 26 15 39 1556.33 19.06
c200.150.n.1 64 28 75 3204.16 35.82
c200.150.n.2 43 19 47 2074.49 23.91
c200.150.n.3 25 15 40 1522.02 19.15
c200.150.t.1 77 32 80 3616.64 40.36
c200.150.t.2 65 24 60 3021.12 30.30
c200.150.t.3 45 19 51 2366.18 24.34
c200.150.w.1 80 26 61 3233.30 32.42
c200.150.w.2 43 17 46 2046.33 21.80
c200.150.w.3 27 15 39 1593.42 19.06
r200.050.n.1 56 44 125 3567.92 56.86
r200.050.n.2 42 30 86 2549.09 38.85
r200.050.n.3 28 24 67 1939.77 30.89
r200.050.t.1 56 49 140 3795.99 63.38
r200.050.t.2 53 38 103 3088.01 48.61
r200.050.t.3 36 29 86 2266.99 37.83
r200.050.w.1 53 43 121 3474.33 55.45
r200.050.w.2 41 28 76 2319.62 35.83
r200.050.w.3 34 22 60 2021.50 28.20
r200.100.n.1 67 41 108 3518.51 52.15
r200.100.n.2 43 27 76 2440.26 34.84
r200.100.n.3 39 22 58 2104.25 28.01
r200.100.t.1 66 44 119 3924.19 56.29
r200.100.t.2 49 33 93 2974.59 42.60
r200.100.t.3 42 28 75 2526.42 35.75
r200.100.w.1 62 37 99 3328.91 47.23
r200.100.w.2 46 24 65 2237.45 30.72
r200.100.w.3 35 21 54 1889.16 26.59
r200.150.n.1 68 39 104 3591.61 49.76
r200.150.n.2 52 26 71 2496.04 33.35
r200.150.n.3 52 22 55 2296.52 27.73
r200.150.t.1 75 43 110 3903.34 54.39
r200.150.t.2 62 31 79 3166.87 39.22
r200.150.t.3 46 24 66 2348.68 30.83
r200.150.w.1 60 35 96 3162.99 44.92
r200.150.w.2 46 25 65 2543.99 31.75
r200.150.w.3 40 20 52 1964.85 25.40

Table 3: Composition of best known solutions
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Inst Clusters Vehicles Workers Distance Cost

average 47.93 27.26 73.44 2624.94 34.87
average c 45.89 23.07 61.37 2455.74 29.46
average r 49.96 31.44 85.52 2794.14 40.28

average 050p 42.61 29.33 81.61 2627.15 37.76
average 100p 48.00 27.24 73.29 2612.73 34.83
average 150p 53.89 25.56 66.50 2675.14 32.47

average t 52.06 31.06 84.22 2963.71 39.77
average n 46.72 26.39 71.22 2539.17 33.77
average w 45.00 24.33 64.89 2371.94 31.06

average 10% 62.39 36.17 97.67 3419.68 46.28
average 20% 45.61 25.22 67.89 2469.97 32.26
average 30% 35.78 20.39 54.78 1985.16 26.07

Table 4: New best known results aggregated by the instances’ properties

proposed algorithm to solve the classic 100 customer R1 instances proposed

by [Solomon, 1987] shows the potential of bi-modal transportation. To do so, the

R1 instances were used as input without any modification. Hence, every customer

has a dedicated on-site parking location. However, the performed experiment

allowed to stop a vehicle at a customer’s parking location while visiting other

customers via the second mode of transportation. In this experiment, the velocity

for the second mode was set to 30% of the vehicle speed. This means that major

congestion is assumed.

Despite a lack of local search operators in the proposed algorithm, three out of

twelve R1 instances were clearly improved using the cost function in Equation

1. For the classic VRPTW instances, the best known solution’s6 number of

trucks and required distance can be used directly in this equation. The number

of workers is set to 1 for each instance since besides the driver, no additional

workers are used. Considering the 1:10 cost ratio between a truck and a service

worker proposed by [Pureza et al., 2011], three instances could be improved.

Given this arguably extreme ratio, reducing a single truck allows for adding 10

workers without changing the objective function value. However, looking at the

results of R101-R103, a much lower cost ratios still improve the objective function

value. In R101, a cost ratio of 1:3 between a vehicle and additional workers still

improves the objective function value. Reducing the number of trucks and drivers

by 1 while adding 3 additional workers moves along the pareto front at a 1:3

ratio. However, reduced milage leads to an improved objective function value.

Based upon the same reasoning, R102 has an improved objective function value

up to a cost ratio of 1:2.5. In the case of R103 the cost can be considered to

6 The values for the best known VRPTW solutions are taken from http:
//www.sintef.no/Projectweb/TOP/VRPTW/Solomon-benchmark/100-customers/ at
the time of this writing.
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Instance VRPTW VRPTWMS

Vehicles Distance Clusters Vehicles Workers Distance

R101 19 1650.80 82 18 22 1624.03
R102 17 1486.12 77 15 22 1453.92
R103 13 1292.68 84 12 15 1306.84

Table 5: Comparison to three classic VRPTW instances

be improved up to a ratio of almost 1:2 (given the slightly worse milage of the

VRPTWMS solution). The result values for the improved instances are listed in

Table 5.

Even though the cost ratio of 1:10 defined in the first publication about the

VRPTWMS is limited to low-wage countries, the presented results encourage

applicability in higher wage countries as well. This particularly holds since the

fixed cost of a truck also the includes wage difference between an eligible driver

and an unskilled worker.

5 Conclusions and Future Work

This paper makes a series of important contributions. These are the proposition

of the first metaheuristic for the VRPTWMS that guides a clustering heuris-

tic with good routing results. Furthermore, it is shown how to learn from past

routes even though the topology of the routing problem changes in every itera-

tion. However, the most important contribution is to show that given the right

circumstances (speed and price ratio between the two modes of transportation)

there is a strong potential in reducing cost and environmental impact at the

same time. This paper not only suggests that it is possible to reduce the en-

vironmental impact of goods transportation in congested urban areas. It also

demonstrates a strong incentive for carriers to do so since cost reductions are in

their own economic interest.

Given both the novelty and the relevance of the VRPTWMS, a lot remains

to be done. The more important areas to be researched include a series of local

search operators for the clustering. For example, the current cluster construc-

tion heuristic fixes a cluster’s parking space at the time the seed is selected.

However, when customers are added, it is usually beneficial to change a cluster’s

parking location to the one closest to the center of the customers. Furthermore,

the scheduling algorithm inside the clusters offers a potential for improvement.

Another very interesting area for future research is to drop the assumption that

loading zones are always available upon truck arrival and create a simulation-

driven approach to account for this problem.

Finally, the vehicle routing community ought to spend more time research-

ing multi-modal transportation in general. The research paper at hand already

1165Senarclens de Grancy G.: An Adaptive Metaheuristic ...



clearly demonstrates the potential of this approach in providing both financial

savings as well as ecological benefits. However, besides lacking local search op-

erations, the presented algorithm does not offer the decades of insight that were

put into pure VRPTW algorithms. Still, even in this early stage of research it

was possible to demonstrate gains by applying a multi-modal approach. This is

why other alternative models should be investigated as well - for example with

sub-tours inside the clusters instead of direct delivery between the vehicle and

the customers. Furthermore, the option of dropping off workers and picking them

up later on should be investigated. This could even be done at a different parking

location. The idea behind the said research paths is to increase the number of

real-world applications of multi-modal transportation.
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