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Abstract: Safety-critical systems and certification standards are the bare essential
elements for the development process of avionics, automotive and industrial embedded
systems. The necessity of including non-safety capabilities to reduce the price of these
systems has resulted in a new type of critical systems, the mixed-criticality ones. These
systems should be able to execute safety-critical applications but, at the same time,
to run non-safety-critical functionalities without affecting the integrity of the safety-
critical tasks. This paper presents a new system architecture which includes safety-
critical and non-safety-critical parts in order to form a mixed-criticality system. The
system consists of a reliable platform with a dual-core processor (implemented using a
FPGA) architecture designed as open-hardware, running two isolated real-time oper-
ating systems which are connected through a safe core-to-core communication channel
that executes the safety-critical applications. Moreover, the safety-critical system is
connected to an external processor, an ARM9, which is used as an external sensing
system. The ARM9 runs the non-safety-critical applications and allows the system to
insert modifications updating without affecting the safety capabilities of the safety-
critical part. This platform is described providing evidences of the isolation between
safety-critical (SC) and non-safety-critical (NSC) applications, as well as describing
an updating methodology for non-safety-critical applications. This system is validated
using a complete and reliable application for safe emergency stop applications for in-
dustrial machinery.
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1 Introduction

The simplification of the development process in safety-critical (SC) systems has

been the center of attention of many companies and research centers working on

avionics, automotive and industrial applications. The safety requirements impose

significant time and cost overhead over conventional design procedures which

many companies strive to minimize. In the past, processor trends were domi-

nated by the increase of complex feature sets, higher clock speeds, growing ther-

mal envelopes and power dissipation (super-scalar micro-controllers). This solu-

tion is not longer suitable because of hardware limitations and power/thermal

dissipation issues caused by frozen clock speeds. However, markets and applica-

tions demand performance increase, safety and low energy consumption, which

is closely related to critical embedded systems [Parkhurst et al. 2006].

Not many years ago, single-core was the most common hardware architecture

for critical embedded systems but instead, there are many advantages of using

multi-core/multi-processor systems: the single-core obsolescence and the lately

business philosophy which aims to the increase of performance and the reduction

of costs in the development process of these systems [Parkhurst et al. 2006]. Ad-

ditionally, the introduction of multi-core processing platforms into these kind

of systems poses an important challenge at different levels specially related

to the management of shared resources. These issues mainly affect system-

level scheduling [Zhuravlev et al. 2010], interferences between the low-critical

and high-critical tasks [De Niz et al. 2009] as well as the architecture commu-

nication, which need to be solved at hardware and software level to properly

guarantee that multiple processes running on the multi-core can fulfill the real-

time constraints required by the SC applications without affecting each other

[Abdelhalim et al. 2011].

A trend solution lately proposed has been the utilization of mixed-criticality

architectures on the same processor, in which different levels of reliability and

criticality can be achieved [Pellizzoni et al. 2009, Cuenca et al. 2011]. While tra-

ditionally mixed-criticality systems were based on spatial separation of SC and

non-safety-critical (NSC) tasks using different hardware processors, current trends

aim towards using different mechanisms as temporal isolation [Baruah et al. 2010]

in order to share hardware resources. A goal is to find mechanisms that provide

and prove isolation between NSC and SC parts. This allows the development

of NSC applications of mixed-criticality systems in a simple and less expensive

way and, additionally, to upgrade NSC parts of the system without requiring

a re-certification process [Kelly et al. 2003]. These problems become even more

crucial in critical systems which require a strong validation and verification pro-

cess.

Different mechanisms are available to increase and achieve safety properties

but the focus in this paper is the utilization of identical or diverse redundancy
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concepts for both hardware and software [Yeh et al. 2001, Powell et al. 2010]. Di-

verse redundancy refers to using two or even more different subsystems, which

are built with different components, algorithms, electronics, design methodol-

ogy, etc., to perform the same task. One of the benefits derived from the uti-

lization of diverse redundancy is the increased capability to reduce common

mode and systematic failures, such as those caused by design flaws. Software

diversity was called into question for not being able to prevent system errors

[Knight et al. 1990], for this reason, the development of a hardware-software

architecture combining diversity techniques reduces the errors that can be cor-

related from software-like diversity solutions [Laprie et al. 1990]. This technique

represents an effective defense against hidden dangerous faults, thus decreas-

ing the probability of system failure in a safe state (Safe Failure Fraction). Logic

solver technologies [IEC61511 2006], which use internal diverse redundancy have

been developed for applications up to Safety Integrity Level (SIL) 3. This mech-

anism is one of the methodologies recommended by IEC61508 and IEC61511

standards in order to increase safety integrity of programmable electronic sys-

tems [IEC61508 2006].

The utilization of multi-core architectures involves the description of new

requirements related to isolation and partitioning mechanisms that should be

complied to achieve safety. First, a reliable communication connection (Core-to-

Core communication) needs to be implemented in order not to lose the features

that multi-core provides. In addition, a software system scheduling must be

performed since different resources are shared by different processors, leading

to system collisions and failures. As well as design methodologies, development

tools should be adapted to these architectures since parallelism features and the

possibility of concurrent processes are key points for multi-processors.

For the development we describe in this paper, different requirements have

been taken into account. These requirements were extracted from the work ac-

complished in an Artemis JU project, RECOMP [RECOMP]. Our implemen-

tation complies with the development recommendations of three certification

standards: IEC 61508, DO-254 [DO-254 2012] and DO-178C [DO-178C 2012].

Section 1.1 defines briefly these standards.

1.1 Certification Standards

By means of the industry domain, the IEC61508 describes requirements to pre-

vent failures caused by hazardous events and to control failures by ensuring

safety, even when faults are present. Additionally, the standard provides re-

quirements for product’s overall safety life-cycle. It specifies four discrete SIL

levels of safety performance for a safety function. SIL 1 is the lowest level of

safety integrity, and SIL 4 is the highest level.
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Concerning avionics, DO-178B/C is a document used by the US Federal

Aviation Administration (FAA) to determine the conditions in which software,

that is required to be certified, is able to run, safely and reliable, in an airborne

environment. This software standard can be accompanied by DO-254, which is

used as a guide for the avionics hardware and electronics development process.

DO-254 standard is involved in the compliance for the design of complex elec-

tronic hardware of airborne systems. Complex electronic hardware includes de-

vices like Field Programmable Gate Arrays (FPGAs) and Programmable Logic

Devices (PLDs). This standard specifies the requirements for both design as-

surance and certification processes. Hardware design verification and validation

need to be accomplished independently, which means that hardware designers

should ensure that the design fulfills the defined system functionality and the

verification team should verify that all of the derived requirements from the

standard are met.

The integration and evolution of new technologies into aerospace, automotive

and industrial domains have created the need for the adaptation of the certifi-

cation process as soon as possible. One of these new trends is the introduction

of multi-core systems on industrial and avionics HW/SW architectures provid-

ing the possibility of running multiple partitions concurrently on a computing

platform, increasing the flexibility of the system, easing system upgrades and

customization possibilities [RECOMP]. Next Section 1.2 introduces the certifi-

cation issues for multi-core systems and how they can be undertake as part of

our work.

1.2 Adapting Certification Standards from Single-core to Multi-core

The main issue related to multi-core is that certification guides are clearly defined

for single-core but not for multi-core, leading to new challenges and problems

that must be addressed. In most of the cases, critical functions must run in-

dependently on a single-core with dedicated resources but in other cases, they

are exposed to coexist together with non-critical functions (mixed-critical ap-

plications). When this occurs, allocation technologies, partitioning and isolation

methodologies must be extended from single-core standards to justify the spa-

tial and temporal independence between each partition in multi-core systems

[Abdelhalim et al. 2011].

The use of multi-core technologies is also a challenge for mixed-critical sys-

tems. The main issue is to make possible the coexistence of different critical-

ity levels on the same computing platform. In these systems, low-critical and

high-critical applications must share processing resources and time maintaining

criticality properties. Unfortunately, this makes even more expensive and com-

plicated the certification process, including the adaptation of certification stan-

dards, since it requires less criticality components to be certified at the highest
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criticality level.

In terms of costs, the certification process of SC applications is an expen-

sive and complicated issue. This process normally increases development costs

anywhere from 25 percent to 100 percent [IBM Software Rational 2010] unless

isolation between NSC and SC parts becomes proven. NSC parts can offer user

experience, flexibility and dynamism in software (graphical user interfaces, Eth-

ernet broadcast messages, etc), which are highly valued from a user’s point of

view. Such functionalities focused on system monitoring can be implemented as

NSC software. As long as this NSC software is isolated from the SC part, there

is no risk for injury to the users or environment [RECOMP D.4.2b.1 2013], thus

certification is not required for NSC. This leads to important cost savings in the

certification process (0 percent for the isolated NSC part) of the whole system

in case only the NSC application requires modification.

For this reason, the development of monitoring features as NSC applications

is a low-cost solution compared to monitoring SC solutions. Moreover, developers

may focus on the application features without taking care of safety limitations.

Our work have been performed by following this alternative for the development

of the NSC part of the mixed-criticality system using a multi-core architecture.

This paper presents a mixed-critical multi-core architecture in which different

approaches have been developed to satisfy certification standard requirements

by means of hardware, gateware and software. It is based on three elements:

– A multi-core open hardware platform capable of isolating fault propaga-

tion from the NSC part to the SC part while still providing communication

[Mendez et al. 2013]. It includes a specific gateware specially developed for

the work described in this paper.

– A SC application with compliances according to SIL3 level in the IEC61508

standard.

– A NSC application allowing communication with the SC part and ability to

update software during runtime.

A diverse architecture implementation for hardware and software has been

designed following the recommendations from certification guides for the imple-

mentation of the SC part of our mixed-critical system. The NSC component is

based on a sensing application with run-time capabilities that is not crucial for

correct execution of the system. To further increase the flexibility of the NSC

software, it implements a runtime updating mechanism. Using this mechanism,

software developers are able to patch the running software without restarting

the system or application. This is a desired feature in for example complex ma-

chinery, pulping plants, mills etc. [Toivonen et al. 1990] since a system reboot

can be very time consuming.
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The rest of the sections of the paper are structured as follows: section 2 intro-

duces the related work for mixed-critical systems. Section 3 describes the base of

our work that involves the description of a case study: a safety emergency stop

for industrial machinery. The hardware used for this implementation is described

in Section 4.1 and Section 4.2 presents the software design and implementation.

Finally, we state the results and conclusions of our work in Sections 5 and 6, as

well as the future work that derives from the presented implementation.

2 Related Work

Mixed-criticality exists in several forms: certification wise (as in this paper),

application wise (mapping based priority levels), processor wise (mapping based

on processor type) etc [Shariful et al. 2009]. The fundamental commonality is,

however, to secure the execution for the higher priority part independent of the

low priority behavior. Wasicek et al. [Wasicek et al. 2010] present a SoC platform

for executing mixed-criticality applications in which a Trusted Computing Base

(TCB) is used to isolate a critical part from misbehaving components outside

the TCB. Complimentary to this work, our mixed-criticality architecture can

be set-up to manage for example data isolation with trusted memory spaces

[Bate et al. 2003]; this is done rather than having a dedicated software part to

intercept faulty behavior due to increased speed and less resource use.

To schedule mixed-criticality applications Mollison et al. [Mollison et al. 2010]

suggested a multi-level scheduling mechanism for multi-core systems. The very

scheduling technique is dedicated to a certain criticality level of the application

used. High criticality applications are, for example, set to use only local static

scheduling, while the lowest criticality levels use global best effort scheduling. A

problem when using multi-core SMP scheduling in critical systems is to guar-

antee resources for critical applications in form of CPUs, OS resources, memory

bandwidth when using inter-core locking.

One of the solutions proposed for the shared resources for multi-cores is

virtualization. It consists in assigning access to shared resources by means of

time or space. A shared source can be owned by a process for a slice of time or

can be mapped only to a certain region of memory [RECOMP D.4.2b.1 2013].

The most popular solution for memory management in RTOS is the utilization

of hypervisors.

In our architecture, using a hypervisor was not necessary because of the

utilization of an asymmetric multi-core OS (AMP) which maps one time sharing

scheduler on each core in separate memory blocks (FPGA). No problems caused

by inter-core locking is therefore present in the OS since all OS resources are

requested from the local-core OS and inter-core communication is done explicitly

via two mailboxes.
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A SoC design for mixed-criticality applications, in which hardware and func-

tional isolation mechanisms are used to guarantee correct execution for critical

applications in a pacemaker, is presented in [Pellizzoni et al. 2009].

The CPU provides memory protection for shared scratchpad memories and

functional isolation is provided by online monitoring. In contrast to this platform,

our shared resources are directly controllable by the safe FPGA and all non-safe

applications are running on the external ARM9. The utilization of this ARM9

processor together with the AMP FPGA architecture provides this platform

with diversity, which is helpful to increase reliability in terms of fault-avoidance

[Lala et al. 1994]. In addition to this, this design provides isolation by design

and allows the safe FPGA to operate completely independent of the external

ARM9.

3 System Description

Having introduced safety-critical, mixed-criticality embedded systems and the

certification process that these systems require, we describe the application sce-

nario we have developed for the design of a mixed-criticality application. The

main idea of our case studies is to create a system that includes both existing

criticality systems: a SC part and a NSC part.

Certification standards stress that there are two procedures to include NSC

elements in a SC application. One of them resides in certificating the NSC at

highest priority level of the SC part, and the other is to isolate the NSC applica-

tion from the SC part. The latter methodology reduces certification costs as no

certification is required for the development of the NSC part. Updating only the

NSC part would be exempt from certification too. For this reason, our design

focuses on isolating between applications.

Our isolation design starts with the separation of hardware elements and

mapping shared devices independently to ensure a correct access behavior to

them. Hardware isolation is performed by allocating the SC and the NSC parts

in different components of the platform. The SC application is allocated on two

FPGA soft-processors and the NSC part runs on an external ARM9 processor

with its private memory and OS as Fig. 5 shows.

With this configuration, isolation is assured by means of hardware but we

need to rise this property up to software [Zhuravlev et al. 2010]. This ARM-

FPGA solution provides the system with heterogeneous and diverse elements,

since it is running on two different isolated processors interconnected with a

shared memory [Lala et al. 1994]. The FPGA hardware architecture (Fig. 5)

has been developed as a prototype for the first development stage. Next step is

the migration of this design to a new implementation with physical processors.

The OS used for this system is a Real-Time Operating System (RTOS) for

embedded systems, called OpenRTOS [OpenRTOS]. OpenRTOS is a RTOS de-
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Figure 1: System architecture of the complete application. Each FPGA processor

runs an instance of a RTOS (OS) with its correspondent Board Support Package

(BSP) configuration. Moreover, both processors are connected via a safe core-to-

core (C2C) communication channel. The monitor application (ARM) runs an-

other independent RTOS (OS) and reads data from the FPGA through a SRAM

shared block.

veloped by Wittenstein High Integrity Systems [Wittenstein]. The benefits of

using this RTOS regards to the possibility of parallelizing functions/tasks in ad-

dition to a priority system that stands out for its simplicity and predictability.

It is used for both SC and NSC parts and contains a simple scheduler which

shares the execution time of tasks on the local CPU core.

Using a scheduler is necessary to parallelize access to shared memories and

of course to make the tasks work ”concurrently” for the emergency stop of the

system, which involves up to 13 different OpenRTOS tasks at the same time. The

utilization of a scheduler is also useful for parallelizing access to FPGA devices

and the tasks that are involved in the core-to-core (C2C) communication between

the two soft-processors that conform the SC part of the system and must be

executed concurrently. The main objective of this application is the diagnostic

of a safety function and the capture of system monitoring measurements. These

values are later processed by the NSC part of the system, the sensing application.

Besides software, the hardware platform is also an important element in this

system. The hardware platform on which we have decided to implement the

mixed-critical multi-processor architecture, is called Avionic Computing Plat-

form (ACP), and has been developed by Seven Solutions [Seven Solutions Inc.]

in the framework of RECOMP project. This development platform is described

in details in Section 4.1. Sections 3.1 and 3.2 describe the SC and NSC parts of

our system in terms of design and specification in more detail.
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3.1 Case Study: SC Emergency Stop

The SC part of the system has been developed according to the description and

specification of a case study presented by Danfoss [Berthing 2012]. It is used

as a basic, complete and real (rich in safety-critical and certification concepts)

example for the RECOMP project.

This case study consists in the removal of the torque from an industrial mo-

tor. A misbehavior of the machinery could put human lives on risk. To prevent

any further damage, these systems are provided with an emergency button that

generates an Emergency Stop (ES) signal, which must be monitored and imple-

mented following the industrial standard IEC61508. It describes the necessity of

using a redundant architecture to process the ES signal and control the status

of the system. IEC61508 recommends using a dual channel 1 out of 2 (1oo2) as

the safety control architecture for this type of machinery. It minimizes the effect

of dangerous failures using two independent processors.

Figure 2: Redundant and cross-comparison methodology used in a safe channel

architecture 1oo2. Left: Concept design of a safe channel architecture 1oo2 ex-

tracted from IEC61508:2010. Right: Our design of a safe 1oo2 channel using two

processors.

Our implementation develops the 1oo2 channel using two MicroBlaze soft-

processors that perform a cross-comparison diagnose of the ES signal as IEC61508

states (Fig. 2) for SIL3 applications. This process results in the activation of the

safety function that performs the removal of the torque, the Safe Torque Off

(STO) function. After the activation of the STO from any of the processors, the

industrial motor removes the torque and the system halts.

The two processors of the 1oo2 architecture receive the same inputs: an ES

signal and the data related to the STO function from the other processor. The

data go through two diagnose processes, a cross-comparison function for local

and external STOs, and another for the ES input and non-STO related variables

as seen in Fig. 3. The diagnostics module includes also a liveness check routine

implemented as a counter. The two cross-comparison modules together with the

liveness check routine conform the failure detection system on both processors.
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Figure 3: Processor’s diagnostic module. Each processor implements a diagnos-

tic module to detect system failure. It consits in four components: two cross-

comparison functions, one for the local and external STOs and another for non-

STO related signals, an external counter to check the other processor is alive and

a fourth function that detects when any of the other components rises an error

signal.

The functioning of the SC application starts with a power-up stage that

checks the availability and correctness of the peripherals. After a successful

power-up phase, the system runs normally. It executes several diagnostic tasks

used to ensure the correct operation of the system and then, the sensing ap-

plication captures and evaluates the data for monitoring. The behavior and

measurement treatment of the NSC sensing application are described in Section

3.2.

In case of emergency, the ES button is pressed by a machine operator. Im-

mediately after, each processor activates the STO function so that the torque of

the motor is removed. Each processor evaluates the ES input, its local STO, and

the external STO from the other processor. As Fig. 4 shows, the exchange of

data between both processor is accomplished using a Core-to-Core (C2C) library

guaranteeing SIL3 for the communication [C2C]. After the cross-comparison di-

agnose processes the STO from both processors are activated.

Finally, both STO outputs are connected to a signal analyzer through a CAN

bus system, which is in charge of removing the torque of the industrial motor

when the STO is activated. The implementation details of the SC application

are described in Section 4.2. It should be noted that, CAN bus and the signal

analyzer deployments are not in the scope of this paper.
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Figure 4: Core-to-Core communication architecture. The ES signals are con-

nected to each processor in which the STO activation is evaluated. The STO

related values are sent and receive from the other processor using a C2C library

developed at SIL3 to perform the cross-comparison diagnose phase.

3.2 Case Study: NSC Sensing Application

NSC software is used to enhance the user experience and increase NSC function-

ality in a system. Since no certification is needed for this part due to the isolation

methodology followed, its development and update do not increase certification

costs.

This case study demonstrates a NSC sensing application for visualizing in-

ternal values of the SC FPGA platform. We present the implementation of the

isolation mechanism, which enables communication between the SC FPGA and

the NSC ARM9 while guaranteeing isolation from fault propagation. The sens-

ing application runs on the external ARM9 and contains a functionality for

presenting various measurement values from the sensor devices on the FPGA to

the user. Values such as temperature, voltage, safety function signals and error
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values can be read by the FPGA and sent to the ARM9.

To stress the meaning of maintenance costs, the sensing application includes

an update mechanism which can modify software during run-time, which enables

the system to change the program code of the executing tasks. To be noticed

is that this updating mechanism supplies the possibility to modify the behavior

of the sensing application avoiding the necessity of powering the system off nor

restarting the application [Wahler et al. 2009]. Similarly, the SC applications or

the safe FPGA do not require a reboot when updating NSC software; which is

beneficial for timing purposes. Moreover, no re-certification of the SC applica-

tions are needed when updating the NSC software since the platform guarantees

correct behavior of the SC software independent of the NSC software.

In summary, we present a mixed-criticality system that is composed by two

isolated applications: a SC part which evaluates the emergency stop of an in-

dustrial machine, and a NSC part that corresponds to the sensing application

used for displaying measurement value and is able to insert new user necessities

at run-time. Throughout this paper, we present the implementation that was

necessary for the development of this system in terms of hardware, firmware,

operating system and application.

4 Implementation

In this section we describe the implementation of the whole system in terms of

hardware and software elements.

4.1 Hardware

The ACP platform is composed of two different boards connected through an

external interface connector: the core board, in which processors and memories

are included and the architecture is developed. This board is called AION. Below,

it is connected to a peripheral board called RECOMP Sensor Board (RSB),

which implements the required peripherals to fulfill safety-critical requirements

and connections [Mendez et al. 2013]. The AION board is a dual-processor that

provides dual and diverse processor-devices: an ARM9 single-processor and a

Virtex-6 FPGA. Along with these processors, independent memory chips (two

QDRII chips for the FPGA device, DDR2 for the ARM9 and flash memory chips

for each), safety peripherals like watchdogs and isolated oscillators, are available

for each processor (Fig. 5). More details about the platform development can be

found in [ACP Manual 2012].

This platform covers the hardware requirements of this mixed-criticality

system since it requires independent and duplicate system peripherals in or-

der to implement an AMP architecture inside the FPGA as the safety part,

whereas the non-safety part is implemented inside the ARM9 processor (Fig. 5)
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[Shariful et al. 2009]. Furthermore, according to the case of study, we decided

to implement an AMP dual processor architecture inside the FPGA provided

within the ACP, whereas the ARM9 single-processor is used to run the NSC

part of the system. Thanks to the utilization of the FPGA we can implement

(and modify, if required) the hardware architecture using soft-processors in order

to evaluate first the correct behavior and system functionality instead of being

restricted to a single hardware architecture.

Figure 5: ACP On-chip FPGA architecture [Adapted from [ACP Manual 2012]]

We are using a heterogeneous AMP system, in which each software process is

locked to a single core. This provides an execution environment similar to single-

processor systems, allowing simple migration of legacy code. Moreover, it also

allows developers to manage each core independently, implementing different OS

and architecture in each one (memories, peripherals) if necessary. Nevertheless,

the isolation of processors forces developers to implement a communication chan-

nel and its correspondent protocol for data transmission. We have implemented

this communication channel also in the FPGA.
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4.1.1 FPGA Hardware Architecture

The FPGA implements two independent Microblaze processors. The Microb-

laze processors are connected to the board peripherals and external memories

through a PLB bus which will be the main bus of the system. IP-cores (the com-

monly used) and the Microblaze processor are being implemented in a safe and

certifiable way by Xilinx in collaboration with third-party partners in the frame

of critical projects. Therefore, although commercial versions of the IP cores are

used, the migration of them to the qualified ones is very simple, which makes

re-certification in future projects easier.

Due to the utilization of an AMP architecture, each processor must run

independently from each other and only some peripherals are shared. So the

architecture can be seen as two isolated soft-processors with different accessible

peripherals that are connected as Table 1 describes. The processors are connected

to each other through a mailbox and a mutex IP-core (Fig. 5) to share packets

and instructions and a 64KB shared memory to exchange largest amount of data

and information. These are the components that are used to provide the system

with communication features.

AION Peripherals MB0 MB1 Shared

QDRII External Memory X X

Interruption Controller X X

Internal Memory & Mailbox/Mutex Controller X

External WatchDog Controller X

Flash Memory Controller X

SW Configuration Memory X

Temp. Sensors and FPGA Monitor X

LEDs and buttons X X

JTAG Debug Controller X

Serial Ports Controller X X

LCD Controller X

Table 1: MicroBlaze processors connected peripherals.

Due to the criticality nature of the SC part of the system, we developed a

controller for the shared QDRII memory between the ARM9 and the FPGA

to ensure that the NSC application does not interfere with the SC one. This

QDRII controller has been modified in order to avoid shared memory problems

that may cause a wrong behavior of the SC part of the system. Hence, these

changes ensure that the ARM9 is just able to read the data that the FPGA
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writes in the QDRII from a specific region address. Any other operation from

the ARM9 is denied by the QDRII controller.

Note that the industry certification standards states that the safe channel

architecture 1oo2 needs to be implemented using two cores in two different plat-

forms with different power supplies in order to maintain the required SIL3 level.

Our implementation uses two isolated processors in the same platform inside the

FPGA that means that SIL3 cannot be ensured as IEC61508 describes. Never-

theless, we use first this FPGA platform to develop and perform the isolation

and the communication mechanism that the hardware architecture and the ap-

plication need. Once this development is successfully accomplished and as future

work, we will separate both processors into two different platforms assuring the

required SIL3 level.

The software implementations mapped to the FPGA and the ARM9 are

described in next Sections 4.2 and 4.2.2 respectively.

4.2 Software

This section describes the software running on the hardware platform and com-

pounds the case study that exposes the removal of the torque from an industrial

motor, as well as the sensing application.

The developed software consists of to two different elements as Fig. 6 shows:

the SC and the NSC applications. The SC software is mapped on the FPGA

multi-core soft-processor. It contains the logic required to satisfy the case study

requirements previously introduced in Section 3.1. The application requires the

exchange of information regarding each processors’ diagnose results compared to

the other processor. In addition to this, the utilization of an AMP architecture

requires of a safe mechanism to send and receive the data. The reason for this is to

avoid inconveniences of using shared memories and to guarantee the robustness

of the SC system. For this purpose, we have integrated a C2C communication

library to provide processor communications with SIL3 [C2C].

As previously said, the chosen OS for the safety system is OpenRTOS and the

programming language is C. Wittenstein provides a free license for FreeRTOS

[FreeRTOS 2009], which is a successfully small and efficient embedded kernel

and compatible with OpenRTOS. FreeRTOS and OpenRTOS are not certifi-

able operating systems as such, but a certifiable version of these RTOSes is

available for SC systems: SafeRTOS [SafeRTOS 2012]. SafeRTOS is a certified

pre-emptive RTOS that maintains the same features as the mentioned RTOSes

and, in addition, contains additional features required for certification, such as a

complete isolation system for SC tasks by the definition of Memory Protection

Unit (MPU) regions per task.

By using a OpenRTOS, we can prioritize the execution order of tasks depend-

ing on the relevance of their work. In addition, this RTOS includes an specific
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Figure 6: SC-NSC system data-flow. Represents the flow of data from temper-

ature and system monitor sensors (SC) connected to the FPGA to the display

connected to the ARM9 (NSC)

C2C communication library called WC2C library (WC2C) [C2C], which has been

also developed by Wittenstein in the context of RECOMP. This library offers

the possibility to exchange data between several processing elements connected

through a shared memory and a mailbox. In addition to this, the WC2C library

ensures safety features for the critical data exchanged between processors with-

out putting at risk the reliability of the entire SC application as direct access to

shared memories may cause.

4.2.1 SC Software Implementation

The most relevant part of the SC application is performed by each processor due

to the tasks that it executes. Each processor runs different tasks in parallel to

guarantee the correctness of the system. Three different tasks can be defined:

STO diagnostic, system monitoring and communication. The STO diagnostic

functions handle all tasks that evaluate and diagnose the system status. The SC

application decides whether the STO must be activated or not. Moreover, these

tasks must determine whenever the system reaches an undesirable state caused

by an anomalous behavior, causing the system to a power cycle reset in order to

regain the safe state.

The STO diagnostic tasks can be grouped into the following categories:

– Power up tasks: This task starts with a complete checking procedure during

the power-on of the system. Once the initial test has been successfully ac-
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complished, it remains activated waiting for the moment the safety function

is activated, in order to contribute to the maintenance of the system.

– Diagnostics tasks: This is the main element among the diagnostic process.

It processes both local and external STO function status after the power-on

self test stage during the whole execution of the platform. The diagnostic of

the state of the platform is transmitted to the other core through the C2C

channel.

– Failure detection tasks: this task updates consecutively the system watchdog.

When a failure occurs, it stops updating the watchdog causing the FPGA

to reboot. The FPGA is then re-programmed with the initial content of the

flash memory. The flash contains the FPGA firmware as well as the two

OpenRTOS applications.

– Communication tasks: each processor runs also two tasks that are used to

send and receive data from the safe C2C channel. One task is in charge of

sending the local STO status values to the other processor, whereas the other

one is reading.

These categories are composed by a certain number of tasks for each processor

(Figs. 3 and 4). Table 2 summarizes the software implementation of these tasks.

Task Name Type Description

vPowerUpSelfTests() Power Up Performs a peripheral check at start-up

vCrossComparisonIAnalysis() Diagnostic Verifies the both local and external STOs

vCrossComparisonIIAnalysis() Diagnostic Verifies internal and external data different from STOs

vLivenessCheck() Diagnostic Checks whether the other process is alive or not

vFailureHandling() Failure Handling Diagnostics task. Launches a reboot command in case of failure

vSTO() Diagnostic Handles the local STO function for each processor

SafeChannel1oo2Write() Communication Uses the WC2C library to send data to the other processor

SafeChannel1oo2Read() Communication Uses the WC2C to read data from the other processor

Table 2: Main function tasks implemented in each processor. Tasks are divided

into three type of functions: power-up, diagnostics and communication.

Owing to guarantee the correct behavior of the AMP platform and the

schedulability of these tasks executing on each processor, FreeRTOS and Open-

RTOS offer a routine that ensures the atomic execution of critical sections.

These routines are portENTER CRITICAL and portEXIT CRITICAL and are

described in [OpenRTOS, FreeRTOS 2009]. Inside a critical region the scheduler

will never extract the task from the processor during the execution of these

lines by disabling hardware interrupts, avoiding undesirable and unpredictable

reads/writes on peripherals and shared devices.
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The monitoring tasks are used to measure values from internal sensors and

registers for runtime monitoring. The SC application periodically reads all the

sensor measurements, such as temperature sensors and system monitor values,

as well as both local and external STO states, and writes values to a pre-defined

region in the shared memory as unsigned 32-bit integer values. These values can

be used to detect over heating of components or under voltage brown/blackouts.

Furthermore, the SC part writes the STO signal for each processor, and error

values for the STO function inconsistency in the shared memory. The STO signal

is inconsistent if, for example, one processor signals STO:high while the other

signals STO:low.

4.2.2 NSC Software Implementation

All NSC software containing the sensing application and the runtime updating

mechanism is mapped on the external ARM9 processor. The goal of the sensing

applications is to read measurement values from sensors connected to the SC

FPGA and present the values on a display. The obtained values are partly de-

rived from hardware sensors connected to the FPGA and partly from the STO

applications earlier described. Since the sensing application is completely with-

out certification, no actions apart from displaying values are taken from this part

of the system.

The ACP platform allows communication between the FPGA and the ARM9

via a shared QDRII memory. Moreover, the NSC application has no guarantees

for correct execution, and must be assumed to unexpectedly generate faults.

These faults cannot propagate back to the shared memory and interfere with

the SC part. The challenge is therefore to successfully isolate the SC part from

the NSC part and to prohibit fault propagation to the SC part while allowing

communication.

The sensing application is mapped to the ARM9 CPU described in Section

4.1. It is running as a task on top of a FreeRTOS [FreeRTOS 2009] port created

for the ARM26EJ-S. Fig. 6 illustrates the data-flow from sensors to display via

the shared QDRII memory. Initially, the sensor values are read by one of the

MicroBlaze cores and written into shared memory. The ARM9 then polls the

shared memory periodically to read the stored values. A read from the shared

memory is performed simply by reading a 32-bit pointer value from the memory

address associated with the shared memory. When a read is issued by the ARM9,

a memory controller managed by the FPGA is called and fetches the data from

the memory block and sends it back on the bus connecting the ARM9 and the

FPGA. Currently, the available data from the SC written in the shared memory

block of the QDRII are:

– Three external temperature sensors
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– On-chip temperature sensor for the FPGA

– Internal and auxiliary voltage sensor for the FPGA

– STO function status from processor 0.

– STO function status from processor 1.

– Failure status errors occur by processor 0 undesirable behaviors.

– Failure status errors occur by processor 1 undesirable behaviors.

The ARM9 reads the shared memory completely autonomously and, in real-

time, translates the values to relevant unit such as Celsius degrees (◦C) and

millivolt (mV ) depending on which value is read. These values are then dis-

played through the serial port to a terminal for the machinery operator.

– Isolation mechanisms:

One of the key features in mixed-criticality systems is the guaranteed isolation

[Wasicek et al. 2010] between the safe and the non-safe part. As the software on

the ARM9 is not certified and thus assumed unsafe, a miss behavior in the ARM9

cannot propagate to the safe FPGA. This means that the only communications

channel – the shared memory – must be protected against misuse. Misuse can,

in form of unintended faults, be originated from the non-safe ARM9 in form of:

1. Data overwrite: The ARM9 overwrites critical data in the shared memory.

2. Resource locking when writing: The ARM9 locks a memory space for an

unpredicted time when writing.

3. Read flooding: The ARM9 floods the bus with reads and blocks the FPGA

from writing.

We guarantee the isolation with the respective solutions:

1. ARM9 has read only access: A write will not change the value of the content.

2. ARM9 has read only access: A write will not lock the shared memory since

the resources will never be accessed.

3. The QDR memory explained in Section 4.1 ensures the scheduling between

read and write. This is provided at hardware level by the memory IP core

controller developed in the FPGA.

The mentioned solutions for preventing fault propagation is possible since the

FPGA is able to set read/write permissions for the shared QDRII memory. The

ARM9 is not able to interfere with the FPGA in any other way, since the bus
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connecting the shared memory is the only physical connection between the two

processors.

– Run-time updating of NSC software: To further improve the dynamism

and flexibility of software, we have implemented a runtime updating mechanism

for NSC software originating from the thesis [Lund 2012]. Run-time update of

software is a process of replacing an existing part of software on a running

platform with another part without shutting down the system or restarting the

application. Reasons for updating software is usually due to version updates, bug

fixes, algorithm optimization, and to keep the software more up-to-date with the

users.

This procedure is fairly trivial as long as no SC software is running on the

same platform and as long as the update is not executed at runtime. The shut

down process and start up of a SC system can be very time consuming in complex

machinery, mills, etc. This leads to NSC software updating possibilities only

during complete system maintenance in which the whole system is brought to

a stop. Since the uptime of large machinery is a crucial part of its efficiency,

complete system shut downs should occur as infrequently as possible. Updating

software online – on the other hand – does not require a reboot of the running

system, nor does it require a restart of the application the update was performed

on. A runtime updating mechanism will also enable remote updating of systems

via the Internet, which reduces personnel expenses significantly. Bug fixes and

other patches to NSC software could easily be distributed to systems in remote

locations from one single location without the restart of the SC nor NSC part.

Run-time updating of NSC software on a mixed-criticality platform is there-

fore an interesting use-case since a) both the updated software and the updating

mechanism itself are allowed to interfere with the SC part b) the updating of

NSC software on a mixed-criticality platform has the potential to wastly reduce

the development costs for NSC software and its integration.

The runtime updating mechanism is created for lightweight embedded sys-

tems running on FreeRTOS. It is capable of transferring the task state of any

FreeRTOS task into the updated task version without system reset. As previously

said, this NSC part including the sensing application and the updating mecha-

nism, has been implemented and mapped onto the ARM, which is by hardware

isolated from the safe FPGA. Hence, users can add new features to the system

without interfering the correct behavior of the SC application. To this end, the

modification performed on the shared QDRII block memory controller (described

in Section 4.1) consolidates the avoidance of undesirable access from the NSC to

the SC. This ensures the complete isolation between SC and NSC applications,

thus demonstrating that the developed mixed-criticality system complies with

the industrial certification standards that industrial machinery requires.
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5 Results

In this section we describe results of the implemented system, which demon-

strates the correct behavior of the heterogeneous multi-core mixed-critical sys-

tem in which the SC application performs critical tasks correctly under all pos-

sible circumstances, and the NSC part does not interfere with it due to the

isolation mechanisms here developed. Moreover, NSC-SC (ARM9-FPGA) isola-

tion reduces significantly the certification cost. It is also included in our case

study an example of on-the-fly update software in the sensing application.

5.1 Safety-critical Results

In order to verify the correct behavior of the SC system application, we have

performed several tests. These tests evaluate the multi-core issues related to

the certification process of this application: hardware and software redundancy,

diversity, C2C communication channel architectures and isolation mechanisms.

The testing methodology used is the following:

– Fault injection in the ES signal activation of the redundant STO activation

process.

– Fault injection in the exchange of the STO signal through the C2C channel

architecture.

– Fault injection in the cross-comparison functionality.

– Isolation controller to ensure the NSC part is not interfering the SC one.

Fault injection has been the evaluation technique to check redundancy cor-

rectness, detect errors and measure the response time of the case study. Our

fault injection method consists in three different experiments. The fist one is the

simulation of loss of information between hardware and software components.

This loss should not hamper the system because of the redundant hardware and

software architecture which guarantees the reception of the signal from two dif-

ferent paths. To simulate the loss of information, we have created a subroutine

that disables the ES read function in one of the processors as i.e., a physical wire

cut. When the ES button is activated, one of the processors’ ES signal remains

always inactive while the other one will read the correct ES activation and thus,

generating the STO signal which will remove the torque. The reception of at least

one of the ES signals is guaranteed by the redundant hardware architecture.

The second one injects wrong STO values to the C2C communication system

to simulate that one of the processors is not processing the ES signal properly.

This leads to a fake STO announcement from one of the processors to the other
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or the lack of it. In both cases this situation must be detected by the cross-

comparison diagnostic functions (see Figure 3 and Table 2) in each OpenRTOS

instance and start with the safety system halt. This halt has to ensure removing

the torque from the motor although only one processor activates the STO signal

since this means that a machine operator. The activation of the STO signal from

any of the processors is guaranteed by the diverse software architecture and the

1oo2 communication channel architecture.

Figure 7: State diagram of the SC system behavior. The green lines represent the

correct status of the application. It ends with the expected removal of the torque

preceded by the activation of both STO functions from processor 0 and 1 (STOP 0

and STOP 1are ON). The yellow line represents the correct removal of the torque

but the system needs reboot since STOP 0 and STOP 1 are not equal (safe state

but undesirable). Red ones represent the expected actions the system performes

when errors occur (failure)

Fig. 7 presents the complete state diagram of the fault injection error scenario

previously described and the response of our system to them. When the ES

button is pressed, each processor receives the order to start the diagnostic process
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for the STO execution. After the activation of STO in one processor, this signal

is sent to the other processor to perform the cross-comparison diagnostic. In case

both STO signals are activated with no failure, the system removes the torque

normally and it is halted (green lines in Figure 7). In case the two STO signals

differ from each other, the system will remove the torque, but it automatically

starts with the reboot sequence to guarantee a normal system behavior again

(green lines). This information is stored in the shared memory for the NSC part.

The reboot sequence consists in the expiration of a watchdog. When the

processors detect a system failure, they stop updating the watchdog and, two

seconds after the watchdog expires, the system reboots, it resets the FPGA and

loads both firmware and RTOS from the flash memory. This response time is

completely customizable and depends on the system requirements. By this, we

guarantee the correct behavior of the SC part in case of hardware connection

faults.

The third fault injection simulates a software error that affects internal vari-

ables directly related to the local and external STO diagnostic phase. This

method has been implemented as a function that modifies the local STO-dependent

values randomly inside each of the OpenRTOS applications. The cross-comparison

functions for both local and external STO data discover an incongruence data

exchange (red lines). In this case, both processors request a hardware reset.

Once again, the tasks updating the watchdog stop and the watchdog expires

prompting a system reboot.

In terms of isolation, the variables that depend on the functionality of the

mixed-criticality system are written in the shared memory in order to be read

from the sensing system. The controller (Fig. 8) that was developed for the shared

memory restricts the NSC part allocated on the ARM9 any possibility of writing.

Moreover, read functions are performed by using a different HW bus (Wishbone)

that the one used by the FPGA (PLB) to write in the memory. By this we ensure

that the SC part is completed isolated from the NSC application preventing from

any undesired behavior and thus, reducing the necessity of developing the NSC

part to SIL3 (SC part) that leads to cost saving in the certification process.

The three fault injection tests together with the isolation controller show

how the error prevention mechanisms work and, at the same time, how the sys-

tem response flow is restricted as described in Fig. 7. Our SC implementation

satisfies the following certification challenges for multi-core mixed-criticality ar-

chitectures:

– Isolation of SC and NSC parts.

– Certification/re-certification of NSC updates with no additional cost.

– Individual memory mapping for both processors.

– Safety communication channel developed at SIL3.
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– Scheduling capabilities using a RTOS.

Figure 8: HW isolation of the memory shared by the NSC and SC parts. The

ARM-FPGA controller isolates and avoids any interference between the shared

data from the SC part to the NSC application. The QDRII shared memory is

accessible from the SC part (MB0) through the PLB bus and is able to write and

read. The NSC part (ARM9) is only allowed to read the QDRII memory and it

accesses the memory through the Wishbone bus.

5.2 Non-safety-critical Results

As presented in Section 4.2.2, the NSC sensing application periodically reads

sensor values from the shared memory provided by the safe FPGA. In this sec-

tion we describe the results of the implemented system by showing the right

behavior of the SC application and no interference of the NSC part when per-

forming run-time updating. For this case study, we chose to update the software

capable of displaying the measurement values on a display. This means that a

failure in the display software is not critical for human safety, but degrades the

user experience significantly. The reason for using runtime updatable software

in display software is the ability to restructure the display layout, add more

features, increase/decrease accuracy of measurement values, modify the update

period, etc.

The first version of our software included two measurement values: On-chip

temperature and internal chip voltage. The software also included two derived

values: Max chip temperature and average chip temperature. These values are

based on previous sensor values and is therefore part of the state context. We
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show by updating the software that the state of the application in transferred

to the updated software.

A timer was used as decision maker for the runtime update. At a pre-defined

time the timer called a callback function in the display task to signal its update

request. The display task then entered the safe state and its context (max and

average temperature) was saved. The newer version (Version 2.0) of the display

software restored the context, and was able to continue registering maximum

and average temperature based on the previously collected data. Fig. 9 shows

both versions of the display software.

Figure 9: Runtime update of display software. Version 1 to the left and Version

2 to the right

The updated version of the display software allows more sensor values such

as: external temperature, and auxiliary voltage levels. It also displays all temper-

atures in both Centigrade and Fahrenheit degrees – a feature added by the new

software. It is worth mentioning that both display and run-time update mecha-

nisms do not interfere in the SC system behavior because of the previously stated

isolation between the ARM9 and the FPGA. In addition, any update/upgrade

of the NSC application would not derive in any additional certification costs.

6 Conclusions

We have presented a complete and reliable mixed-criticality system which in-

volves safe execution of an emergency stop button which removes the torque

from a motor of an industrial machine. Furthermore, we have presented a NSC

sensing application with run-time upgrade capabilities. The utilization of multi-

core has made possible to developed our specific isolation mechanisms for NSC

and SC and also to implement a diverse and redundant solution for this industrial

problem.
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The utilization of a reliable hardware platform have been implemented by

following certification standards. This provides a system with isolated and redun-

dant peripherals. We have used a dual-core architecture for an AMP application

using two MicroBlaze processors on a Virtex-6 FPGA to achieve the duplication

of hardware required by the certification standard. These processors run two

isolated instances of OpenRTOS which communicate via a safe C2C communi-

cation channel that has been implemented based on requirements from IEC61508

SIL3. The utilization of the WC2C communication library, joined with the iso-

lated FPGA, has enabled one of the main requirements for this kind of SIL3

systems: the redundant channel architecture (1oo2), which is necessary for the

cross-comparison diagnose stage of the system. This diagnose stage represents

the redundant component which ensures the correct behavior of the system in

response to the activation of the safety function in which human lives rely on.

In addition to this, we have included a complete sensing system application

and a runtime updating mechanism which provides the possibility of upgrading

the NSC part with new features depending on the user experience and needs

at runtime. Due to the isolation between the FPGA and the ARM9 created in

hardware we can upgrade the NSC part without interfering with the correct

behavior of the SC part, and thus, reducing certification costs.

As already stated, several parts of the system have been implemented follow-

ing certification standards. We have also shown the complete isolation between

both SC and NSC parts of the system at hardware and software levels even

when the updating mechanism is running. For the intercommunication between

the processors the hardware itself provides the necessary isolation while still

allowing inter-processor communication. Nevertheless, this inter-processor com-

munication is supervised at software level and performs a safe communication

system over shared resource inconveniences. Hence, hardware, firmware and the

communications channel are close to a certifiable system.

It is worth mentioning that the flexibility of the platform in terms of recon-

figurable hardware and software, has lead to an important point of our research,

the introduction of open-hardware/open-source approaches regarding the certifi-

cation process as open-boxed or systems. This helps to save time-to-market and

development costs but the main feature obtained is that open platforms helps

to improve the reliability of the overall system since reviewers, source code and

safety evidences correctly documented, can be completely examined and verified

by a wide engineering community [Mendez et al. 2013].

To fully achieve a certified product, we summarize the next required steps

to cover all the safety standards requirements for every hardware and software

components. In further versions of the system, we verify the feasibility of migrat-

ing current IP cores to qualified ones suitable for FPGA design. Additionally,

proper PAR methods would be used in order to achieve a final DO-254 certified
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gate-ware. In the same manner, we need to improve safety in the execution of

the SC application. Due to the fact that OpenRTOS is not certified, we need

to integrate the safety version of this RTOS, SafeRTOS. By this, we cover the

required safety properties for hardware, firmware, OS and communication be-

tween processors that are necessary for certifying a complete mixed-criticality

system.

Following these improvements, we will ensure the certifiable property that

our system would require in order to succeed in the exhaustive study that certi-

fication agencies realized to Avionics, Automotive, Nuclear Plants and Industry

systems.
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