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Abstract: Research into recommender systems has focused on the importance of con-
sidering a variety of users’ inputs for an efficient capture of their main interests. How-
ever, most collaborative filtering efforts are related to latent factors and implicit feed-
back, which do not consider the metadata associated with both items and users. This
article proposes a hybrid recommender model which exploits implicit feedback from
users by considering not only the latent space of factors that describes the user and
item, but also the available metadata associated with content and individuals. Such de-
scriptions are an important source for the construction of a user’s profile that contains
relevant and meaningful information about his/her preferences. The proposed model is
generic enough to be used with many descriptions and types and characterizes users and
items with distinguished features that are part of the whole recommendation process.
The model was evaluated with the well-known MovieLens dataset and its composing
modules were compared against other approaches reported in the literature. The results
show its effectiveness in terms of prediction accuracy.
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1 Introduction

Recommender systems are an important mechanism to enable users to deal with

the increasing information overload. They provide suggestions of items and ser-

vices, which are chosen in a way to match the user’s preferences and interests

[Adomavicius and Tuzhilin, 2005]. Over the past 20 years, research efforts have

been devoted to the development of strategies and methods to automatically rec-

ommend items to people. Such studies are related to a variety of topics, including
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matrix factorization models, constraint-based and context-aware recommenders,

social and group recommenders, among others [Shi et al., 2014, Bobadilla et al.,

2013, Ricci et al., 2011]. Those advances have also reached the industry, in par-

ticular involving the collaboration of other users. Good examples are Amazon1

and Netflix2, of which the former provides similar products to consumers accord-

ing to what they have acquired and the latter improves the user’s experience by

providing recommendations of movies based on preferences that other users have

expressed for those items.

In its basic form, a recommender system can be designed according to three

different strategies: i) content-based filtering, in which the user will be recom-

mended items whose metadata are similar to the information stored in his/her

profile; ii) collaborative, in which content selection is based on similar items ap-

preciated previously or decisions made by other users with similar preferences;

and iii) hybrid approaches, which combine collaborative and content-based rec-

ommendations.

Despite the variety of possibilities to implement recommender systems, most

efforts have been devoted to the field of collaborative filtering (CF). Such stud-

ies have opened opportunities to deal with limitations found in content-based

methods, such as limited content analysis and overspecialization [Adomavicius

and Tuzhilin, 2005]. Two topics are studied in the CF technique: neighborhood

models and latent factors. In the first case, clusters of items are formed to recom-

mend items similar to the ones preferred by the user in the past. Alternatively,

clusters of users can be formed to recommend items to a specific user, i.e. items

valued by other users with similar preferences. In latent factors, the recommen-

dation can be computed by uncovering latent associations among users or items.

Thereby, items and users are transformed into the same latent factor space so

that they can be directly comparable [Koren, 2010].

After having participated in the Netflix Prize competition3, Bell & Koren

[Bell and Koren, 2007] reported a number of lessons to guide researchers in the

study of CF models. One of these lessons refers to the effectiveness of latent

factor models to estimate an overall structure that simultaneously relates most

or all items to each other, but at the cost of not detecting strong associations

among a small set of closely related items [Koren, 2010]. Although this issue can

be addressed by neighborhood models, computing users and items similarities

can be a very computationally expensive task. Another lesson reported by Bell

& Koren regards the importance of integrating different forms of user’s inputs

into the models. In fact, many efforts nowadays are related to the integration

of explicit feedback with user’s demographics and implicit feedback, which are

1 http://www.amazon.com/
2 http://www.netflix.com/
3 http://www.netflixprize.com/

224 Manzato M.G., Santos Junior E.B., Goularte R.: Leveraging ...



indirect clues users provide about their preferences when interacting with the

system [Oard and Kim, 1998]. Examples of explicit, demographic and implicit

information are, respectively, ratings manually assigned to visited items, user’s

gender, and user’s purchase history.

Using different forms of user’s inputs leads to the construction of a more ac-

curate user’s profile [Da Costa et al., 2014]. In this sense, hybrid recommenders

play an important role because they group together the benefits of content-based

and collaborative filtering. Limitations of both approaches, such as the cold

start problem, overspecialization and limited content analysis can be reduced

when the two strategies are combined into a unified model [Adomavicius and

Tuzhilin, 2005]. However, most systems [Hu et al., 2008, Rendle et al., 2009, Ko-

ren, 2010, Yang et al., 2012] that exploit latent factor models and implicit feed-

back consider neither the metadata associated with the content, nor the user’s

personal information. In fact, semantic and known descriptions could be added

into the profiles of individuals, in contrast to the obscure and incomprehensive

relations of latent factors.

In view of the current state-of-the-art of hybrid recommenders, this article

proposes a unified model that exploits implicit feedback from users by consid-

ering not only the latent space of factors that describes the user and item, but

also the available metadata associated with them. Different types of informa-

tion, such as user’s personal data (e.g. gender, age) and items’ metadata (e.g.

genres, keywords) are carefully modeled to create a more meaningful user’s pro-

file containing his/her main interests, resulting in an improvement of prediction

accuracy.

The article is structured as follows: Section 2 addresses the related work;

Section 3 describes the past models explored in the study; Section 4 presents

the proposal; Section 5 describes the evaluation conducted in the system; finally,

Section 6 addresses the final remarks and future work.

2 Related Work

The model proposed in this article exploits three features to improve the rec-

ommendation accuracy. The first is implicit feedback, which provides additional

and indirect clues about the user’s preferences to characterize his/her profile.

For example, navigation history, clicks with pointing devices, time spent on vis-

its to items are categorized as implicit feedback because the user has not shown

his/her preferences explicitly, which in this case, are inferred from the system

through a set of heuristics [Oard and Kim, 1998].

The second feature is the incorporation of items’ metadata and their factor-

ization to adjust their relative importance in face of the users’ preferences – for

instance, when watching movies, the system might consider each movie’s title,
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year of production, genres and set of actors as additional information to support

the construction of factorization matrices of users and items.

Finally, the third feature is the incorporation of users’ personal data, such as

demographic information, which is usually provided by the user when signing up

to the system – for example, the user’s gender, age, location, etc. Sections 2.1 to

2.3 discuss each of these three features in the context of recommender systems.

2.1 Implicit Feedback

Implicit feedback extracts user’s preferences mainly when explicit feedback is

unavailable or incomplete [Joachims et al., 2005, Agichtein et al., 2006]. Oard &

Kim [Oard and Kim, 1998] identified different types of implicit feedback and the

way they could be exploited in a set of recommendation strategies. Hu et al. [Hu

et al., 2008] developed a tool to transform users’ implicit feedback into training

data in a preference-conference format. Yang et al. [Yang et al., 2012] proposed a

simple and effective local implicit feedback model mining users’ local preferences

to obtain better results. It extended Koren’s algorithm by incorporating the

notion of rating time interval to gather local and momentary interests.

Another approach for the extraction of more accurate information about

users’ interests is to exploit implicit and explicit feedback considering the individ-

ual is prone to interact with the content in different ways along its consumption.

Koren [Koren, 2008, Koren, 2010] integrated implicit information and ratings

into a neighborhood latent factor model to improve recommendation accuracy.

In this same study, the author developed the SVD++ algorithm, which is a la-

tent factor model that exploits implicit and explicit feedback gathered from the

user’s movies rental history and ratings assigned to visited items, respectively.

Jawaheer et al. [Jawaheer et al., 2014] and Da Costa et al. [Da Costa et al., 2014]

proposed a framework for the use of explicit and implicit user’s feedback based

on a set of heuristics to gather better insights about personal preferences.

Our study differs from the aforementioned studies because the proposed

model incoporates item’s metadata, user’s personal information and implicit

feedback into a unified approach to improve recommendation accuracy.

2.2 Metadata Awareness

A variety of content-based methods regarding metadata incorporation is avail-

able in the literature [Shi et al., 2014, Bobadilla et al., 2013, Adomavicius and

Tuzhilin, 2005]. In general, they design matching mechanisms between the item’s

metadata and the user’s profile, making the recommender engine to work sim-

ilarly to search/retrieval systems. However, content-based filtering algorithms

have usually associated problems, such as occurrence of cold start and overspe-

cialization, which may affect the recommendation results.
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Such problems can be reduced with collaborative filtering, whose main idea is

to compute similarities of users/items in order to predict new items to users. An

efficient way to compute such similarities is to use matrix factorization models to

reduce the dimensionality of the user-item matrix [Koren et al., 2009]. However,

if Singular Value Decomposition (SVD) is adopted to factorize the users vs. items

matrix, imputation methods must be incorporated so as to reduce the sparsity

effects, but at the cost of distorting and/or overfitting the training data.

Regardless of the possibility of using only the observed ratings to reduce

the sparsity effects [Funk, 2006, Koren, 2010, Shi et al., 2013], an alternative to

compute users similarities by means of factorization techniques was proposed

by Manzato [Manzato, 2012]. The author created a user-category matrix factor-

ization model to extract user’s preferences about movies. The system computes

the users similarities to support collaborative filtering. The idea of factorizing

a matrix associated with metadata (e.g. movies’ genres) was also studied in

other related works [Agarwal and Chen, 2009, Stern et al., 2009, Gantner et al.,

2010, Manzato, 2013, Manzato et al., 2014]. However, these studies do not sup-

port an integrated model that combines user’s personal information with other

important features in recommender systems, such as implicit feedback.

2.3 Personal Information

Most studies that consider user’s personal information are related to demo-

graphic filtering [Pazzani, 1999, Krulwich, 1997]. This approach is based on the

assumption that users with common personal characteristics (e.g. country, gen-

der, age, occupation) will also have similar preferences. Consequently, a simple

and effective way to explore this idea is to use collaborative filtering boosted by

demographic information. Chen & He [Chen and He, 2009], for instance, pro-

posed a collaborative filtering algorithm that computes users similarities based

on three demographic attributes and ratings of items separately. A new sim-

ilarity is then generated by combining the previous results. Lee & Woo [Lee

et al., 2002] first segmented all users by demographic characteristics and then

applied a user clustering procedure to each segment according to the preference

of items and using a Self-Organizing Map (SOM) neural network. Yapriady &

Uitdenbogerd [Yapriady and Uitdenbogerd, 2005] proposed a simple measure

to combine demographic data with traditional collaborative filtering techniques

to improve recommendation precision. Vozalis & Margaritis [Vozalis and Mar-

garitis, 2007] proposed a collaborative filtering approach that uses SVD as an

augmenting technique and demographic data as a source of additional informa-

tion to improve the quality of predictions.

The aforementioned techniques are related to our approach in certain aspects:

on the one hand, some methods that exploit implicit feedback do not consider
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the available user’s and item’s metadata; on the other hand, a set of models that

exploits metadata and their factorization does not support implicit feedback.

A recent model that considers all types of information mentioned above as in-

put data is factorization machines (FM) [Rendle, 2012a, Rendle et al., 2011]. The

idea is to estimate interactions among categorical variables combining feature en-

gineering and factorization models. Thereby, personal information, metadata and

implicit feedback can be modeled as features, as in other machine-learning ap-

proaches, such as linear regression and support vector machines, and the model

uses factorized interactions between the variables to learn its parameters. As

stated by the author, factorization machines are generic enough to accept any

type of information as input data, including metadata related to both users and

items, context information, multiple users’ feedback, etc. Although generality is

an important characteristic in recommender systems, as it can be adapted to

different application scenarios, its drawback is that all variables will be treated

in the same way. For instance, a prediction rule that will use metadata weights

to adjust the items factors prior to computing the final prediction cannot be

defined. In contrast, factorization machines will interact with all variables re-

gardless of the type of each input datum.

This article proposes a well-defined prediction rule generic enough to ac-

cept different types of users’ and items’ metadata and implicit feedback. The

advantage is all information related to users, items and interactions is treated

accordingly, which results in a more accurate rating prediction.

3 Past Models

This section describes the models reported in the literature and explored in this

study.

3.1 Notation

Following the same notation of [Koren, 2008, Koren, 2010], we use special in-

dexing letters to distinguish users, items and metadata, i.e., users are indicated

as u, items are referred to i and j, and users’ and items’ metadata are stated as

d and g, respectively. As all users’ and items’ descriptions may be of different

types, we also use index letters zu and zi to refer, respectively, to each metadata

type, such as title, gender, age, and occupation.

A rating rui refers to the explicit feedback a user u has assigned to an item

i and is distinguished from the predicted r̂ui, which is a value guessed by the

recommender algorithm. The (u, i) pairs for which rui is known are represented

by set K = {(u, i)|rui is known}.
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Because the rating data are sparse, the models are prone to overfitting, there-

fore, regularization is applied so that estimates are shrunk towards baseline de-

faults. Similarly to Koren [Koren, 2010], we denote by λ1, λ2, ... the constants

used for regularization. Their values are defined in Section 5, which describes the

experiments with the dataset adopted for the evaluation of the proposed model.

A summary of the notation and sets used in the article is shown in Table 1.

Table 1: Notation used in this article.

Notation Definition

u Index letter indicating a user.

i, j Index letters indicating an item.

d, g Index letters indicating personal information and item’s meta-

data, respectively.

zu, zi Index letters indicating a personal information type and an

item’s metadata type, respectively.

f Number of factors of the model.

μ Overall average rating.

bu, bi, bd, bg Biases related to a user, an item, personal information and an

item’s metadatum, respectively.

bui Baseline estimate (see Equation 1).

bdemo
ui Baseline revisited (see Equation 8).

rui, r̂ui A rating and its prediction, respectively.

r̂meta
ui A rating prediction with item’s metadata incorporation (see

Equation 9).

λ, λ1...7, α Regularization constants.

γ, γ2 Learning rates.

pu, qi User and item factor vectors, respectively.

xg, yj Metadata and implicit feedback factor vectors, respectively.

hdg A parameter that captures the weights of a user’s personal

information d associated with an item’s description g.

K Set of known ratings.

R(u) Set of items rated by user u.

R(i) Set of users who rated item i.

N(u) Set of items to which user u provided an implicit feedback.

N(j) Set of users who provided an implicit feedback to item j.

Z(u) Set of different personal information considered in the system.

Z(i) Set of different items’ metadata considered in the system.

G(u; zu) Set of descriptions of type zu associated with user u.

G(i; zi) Set of descriptions of type zi associated with item i.
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3.2 Baseline Estimates

Baseline estimates are used to encapsulate systematic tendencies from data ac-

cording to users’ and items’ intrinsic characteristics. For example, a user may

use value 4 to rate a great movie, whereas another user may adopt value 5 to

indicate the same degree of interest. Similarly, an item may be rated differently

by users, although some of these ratings may refer to the same likeness.

In order to overcome such differences, baseline estimates are used to adjust

the data according to these effects [Koren, 2008, Koren, 2010]. A baseline esti-

mate for an unknown rating rui is denoted by bui and defined as

bui = μ+ bu + bi , (1)

where μ refers to the overall average rating and parameters bu and bi indicate

the observed deviations of user u and item i, respectively, from the average. Two

methods can be adopted for the estimate of these parameters. The first consists

in decoupling the calculation of the item biases from the user biases [Herlocker

et al., 2002, Koren, 2008, Koren, 2010]. For each item i, the bias is computed as

bi =

∑
u:(u,i)∈K(rui − μ)

λ+ |{u|(u, i) ∈ K}| . (2)

Then, bi is used to calculate the user bias

bu =

∑
i:(u,i)∈K(rui − μ− bi)

λ+ |{i|(u, i) ∈ K}| . (3)

The second and more accurate method to estimate bu and bi solves the least

squares problem

min
b∗

∑
(u,i)∈K

(rui − μ− bu − bi)
2 + λ(

∑
u

b2u +
∑
i

b2i ) , (4)

where the first term before regularization aims at finding the user and item

biases that have fitted the given ratings. The second term avoids overfitting by

penalizing the magnitudes of the parameters.

3.3 Implicit Feedback

In recommender systems, an important issue refers to the integration of different

forms of user’s input into the models for a precise reflection of the user’s prefer-

ences [Bell and Koren, 2007]. Algorithms usually rely only on explicit feedback,

which includes ratings assigned by users on items they have visited. A good ex-

ample is Netflix4, which enables users to choose and assign an amount of stars to

4 http://www.netflix.com/
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movies they have watched. In response, the system constructs and controls the

user’s profile by updating his/her personal interests according to the assigned

ratings.

On the other hand, one may argue that explicit feedback is not always avail-

able due to cold start, or simply because for some reason, users may not provide

any ratings for their preferences. Consequently, implicit feedback could be ex-

ploited, as it is a more abundant source of information that indirectly reflects on

the user’s opinion by observing his/her behavior [Oard and Kim, 1998]. Exam-

ples of implicit feedback are purchase or rental history, browsing activity, search

patterns, etc.

Koren [Koren, 2008, Koren, 2010] proposed a set of models that faces implicit

feedback when explicit feedback is also available. The model integrates both

types of feedback by considering ratings assigned by users to visited items and

also the rental history. The adopted dataset (Netflix) lacks this type of implicit

feedback, therefore the author simulated such information by considering the

movies rated by the users regardless of how they were rated.

The most accurate model reported by Koren is the SVD++ algorithm, which

integrates explicit and implicit feedback into a factorization model representing

the user’s preferences. Each user u is associated with a user-factor vector pu ∈ R
f

and each item i with an item-factor vector qi ∈ R
f . The vectors’ dimensionality

or number of factors is given by f , in which each element pu,f or qi,f corresponds

to a latent feature of a preference-relevance model, i.e., how much user u likes

a particular feature in item i, and simultaneously, how much such characteristic

is relevant to item i.

We describe this technique by first introducing the basic prediction rule:

r̂ui = bui + pTu qi , (5)

where the parameters are estimated by the minimization of the associated squared

error function:

min
p∗,q∗,b∗

∑
(u,i)∈K

(rui − μ− bu − bi − pTu qi)
2 + λ(b2u + b2i + ||pu||2 + ||qi||2) . (6)

Based on Equation 5, Koren extended this basic model to consider implicit

information. In fact, he used an additional factor vector yi ∈ R
f and also consid-

ered set N(u), which contains all items for which u provided an implicit prefer-

ence (for instance, u visited a product, but did not provide a rating). Therefore,

the SVD++ model is defined as

r̂ui = bui + qTi

⎛
⎝pu + |N(u)|− 1

2

∑
j∈N(u)

yj

⎞
⎠ . (7)
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The preferences of a user u are represented by a combination of explicit

and implicit information. The user-factor vector pu is learnt from the given

explicit ratings and complemented by the sum of yj , which represents the implicit

feedback. Only after this adjustment can the user-factors be interacted with the

item-factors. Again, the parameters are learnt through the minimization of the

associated squared error function by gradient descent. For more details about

this and other methods and the way of solving the least squares problems above

by gradient descent optimization, readers may refer to [Koren, 2008, Koren,

2010, Funk, 2006, Paterek, 2007].

4 Proposed Method

The previous section described some models that integrate different types of

feedback towards an accurate user representation. However, the latent factor

approaches do not take into account a simpler and straightforward type of infor-

mation usually associated with users and items, i.e., the metadata themselves.

Descriptions, such as user gender, age, genres of movies, list of actors, keywords

and producers are not considered in the models so that the recommendation re-

sults can be improved. We propose a generic latent factor model able to exploit

the available metadata associated with both users and items.

The next subsections describe the proposed model in details, by gradually

incorporating the various components that constitute the final schema.

4.1 Baseline Revisited

Subsection 3.2 described the baseline estimates that model systematic tendencies

according to users’ and items’ intrinsic characteristics. Such an idea can be

slightly improved through the incorporation of the global effects of how users

rate items depending on personal data or items’ metadata. For instance, children

may rate an item differently from adults. Similarly, action movies may be rated

on a higher (or lower) scale than romance.

In order to model such possibilities, we have extended the baseline estimates

in Equation 1 by also considering personal information and items’ descriptions:

bdemo
ui = μ+ bu+ bi +

∑
zu∈Z(u)

|G(u; zu)|−α
∑

d∈G(u;zu)

bd +
∑

zi∈Z(i)

|G(i; zi)|−α
∑

g∈G(i;zi)

bg .

(8)

In this case, Z(u) and Z(i) are, respectively, the sets of different types

of users’ and items’ information considered in the system, and G(u; zu) and

G(i; zi) represent all information of types zu and zi associated with user u
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and item i. An example of this representation is the use of metadata informa-

tion from the MovieLens dataset5. We denote Z(u) = {occupation, age group,

gender, zip code}, and when zu = occupation of a user u, we denote G(u; zu) =

{programmer}, for instance. Similarly, considering all metadata types available

in the dataset, we denote Z(i) = {title, genre, year of release, IMDB URL};
when zi = genre of an item i, we denote G(i; zi) = {action, science fiction},
for instance. In the aforementioned example, although |G(u; zu)| = 1 in most

cases, we preferred to keep generality by using more than one piece of informa-

tion associated with zu. The regularization constant α from Equation 8 is set to

1 when metadata are available, and 0 otherwise.

The contextual biases bd and bg can be estimated by solving a least squares

problem similar to Equation 4. In the experiments reported in Section 5, we

employed a simple gradient descent scheme using the observed data to change

the parameters in the opposite direction of the gradient [Koren, 2010, Paterek,

2007].

4.2 Item’s Metadata Incorporation

In addition to the global effects modeled by our extended baseline estimates,

we aimed to model the associations between the personal data and the con-

tent metadata available for each item. Such an approach is important because,

depending on the actual contextual environment, demographic data or personal

interests, users may prefer to visit items related to specific subjects. For instance,

a 7-year-old user will certainly prefer children’s films; female users will probably

enjoy romance and drama; a group of cyclists will enjoy sports and adventure

content.

In order to capture such associations between users’ and items’ metadata,

we have incorporated another set of parameters hdg to Equation 8, as follows:

r̂meta
ui = bdemo

ui +
∑

zi∈Z(i)

|G(i; zi)|−α
∑

zu∈Z(u)

|G(u; zu)|−α
∑

d∈G(u;zu)

∑
g∈G(i;zi)

hdg .

(9)

The parameters represented by hdg capture the weights of a user’s personal

information d associated with an item’s description g. Again, such weights are

learnt from the observed data through gradient descent.

4.3 Latent Factors

Significant improvement can be achieved from the previous models if we adopt a

matrix factorization scheme that maps users and items into a joint latent factor

space of dimensionality f . Incorporating Equation 5 to our model, we have:

5 http://www.grouplens.org/node/73
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r̂ui = r̂meta
ui + pTu qi . (10)

Now, for a given item i, vector qi represents the relevance of each factor to

the item itself, which can be positive or negative. For a given user u, vector pu
measures the importance or relevance of those factors to the user’s preferences.

The user’s overall interest in the item’s features can be captured by multiplying

both vectors. By summing the result to r̂meta
ui , we can incorporate the biases and

descriptions of u and i into a latent factor model.

4.4 User’s Implicit Feedback

Subsection 3.3 described SVD++ [Koren, 2008, Koren, 2010], which can inte-

grate explicit and implicit feedback from users into a unique model. Prior to the

inner product of the factors, vector pu is enhanced with implicit feedback from

user u, represented by parameter yj .

This subsection addresses the incorporatation of SVD++ into our latent

factors model also for the capture of implicit feedback regarding users. By using

latent factors, the user’s preferences for different features can be captured, which

characterizes the whole item subject to be recommended. On the other hand, by

using implicit feedback, additional user’s preferences can be captured even if a

few ratings have been provided.

Concretely, our enhanced model is defined by the following equation:

r̂ui = r̂meta
ui + qTi

⎛
⎝pu + |N(u)|− 1

2

∑
j∈N(u)

yj

⎞
⎠ . (11)

The items’ metadata and users’ personal features are added as global effects

into the baselines, and, at the same time, the users factors are enhanced with

implicit feedback information.

4.5 gSVD++

The SVD++ model (Equation 7) and its extension described in the last sub-

section (Equation 11) have a characteristic in common, i.e., vector qi represent-

ing the item factors is not enhanced with any additional information. However,

additional improvements can be achieved if we incorporate a symmetric items

modeling using their metadata when available.

This subsection describes another prediction rule, but users’ and items’ meta-

data are not modeled as global effects. Such an approach will be useful i) to

describe the unified model in the next subsection, in which all features are com-

bined, and ii) for the evaluation of each module separately, as shown in Section

5.
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We denominate this particular extension “gSVD++” [Manzato, 2013]. Let

us denote set G(i; zi), which contains the descriptions of type zi associated with

item i. For instance, the genres can be considered metadata (Z(i) = {genre}),
consequently, a particular movie i would have set G(i; zi) storing the related

categories, such as action, adventure and science fiction. Furthermore, let us

denote a metadata factors vector xg ∈ R
f containing the factors for each possible

description. Equation 7 could be rewritten to complement the items factor qi
with the available metadata, as follows:

r̂ui = bui +

⎛
⎝qi +

∑
zi∈Z(i)

|G(i; zi)|−α
∑

g∈G(i;zi)

xg

⎞
⎠

T ⎛
⎝pu + |N(u)|− 1

2

∑
j∈N(u)

yj

⎞
⎠ .

(12)

Both user and item factors have been enhanced with implicit feedback. The

original Koren’s solution considered the yj factor vector to represent the indirect

user’s information (e.g. rental history). Such an approach was extended by the

incorporatation of another factor vector xg to represent the item’s metadata (e.g.

genres). In this metadata awareness model each item set of descriptions G(i; zi)

contributes to adjust the importance of each information g, represented by a

factor vector. The weights of this vector are determined through the observation

of the known ratings during training. Regularization constant α from Equation

12 is set to 1 when there are metadata associated with item i, and 0 otherwise.

When no metadata are available, the model equals SVD++.

4.6 Unified Model

According to the extensions made so far, this subsection describes a unified

model which integrates different aspects related to users and items towards an

accurate prediction rule. Such a strategy integrates five functionalities described

in the previous models:

1. the global effects from users and items through the baseline estimates;

2. the global effects from users’ personal information and items’ metadata, as

defined by our baseline extension;

3. the association between users’ and items’ metadata that models how partic-

ular users rate specific items;

4. the capture of the overall interest of a user in a particular item by means of

latent factors;
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5. the implicit feedback from users (e.g. rental history) and items (metadata),

according to the adjustments made in the users’ and items’ latent factors

prior to their inner product.

The unified model is defined by the following equation:

r̂ui = r̂meta
ui +

⎛
⎝qi +

∑
zi∈Z(i)

|G(i; zi)|−α
∑

g∈G(i;zi)

xg

⎞
⎠

T ⎛
⎝pu + |N(u)|− 1

2

∑
j∈N(u)

yj

⎞
⎠ .

(13)

Similarly to the previous formulations, the parameters are learnt through the

minimization of the regularized squared error function associated with Equation

13, as follows:

min
b∗,h∗,p∗,q∗,x∗,y∗

∑
(u,i)∈K

(
rui − μ− bu − bi

−
∑

zu∈Z(u)

|G(u; zu)|−α
∑

d∈G(u;zu)

bd −
∑

zi∈Z(i)

|G(i; zi)|−α
∑

g∈G(i;zi)

bg

−
∑

zi∈Z(i)

|G(i; zi)|−α
∑

zu∈Z(u)

|G(u; zu)|−α
∑

d∈G(u;zu)

∑
g∈G(i;zi)

hdg

−
⎛
⎝qi +

∑
zi∈Z(i)

|G(i; zi)|−α
∑

g∈G(i;zi)

xg

⎞
⎠

T ⎛
⎝pu + |N(u)|− 1

2

∑
j∈N(u)

yj

⎞
⎠
⎞
⎟⎠

2

+λ

(
b2u + b2i + ||pu||2 + ||qi||2 +

∑
zu∈Z(u)

∑
d∈G(u;zu)

b2d +
∑

zi∈Z(i)

∑
g∈G(i;zi)

b2g

+
∑

zu∈Z(u)

∑
zi∈Z(i)

∑
d∈G(u;zu)

∑
g∈G(i;zi)

h2
dg +

∑
zi∈Z(i)

∑
g∈G(i;zi)

x2
g +

∑
j∈N(u)

y2j

)
.

(14)

We employ a simple gradient descent scheme to solve the system indicated

in Equation 14 [Koren, 2008, Koren, 2010, Paterek, 2007]. Let us consider eui
def
=

rui − r̂ui. Using the training dataset, we loop over all known ratings in K. For

a given training example rui, we change the parameters by moving them in the

opposite direction of the gradient, as illustrated in Algorithm 1.

5 Evaluation

The evaluation consists in comparing our model with other methods available in

the literature. The different modules are also evaluated to check the contribution

of each aspect to the final recommendation improvement.
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ALGORITHM 1: Learning the factorized model through gradient descent.

Input: Set of known ratings (u, i) ∈ K
Output: Learnt parameters bu, bi, bd, bg, hdg , pu, qi, xg, yj
for count = 1,...,#Iter. do

foreach (u, i) ∈ K do
r̂ui ← Prediction according to Equation 13;
eui ← rui − r̂ui;
bu ← bu + γ(eui − λ1bu);
bi ← bi + γ(eui − λ2bi);
foreach zu ∈ Z(u) do

foreach d ∈ G(u; zu) do
bd ← bd + γ(eui − λ3bd);

end
end
foreach zi ∈ Z(i) do

foreach g ∈ G(i; zi) do
bg ← bg + γ(eui − λ3bg);

end
end
foreach zu ∈ Z(u) do

foreach zi ∈ Z(i) do
foreach d ∈ G(u; zu) do

foreach g ∈ G(i; zi) do
hdg ← hdg + γ(eui|G(u; zu)|−α|G(i; zi)|−α − λ3hdg);

end
end

end
end

pu ← pu + γ2(eui(qi +
∑

zi∈Z(i) |G(i; zi)|−α
∑

g∈G(i;zi)
xg)− λ4.pu);

qi ← qi + γ2(eui(pu + |N(u)|− 1
2
∑

j∈N(u) yj)− λ5.qi);

foreach j ∈ N(u) do

yj ← yj + γ2(eui|N(u)|− 1
2 (qi + |G(i)|−α ∑

g∈G(i) xg)− λ6.yj);

end
foreach zi ∈ Z(i) do

foreach g ∈ G(i; zi) do

xg ← xg + γ2(eui|G(i; zi)|−α(pu + |N(u)|− 1
2
∑

j∈N(u) yj)− λ7.xg);

end
end

end
γ ← γ ∗ 0.9;
γ2 ← γ2 ∗ 0.9;

end

5.1 Dataset

The experiments were conducted with the well-knownMovieLens 100k dataset. It

consists of 943 users, who assigned 100k ratings to 1682 movies. The dataset also

provides metadata of the users and items. With respect to users, demographic

data, such as age, occupation, gender and Zip code are provided. All types of
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demographic data, except Zip code, were considered in the evaluation.

Information about the users’ age was pre-processed so that users of the same

age group could be clustered. Table 2 was configured experimentally to associate

the same information with all users belonging to that group.

Table 2: Configuration of age group.

Age Group

0 – 12 children

13 – 18 teenagers

19 – 25 young adults

26 – 35 adults

36 – 55 mature

56 – 60 aged

Over 61 elderly

As a result, set Z(u) is composed of {age group, occupation, gender} and

sets represented by G(u, zu) have size 1.

Regarding the items’ metadata, the MovieLens dataset provides the movie

title, date of release, Internet Movies Database (IMDB)6 URL and set of as-

sociated genres. In our experiments, we considered only the genres as items’

metadata, consequently, |Z(i)| = 1, and |G(i, zi)| ≥ 1, because one or more gen-

res can be assigned to each movie i. In this version of the dataset, there are 19

different genres, all of them considered in the evaluation.

5.2 Methodology

This evaluation compares the different modules of the proposed model to check

the contribution of each aspect to the final recommendation accuracy. In addi-

tion, we also compare the final solution against three related methods available

in the literature:

– Biased MF: an algorithm proposed by Rendle & Schmidt-Thie [Rendle and

Lars, 2008] that reduces the cold start by deriving an online-update algo-

rithm for regularized kernel matrix factorization models. It is also flexible

for nonlinear interactions among feature vectors.

– SVD++: an algorithm proposed by Koren [Koren, 2008, Koren, 2010] that in-

tegrates explicit and implicit feedback from users into a latent factors model.

6 http://www.imdb.com/
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– Factorization Machines (FM): a technique proposed by Rendle [Rendle, 2012a,

Rendle et al., 2011] that estimates interactions among categorical variables

combining features engineering and factorization models.

We used libFM [Rendle, 2012a] and MyMediaLite [Gantner et al., 2011] li-

braries to implement the methods and the results were measured as follows:

1. the prediction accuracies of all techniques were compared in terms of RMSE

(root mean squared error) and MAE (mean average error) according to a

varying number of factors (f = {10, 50, 100, 150, 200, 250, 300});
2. for each technique, the best number of factors was selected, i.e., the value of

f for which RMSE and MAE computed in the previous step was minimal.

Both traditional RMSE (root mean squared error) and MAE (mean squared

error) metrics [Ricci et al., 2011] provide information about the average mag-

nitude of the errors. However, they differ from each other because the former

is a quadratic scoring which gives a relatively high weight to large errors, and

the latter is a linear scoring that gives equal weights to all error predictions. In

all experiments, a 10-fold cross-validation procedure was used to separate the

dataset into training and test sets. We trained the model using the training set

and then evaluated the prediction accuracy with the test set. After ten execu-

tions varying the disjoint composition of the sets, the average RMSE and MAE

were returned. A two-sided paired t-test with 95% confidence level was used

to compare the final prediction rule (unified model) against the three baselines

reported in the literature (Biased MF, SVD++ and FM).

5.3 Comparison of Baselines

The baseline estimates were compared with and without demographic data and

items’ metadata. The involved constants were defined experimentally, as shown

in Table 3. Details of their utilization can be found in Algorithm 1, as previously

explained.

Table 4 shows the results and corresponding standard deviation. The tra-

ditional baseline represented by Equation 1 achieved 0.9437 of RMSE, as it

considered only the user and item’s biases. When demographic data and items’

metadata in terms of global effects were added, the RMSE decreased to 0.9396.

Details of this algorithm can be found in Subsection 4.1, Equation 8. Additional

improvement was achieved when items’ metadata associated with the users’ per-

sonal information were incorporated into the model, i.e., RMSE was reduced to

0.9380. The algorithm is depicted in Subsection 4.2 and models how users with

certain demographic data (e.g. children) rate items with particular genres (e.g.

cartoon).
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Table 3: Constants used in the evaluation of baselines.

Constant Value

#Iter. 50

γ 0.02

λ1 0.025 ∗ |R(u)|− 1
2

λ2 0.025 ∗ |R(i)|− 1
2

λ3 0.025

Table 4: Baselines’ results. All values are statistically significant in comparison

to the traditional baseline (p-value < 0.05).

Algorithm RMSE MAE

Traditional Baseline (Equation 1) 0.9437 ± 0.0061 0.7480 ± 0.0052
Baseline Revisited (Equation 8) 0.9396 ± 0.0059 0.7424 ± 0.0050
Item’s Metadata (Equation 9) 0.9380 ± 0.0060 0.7408 ± 0.0051

5.4 Comparison of Latent Factors Approaches

Our unified model was compared against its isolated modules and the related

models depicted in Subsection 5.2. The modules that compose the proposed

unified model, i.e., Biased MF (Equation 5), SVD++ (Equation 7), Latent Fac-

tors (Equation 10), User Feedback (Equation 11), gSVD++ (Equation 12) and

Unified Model (Equation 13) were grouped into one single comparison. The set

of constants defined in Table 5 was used in the experiment and the details of

their utilization can be found in Algorithm 1. Tables 6 and 7 show the RMSE

and MAE results and corresponding standard deviation, according to a varying

number of factors. The values in bold indicate the best results for each tech-

nique using a particular number of factors. The RMSE and MAE values of the

proposed unified model were statistically significant in comparison to Biased

MF and SVD++ (p-value < 0.05), which are the baselines proposed elsewhere

[Rendle and Lars, 2008, Koren, 2008, Koren, 2010].

Figure 1 illustrates the same results. The RMSE and MAE of the proposed

unified model (Equation 13) clearly outperformed the related techniques and

isolated modules, as it incorporated and combined many aspects related to users

and items. Such aspects are described in Subsection 4.6 and include demographic

and metadata information, implicit feedback and latent factors.

Biased MF showed the worst accuracy, mainly because it considers only sim-

ple matrix factorization to characterize the users’ preferences and items’ fea-

tures. Latent Factors and SVD++ achieved a better score, which is a reflection

of the combination of implicit feeedback or demographic and metadata infor-

mation in terms of global effects into a latent factor approach. The comparison
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Table 5: Constants used in the evaluation of latent factors approaches.

Constant Value

#Iter. 50

γ 0.007

γ2 0.1

λ1 0.05 ∗ |R(u)|− 1
2

λ2 0.05 ∗ |R(i)|− 1
2

λ3 0.05

λ4 |R(u)|− 1
2

λ5 |R(i)|− 1
2

λ6 |N(j)|− 1
2

λ7 |G(i, zi)|−1
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Figure 1: Comparison among Biased MF (Equation 5), SVD++ (Equation 7),

Latent Factors (Equation 10), User Feedback (Equation 11), gSVD++ (Equation

12) and Unified Model (Equation 13).

between Latent Factors and SVD++ shows the observed gains were not statis-

tically significant. The difference is Latent Factors do not use implicit feedback,

but incorporate metadata information, and SVD++ uses implicit feedback, but

does not consider metadata information. The next module, i.e. User Feedback,

combines both types of information into a latent factor approach, which results

in better RMSE and MAE for all numbers of factors.

The comparison between SVD++ and gSVD++ shows an improvement of

gSVD++ over the previous Koren’s model, which suggests the effectiveness of

incorporating metadata awareness into a latent factor model that supports im-

plicit feedback. In the case of gSVD++, we only added parameter xg to enhance

the item factors with metadata, as described in Subsection 4.5.

The unified model achieved the best accuracy regardless of the number of fac-
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Table 6: RMSE comparison among Biased MF (Equation 5), SVD++ (Equa-

tion 7), Latent Factors (Equation 10), User Feedback (Equation 11), gSVD++

(Equation 12) and Unified Model (Equation 13).

Method f = 10 f = 50 f = 100 f = 150 f = 200 f = 250 f = 300

Biased MF 0.9039 0.9030 0.9038 0.9038 0.9040 0.9042 0.9042
±0.0070 ±0.0068 ±0.0065 ±0.0068 ±0.0066 ±0.0064 ±0.0065

SVD++ 0.9014 0.9022 0.9011 0.9009 0.9008 0.9007 0.9003
±0.0065 ±0.0067 ±0.0067 ±0.0067 ±0.0065 ±0.0067 ±0.0070

Latent Factors 0.9014 0.9026 0.9011 0.9008 0.9009 0.9006 0.9007
±0.0071 ±0.0071 ±0.0070 ±0.0068 ±0.0070 ±0.0068 ±0.0070

User Feedback 0.9004 0.9016 0.8994 0.8993 0.8990 0.8992 0.8992
±0.0070 ±0.0064 ±0.0068 ±0.0071 ±0.0065 ±0.0068 ±0.0069

gSVD++ 0.8972 0.8975 0.8959 0.8957 0.8958 0.8950 0.8953
±0.0049 ±0.0051 ±0.0050 ±0.0053 ±0.0049 ±0.0047 ±0.0052

Unified Model 0.8962 0.8963 0.8945 0.8943 0.8937 0.8940 0.8939
±0.0060 ±0.0056 ±0.0061 ±0.0057 ±0.0052 ±0.0052 ±0.0054

Table 7: MAE comparison among Biased MF (Equation 5), SVD++ (Equa-

tion 7), Latent Factors (Equation 10), User Feedback (Equation 11), gSVD++

(Equation 12) and Unified Model (Equation 13).

Method f = 10 f = 50 f = 100 f = 150 f = 200 f = 250 f = 300

Biased MF 0.7149 0.7156 0.7164 0.7166 0.7168 0.7170 0.7171
±0.0056 ±0.0056 ±0.0053 ±0.0055 ±0.0054 ±0.0053 ±0.0053

SVD++ 0.7068 0.7087 0.7083 0.7085 0.7085 0.7084 0.7083
±0.0054 ±0.0056 ±0.0054 ±0.0055 ±0.0054 ±0.0056 ±0.0056

Latent Factors 0.7070 0.7093 0.7086 0.7088 0.7088 0.7087 0.7088
±0.0056 ±0.0056 ±0.0053 ±0.0052 ±0.0057 ±0.0054 ±0.0054

User Feedback 0.7067 0.7087 0.7073 0.7077 0.7075 0.7075 0.7078
±0.0059 ±0.0054 ±0.0052 ±0.0057 ±0.0050 ±0.0053 ±0.0057

gSVD++ 0.7030 0.7036 0.7031 0.7030 0.7034 0.7029 0.7031
±0.0043 ±0.0047 ±0.0043 ±0.0045 ±0.0045 ±0.0044 ±0.0047

Unified Model 0.7027 0.7034 0.7025 0.7027 0.7022 0.7022 0.7024
±0.0050 ±0.0047 ±0.0054 ±0.0048 ±0.0042 ±0.0042 ±0.0047

tors. As explained in Subsection 4.6, the unified approach combines gSVD++

and User Feedback into a single model, consequently, it can capture most aspects

of the recommendation process, including user implicit feedback, demographic

information and metadata. As it provided the best results, we can infer each sep-

arate technique contributes to a different aspect of the whole system composed

of users and items with distinguished characteristics.

5.5 Comparison against Factorization Machines

The proposed unified model was compared against other techniques which also

integrate different features into a same prediction rule. Factorization Machines
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(FM) [Rendle, 2012a, Rendle et al., 2011] were chosen as a baseline, as they

model the features by means of categorical variables, as accomplished in other

machine-learning techniques. The main difference, however, is they use factorized

interactions among the variables to learn the hyperparameters.

The libFM library [Rendle, 2012a] was configured as follows. The input data

were composed of users, items, genres, age group, gender and occupation. Sim-

ilarly to [Rendle et al., 2011], we modeled the genre information as a boolean

vector, as each item may be associated with more than one genre; age group,

gender and occupation were modeled using a particular integer value for each

datum. We set the number of interactions to 20, learning rate to 0.002 and ini-

tial standard deviation to 0.01. All these constants were defined experimentally,

following the guidelines described in [Rendle, 2012a]. We adopted stochastic gra-

dient descent (SGD) with adaptive regularization [Rendle, 2012b] to learn the

hyperparameters.

After executing FM with a varying number of factors, the best RMSE and

MAE results were achieved when 10 dimensions were used for the number of

factors. Table 8 shows the comparison between FM and the unified model. The

latter was configured according to the best results achieved in the last experiment

(200 dimensions, as shown in bold in Tables 6 and 7).

The proposed unified model achieved statistically significant improvements

over factoriztion machines. Therefore, the use of different types of information

in a generic model, such as FM, was not efficient because different data may

influence the recommendation process in distinct ways. Because FM will interact

with all features interchangeably, information types, such as implicit feedback

and users’ and items’ metadata will have the same importance in the model.

On the other hand, our technique deals with each type of datum in a particular

strategy, which improves the prediction accuracy.

Table 8: RMSE and MAE comparison between Unified Model and Factorization

Machines.

Technique f RMSE MAE

FM 10 0.9597± 0.0237 0.7542± 0.0133

Unified Model 200 0.8937± 0.0052 0.7022± 0.0042

6 Final Remarks

This article proposed a hybrid filtering approach which integrates different as-

pects of the whole system composed of users and items with distinguished char-

acteristics into a single recommendation rule. The model is based on latent
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factors, but it also considers metadata awareness to detect strong associations

among items and users closely related.

In view of the importance of integrating different ways of user’s inputs [Bell

and Koren, 2007], our model is generic enough to include as many pieces of

information as necessary, depending on the application needs, but at the same

time, keeping the identity of each information type and restricting its collab-

oration when recommendations are computed. This is the main difference of

the proposed technique in comparison to Factorization Machines, as the latter

processes all information types interchangeably as single input variables.

The generality of our model can be useful for many application scenarios, in-

cluding group recommendations. For example, given a scenario where the system

would recommend items to a group of friends from the church, one could label all

individuals as belonging to that group and incorporate such information as an

additional attribute type into set Z(u). Later, this attribute would be combined

with the content metadata to highlight items whose subject is church-related,

such as gospel, saints, etc.

The related techniques were evaluated through the initialization of the in-

volved parameters with items’ genres and users’ demographics and rental his-

tory available in the MovieLens dataset. Our analysis showed each module of

the unified model can improve the results in certain aspects. The unified model

was also compared against other techniques available in the literature, and the

results show that the proposed model achieved the best prediction accuracy.

The contributions of this article are:

1. a mechanism that combines users’ and items’ descriptions, including a train-

ing algorithm to learn the importance of each parameter to the whole rec-

ommendation process;

2. several extensions to tackle different limitations of the SVD++ model [Ko-

ren, 2008] and capture different aspects of the system, including metadata

and demographics awareness, implicit feedback, users’ personal information

and baselines;

3. incorporation of the extensions into a single and unified model generic enough

to deal with different types of information regarding users and items.

As future work, we aim at evaluating the model with other types of user’s

personal information and item’s metadata to find the information that is more

relevant to the final filtering procedure. We also plan to extend the technique to

incorporate contextual information, which is another source of user’s input that

should be considered towards further improvements in the prediction accuracy.
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