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Abstract: This study proposes a process-oriented, automatic, formative assessment 

model for small group learning based on complex systems theory using a small 

dataset from a technology-mediated, synchronous mathematics learning environment. 

We first conceptualize small group learning as a complex system and explain how 

group dynamics and interaction can be modeled via theoretically grounded, simple 

rules. These rules are then operationalized to build temporally-embodied measures, 

where varying weights are assigned to the same measures according to their 

significance during different time stages based on the golden ratio concept. This 

theory-based measure construction method in combination with a correlation-based 

feature subset selection algorithm reduces data dimensionality, making a complex 

system more understandable for people. Further, because the discipline of education 

often generates small datasets, a Tree-Augmented Naïve Bayes classifier was coded 

to develop an assessment model, which achieves the highest accuracy (95.8%) as 

compared to baseline models. Finally, we describe a web-based tool that visualizes 

time-series activities, assesses small group learning automatically, and also offers 

actionable intelligence for teachers to provide real-time support and intervention to 
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students. The fundamental contribution of this paper is that it makes complex, small 

group behavior visible to teachers in a learning context quickly. Theoretical and 

methodological implications for technology mediated small group learning and 

learning analytics as a whole are then discussed.    
 

Keywords: Learning Analytics, Small Group Learning, Assessment, Complex Systems 

Categories: L.0.0, L.1.1, L.3.6, L.6.2, E.0 

1 Introduction  

One of the important goals of learning analytics is to measure and assess data about 

learners and their contexts in order to automatically provide actionable knowledge for 

teachers and students [Simens and Baker, 12]. Assessment is not only important in 

evaluating learning outcomes: it may also be a motivating factor for students who 

have a performance goal orientation [Dennen, 08]. While measurement and 

assessment of learning is a major objective of learning analytics, it is also a 

demanding experience for many teachers due to the heavy workload and time-

consuming nature of the assessment activities, especially when learning takes place in 

technology mediated group settings [Strijbos 11][ Gress et al. 10].  

The assessment of small group learning in computer-supported environments is 

more than the measurement of outcomes; the quality of collaborative learning 

processes [Strijbos, 11] is also salient. However, the automation of process-oriented 

assessments for small group learning in a socio-technical context is a difficult 

problem to resolve, as learning in this context takes place through the complex 

processes and interactions of numerous factors, artifacts, and environments [Barab, 

01][Stahl 12]. Due to this complexity, assessment of group learning has been 

dominated by “after collaboration” measurement [Gress et al., 10], where the 

performance of each group is measured by the quality of the solutions or products 

generated. This type of group assessment centers on the intellectual results of the 

learning process rather than the process itself [Kumar et al., 10], overlooking group 

dynamics, interaction, and the technology-mediated processes. To address the 

complex interactions of small groups, some process-oriented assessment endeavors 

require integration across multiple coding schemes and sources of data [Hmelo-Silver 

et al., 11]. These assessment efforts often rely heavily on conventional methods such 

as content analysis, coding of observations, interaction analysis, etc., and are therefore 

very time-intensive. Moreover, a “coding and counting” approach omits important 

information about elements such as temporality and group interactions [Reimann, 

09][Suthers, 03]. 

An automatic and process-oriented assessment model for small group learning 

would be ideal for relieving teachers’ burden of assessment and providing insights 

into the collaborative process, In order to build such a model, we must overcome 

problems of high data dimensionality (too many factors affecting group learning and 

performance).  For example, a large set of chosen variables can dramatically diminish 

both statistical and machine learning performance [Vanneschi and Poli, 12]. Feature 

selection can be employed to reduce data dimensionality, but the automatic 

processing of data generated by these environments creates a conceptually “blunt 

instrument” due to feature selection algorithms, statistical models and machine 
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learning that is grounded in mathematical theories rather than theories of human 

behavior. Thus, it is more suitable to reduce data dimensionality by constructing 

variables according to established theories [Fancsali, 11] in educational situations 

where human judgment is key [Siemens and Baker, 2012]. Besides the feature 

selection approach, variable selection and construction are often based on ad-hoc 

guesswork, or significant experience in the educational field [Tair and El-Halees, 12]. 

A principled, theory-based method for constructing variables and contextualizing raw 

data automatically would provide a rich and likely more useful set of measures that 

could then be evaluated over many iterations of a particular socio-technical context; 

in this case a synchronous, small group based math learning environment, Virtual 

Math Teams with Geogebra (VMTwG).  

Machine learning methods that are widely applied in Learning Analytics demand 

hundreds to thousands of rows of data to produce reliable models [Kantardzic, 11]. 

However, educational datasets are often too small to directly apply machine learning 

methods [Hämäläinen and Vinni, 06]. Online learning supports increased class sizes, 

and it is possible to accumulate several years’ worth of data. Excluding Massive Open 

Online Courses (MOOCs), technology mediated small group learning in many 

settings generates too little data for conventional machine learning methods.  

To address the gap between learning analytics aims and “thin data”, this study 

proposes a method for constructing an automated assessment model for small groups 

as a whole using a small dataset. We use the two-fold meaning of “Small.” This work 

is informed by complexity theory to produce a set of simple rules to characterize the 

interactional dynamics among group members in an online collaborative environment. 

We then operationalize these rules to produce a series of temporally-embodied 

variables (features). This theory-based feature construction method in combination 

with a feature selection algorithm effectively reduces data dimensionality, which 

contextualizes these features in a semantic background and in turn reduces the 

complexity and “noise” of data analysis. This calming of interpretive noise enables 

teachers to focus on aggregated signals hidden in the noise and to provide concrete 

feedback to groups. We then build a Tree-Augmented Naïve-Bayes (TAN) classifier 

was coded to build the assessment model. Finally, a web-based tool was discussed 

that not only showed the small group learning performance result but also provided 

actionable information for teachers to support small group learning.  

This paper is organized as follows: Section 2 describes related literature. Section 

3 provides background on complex systems theory and small group learning. Section 

4 shows the research context and data format. Section 5 describes methodology. 

Section 6 presents experimental results and the web-based tool. Section 7 discusses 

results. Section 8 summarizes this study, pointing out limitations and future search 

directions.  

2 Background Studies 

After reviewing 186 articles, [Gress et al., 10] stated that assessment for group 

learning remains by and large summative in nature. Typically, evaluation of groups in 

CSCL is carried out by means of examination of the final product of collaboration. 

For example, [Zhu, 12] studied student knowledge construction in CSCL from a 

cross-cultural perspective, scoring each class group according to the quality of the 
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group product for each task, and assigning a final group score based on an average 

score of all assignments. Similarly, [Kapur and Kinzer, 09] looked at productive 

failure in collaborative learning by comparing groups solving ill-structured and well-

structured problems. The performance of each group was measured by the quality of 

the solution produced according to a holistic rubric. While ‘real-time,’ ‘process-

orientation’ and ‘context’ are critical characteristics of group learning [Reimann, 09], 

individual, summative evaluations are usually administered after collaboration. There 

is a mismatch, then, between the pedagogical approach of small group learning, and 

the assessment of individuals, which ultimately risks undermining the foundation of 

small group learning approaches. 

To address the “small group learning, individual assessment” paradox, both 

qualitative and quantitative approaches are applied to process-oriented group 

assessment. To analyze the complexity of collaborations, many researchers use 

qualitative methods such as interactional analysis, discourse analysis and conversation 

analysis. For instance, [Safin et al., 10] assess the success in collaboration between 

two teams in the domain of architectural design. All collaborative activities are video 

recorded and analyzed using an in-house protocol. [Arnold et al., 01] studies 

collaboration among foreign language graduate students using wikis. Through content 

analysis of the dialogue, they evaluate student performance in planning, contributing, 

seeking input, reflection, and social interaction to determine whether collaborations 

are successful. These qualitative coding-and-counting methods provide difficult to 

gather accounts of the complex process of group interaction [Hmelo-Silver et al., 11]. 

However, these methods are rather time-consuming, and are difficult, if not 

impossible, for teachers to implement. Moreover, post-collaboration analysis 

eliminates opportunities for real-time feedback [Kumar et al., 2010].  

To overcome limitations in scalability found in deep, qualitative methods, another 

branch of literature attempts to perform small group assessment using quantitative 

methods. These methods attempt to assess complex collaborative processes either by 

building ad-hoc measures or by using intricate coding schemes that quantify 

categories of actions or utterances (e.g. [Mirriahi et al., 13], [Hmelo-Silver, 03]). 

Quantitative content analysis has been employed widely to characterize group 

discussion by coding and counting the frequencies of different aspects of discourse 

(e.g. [Kapur et al., 11], [Stijobs et al., 06]). Although results are ultimately 

quantitative, these methods require time-intensive qualitative analysis first, rendering 

them unsuitable for assessment automation.  

Other quantitative approaches for assessing group collaboration include 

experimental methods (e.g. [Xing et al., 14], [Suthers et al., 03]), social network 

analysis (e.g. [Goggins et al., 09]) and multilevel analysis (e.g. [Cress, 08]). However, 

these quantitative measures and methods, including quantitative content analysis, are 

unable to automatically conceptualize the temporal evolution of group collaboration 

and problem-solving processes [Chen and Resendes, 14] [Reimann, 09]. Also, the ad-

hoc nature of measure selection and the construction of the quantitative analysis skirts 

systematic measurement of group interaction and collaboration [Xing et al., 14 & 14].  

Most qualitatively focused assessment-related research takes place at the scale of 

20 – 60 groups and does not incorporate individual interactions between participants 

(e.g. [Xing et al., 14], [Kapur et al., 11]). In contrast, learning analytics, which 

incorporates machine learning algorithms, will work with every interaction, often 
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analysing in excess of tens of thousands of data points.  Algorithms used in learning 

analytics research include Bayesian networks, decision trees or fuzzy logic (e.g. 

[Ferguson and Shum, 11], [Coffrin, 14]). According to computational learning theory, 

data size in machine learning problems has a significant influence on machine 

learning performance [Hoyle, 08]. Therefore, without careful selection of appropriate 

algorithms, learning analytics emerging in the context of “Big Data” may not migrate 

well to these smaller datasets.  

This study aims to provide guidance for algorithm manipulation with respect to 

educational datasets, by employing systems theory to model the interactions and 

dynamics within small groups in a synchronous, math learning context, VMTwG. 

Current application of complex systems in the learning sciences is relatively sparse, 

but gaining momentum [Jacobson and Wilensky, 06]. A significant portion of current 

studies that frame learning sciences through a complex systems lens focus on 

curriculum, teaching and knowledge transfer (e.g. [Hmelo-Silver et al., 00], 

[Goldstone and Wilensky, 08]). Our aim here is to illustrate one way in which 

complex systems theory may contribute theoretical conceptions and methodologies 

that could potentially expand the toolkit for learning analytics and of learning 

sciences as a whole [Kapur, 11]. Specifically, the present study explores the potential 

to better understand and automatically assess technology mediated small group 

learning. 

3 Small Group Learning as Complex Systems 

Small group learning is complex in the sense that each small group has a unique 

history, motivations, purpose and background, as well as its practices for making 

sense of how to collaboratively learn through technology. Groups and their members 

have differing styles and interests. These groups also exist in relation to their 

environment and are affected by that environment [Mennin, 07], evolving as they 

optimize their learning and functionality in a system filled with conflicts, constraints 

and opportunities [Kauffman, 95].  

According to [Arrow et al., 00], “small groups are complex systems that interact 

with smaller systems (group members) embedded within them and the larger systems 

(organizations, classes, society) within which they are embedded. Groups have fuzzy 

boundaries that both distinguish them from and connect them to their members and 

their embedding contexts.”  From this perspective, each group member is also a 

complex system with many interactions among diverse agents [Mennin, 07] and 

similarly is embedded in and influenced by a particular context. Therefore, small 

groups act as complex systems nested in other complex systems at different levels to 

form a multidimensional web of interactions [Capra, 96]. These interactions are 

usually nonlinear and highly dynamic, which gives rise to emergent properties of the 

system as a whole [Kauffman, 95]. Complex systems research focuses on studying 

relationships and interactions among agents instead of agents themselves because it is 

the interactions that are most important for the emergence of learning [Holland, 98].  

Since complex systems research emphasizes how complexity as a whole relates to 

the complexity of its constituent parts, the concept of emergent behavior, or how 

macro-level behaviors emerge from micro-level interactions of individual agents, is 

fundamental in gathering an understanding of this relationship [Kapur et al., 11][Bar-
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Yam, 97] [Holland, 98] [Kauffman, 95]. In a small group learning context, this 

emergent behavior is essential to learning [Mennin, 07] [Arrow et al., 00]. To 

facilitate this understanding, we must first understand two principles of complexity: 

emergent simplicity and emergent complexity [Kauffman, 95]. The research of 

[Kapur et al., 11] provides an example. Consider the brain as a collection of neurons. 

Individual neurons are quite complex, yet they exhibit simple binary behavior in their 

synaptic interactions. This kind of behavior is referred as emergent simplicity, where 

complexity at an individual level results in simplicity at a collective level. Further, 

these simple (binary) synaptic interactions among neurons can produce complex brain 

“behaviors” e.g. learning, memory, nonexistent at the level of individual neurons. 

This type of emergent behavior is considered to be emergent complexity, where 

simplicity at the individual level generates complexity at the collective level. 

Therefore, it is not always necessary to seek complex models and explanations for 

complex behavior.  

Complex collective emergence, operationalized in the current study as group 

learning, can be modeled from the “bottom up” using simple and minimal information 

e.g. functions, rules [Kapur et al., 11]. We explore the assessment of small group 

learning with a focus on simple, theoretically informed, rule-guided and low-level 

interactions that contribute to higher levels of complexity, which we call learning 

emergence. This focus on the rule-guided interactions in small group learning reduces 

the number of data factors we need to consider. 

4 Research Context 

This study focuses on the interactions and learning behaviors of small groups 

participating in a structured geometry curriculum within a synchronous math 

discourse tool. Specifically, we focus on one module of a 2013 course designed for 

Virtual Math Teams employing Geogebra (VMTwG) software (Figure 1). The 

module is called “Exploring Triangles”, and aims to explore the built-in dependencies 

and relationships of the different dynamic-math triangles. To assist students in 

accomplishing this goal, this module is further divided into four sequential parts: 

“Equilateral,” “Relationships,” “Where’s Waldo?” and “Exploring”, each with more 

granular objectives and instructions to guide study. The full curriculum currently 

contains a total of 21 modules, and is available on the project website 

(http://vmt.mathforum.org).  

The module analyzed in this paper includes groups consisting of three to five 

members, with a total of 28 groups involved in the study. Based on content analysis 

and clustering, groups were rated on performance using a 1-9 scale with 9 as highest 

performance. We further transformed this into a categorical data set, with 8-9 

representing High, 5-7 representing Medium and < 5 representing Low performance. 

Results indicated 7 groups belonging to the High performance category, 12 to 

Medium-level performance, and 9 to Low performance.    

Figure 1 provides a guide to understanding cognitive learning discourse in VMT. 

Section A of Figure 1, the VMT replayer bar, reveals the time dimension. Each action 

within VMTwG is logged with a timestamp. Section B is the chat window, where text 

is entered into chat. Future analytics in this project will focus on the analysis of the 

text in chat windows in concert with GeoGebra gestures. Sections C and D are related 
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to Geogebra actions. C is the “Take Control” button, which gives an individual user 

control of the VMTwG environment. Section D is the GeoGebra window itself. Here, 

students work to create an equilateral triangle within an equilateral triangle using 

multiple approaches. 

 

 

Figure 1:  VMTwG, an analytical tool for collaborative math discourse 

All log data was collected in .txt format and centers on specific event types VMT: 

‘Awareness’, ‘Geogebra’, ‘System’, ‘Chat’, and ‘WhiteBoard’ (Wb). The ‘Chat’ 

event-type logs all messages in the group. ‘Awareness’ records the actions of erasing 

chat messages when the chat bar is full. ‘Geogebra’ logs information on how students 

virtually construct a geometry artifact (e.g. add a point, update a segment). The 

‘System’ event-type records information on how VMT is accessed. For example, a 

student joining a virtual room, or viewing different tabs created by students or 

teachers. ‘Wb’ logs more specific actions in the whiteboard area such as the resizing 

of objects. For every event type, we have logs of which actions (Add a point, Send a 

chat, or Creating a text box, etc.) the student makes under what subjects and topics, as 

well as the initiator (Source) and receiver (Target) of those messages. In addition, the 

environment logs information about the time during which an action takes place and 

the virtual room (group) in which the event occurs. Figure 2 shows a sample of 

original log data.  

72 Goggins S., Xing W., Chen X., Chen B., Wadholm B.: Learning ...



 

 

 

Figure 2: Sample logs from VMT 

5 Methodology 

5.1 Simple Rules in Small Group Learning 

The notion of emergent simplicity hypothesizes that simple rules can govern the low-

level interactions in small groups [Kapur, 11]. Though individual group members in 

are complex with different backgrounds, prior knowledge and experience, the impact 

of their interaction with other group members is guided by a set of simple rules. In the 

context of this study, group members are considered to be agents that interact with 

each other to accomplish the learning goal of exploring relationships between 

different dynamic-math triangles and constructing an isosceles triangle in VMT. 

Therefore, local interactions among group members can be conceived as goal-directed 

analysis performed by operators in problem space [Newell, 72]. As a result, a set of 

rules naturally emerges. According to [Kapur, 11], each interaction has an impact 

that:  

• Moves the group towards the goal, or 

• Moves the group away from the goal, or 

• Maintains the status-quo.  

That is, some interactions between groups members aid in developing comprehension 

of the relationships between different dynamic triangles and contribute to the 

construction of isosceles triangle, some diverge away from the group comprehending 

the dynamic triangles and its development, and other interactions have little or no 

effect on the comprehension and triangle development. Further, these simple rules 

governing local interactions among individual agents give rise to group learning 

viewed as emergent complexity. 
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5.2 Rule Operationalization 

5.2.1 Data Formation  

To assess small group performance, we can measure interactions that cause a group to 

move closer to or farther from solving a problem, or in neither direction. Measures 

constructed to reflect these interactions have a rule-semantic background, allowing 

teachers to understand the rationale behind the assessment model. Specifically, we 

simplify the data in a manner that is coherent with both theory and our observations 

about learning in VMTwG, gathered from years of research. For chat log data, we 

first remove all stop words, leaving a series of keywords and symbols. Then based on 

previous experience, question marks, exclamation marks, and words in all capitals are 

also selected as indicators of influence of interaction on group movement. The other 

four event types (‘Awareness’, ‘Geogebra’, ‘System’, ‘Wb’) each contain a definite 

number of actions. Therefore, we put actions of these four event types into a union 

( U ) set. Because temporal evolution of the group collaborative process is key to 

developing an understanding of the interaction and collaboration within both complex 

systems and CSCL [Reimann, 09], we also explore the incorporation of time factors 

into our measures. Again, the assessment model considers the small group as a unit of 

interest instead of a single student and all the selected actions or words performed by 

any student member in the group are incorporated in the feature space, and then used 

for feature selection and construction and further model building.  

Let m
G  notate any group in this course, m=1,2, ,ML . In this context, M  is 28, 

indicating 28 groups in total. N  represents the number of students in that particular 

Group m
G , n=1,2, ,NL .  T  denotes event type, [‘Awareness’, ‘Chat’, ‘Geogebra’, 

‘System’, ‘Wb’]. A  represents tool actions (‘Awareness’, ‘Geogebra’, ‘System’, 

‘Wb’), key words, or key symbols. ijA  denotes the frequency of use of a specific 

tool/word/symbol j  in event type i , where i ∈ [ ]1,5 , j ∈ [ ]1,J , i ∈ +Z , j ∈ +Z . k  

indicates the specific position in the sequence of the topic to put a sequential and 

temporal background behind each entity, where for this specific topic, k ∈ [ ]1,4 . 

Therefore, ijkA represents the frequency of a tool/word/symbol in one of the four 

sequential parts of the topic. Particularly, Stemming technique [Runeson, 07] is used 

for the keyword search. X indicates the constructed variable/measure and x  is the 

value of that measure. The dataset for a single group is a fourfold structure as shown 

in Figure 3. 
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Figure 3: Four-fold data structure 

5.2.2 Measure Construction  

After processing the chat and tool action data into a bag of words, 30 types of actions 

and words are selected to measure the influence of interactions as guided by the three 

rules. Specifically, for interactions that move group learning towards or away from 

their goal, 2
T  and 3

T ’Chat’ and ‘Geogebra’ are chosen, as these two action types 

indicate concrete exploration and the main task of the development of triangles. 

Further, actions i jA  are chosen to represent interactions that contribute to the 

forward movement based on the curriculum, where i ∈ { }2,3 , j ∈ [ ]1, J .  

For each group, in order to embody the temporal effect in this model, the 

frequency of each action ijkA  is divided into four consecutive parts. Specifically, the 

ijkA is represented as a four-dimensional set for group m
G : 1 2 3 4, , ,ij ij ij ijA A A A   . 

However, actions occurring in different parts of these sequential sub-topics have 

different levels of influence. Thus, we use a weight function to indicate this 

difference. Specifically, the golden ratioϕ , a concept also called division in extreme 

and mean ratio by Euclid [Smith, 53] is applied in this study. The golden ratio arises 

from dividing a segment so that the ratio of the whole segment to its larger part is 

equal to the ratio of the larger part to the smaller part as shown in Figure 4, expressed 

algebraically, 
1

1

b

b b
=
−

, where ( 0.5)X > . ϕ  is the answer to the equation 

( 1 5)

2
b

− +
= ≈1.618033... .  
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Figure 4: Line Segment in Golden Ratio  

The golden ratio is a heuristic used to divide and analyze natural objects and man-

made systems [Smith, 53].  In the context of our study, the golden ratio ϕ  is 

multiplied by the frequency of actions that are required or important to the completion 

of a particular sequential task, and the sequential parts that are less critical are 

multiplied by ϕ−1 . Similarly, among the collection of actions, the golden ratio ϕ  is 

further multiplied by ijk
A  because some actions have more prominent interaction 

influence than others. In sum, each action or keyword in the particular section of a 

topic is represented as
2

ijkAϕ , 
2

ijkA(ϕ−1) , or ijkAϕ(ϕ−1)  depending on its degree of 

influence over the interaction and on group movement over time.  

On the other hand, each action or word identified should have one computed 

value x  as the final variable X . Therefore, we multiply the four sequential elements 

to produce a value calculation. Since we employ union (U ) rather than intersection 

(I ), there is a good possibility that some groups may receive a value of 0 for the 

frequency of the sequential parts simply because the group may never use that tool or 

symbol. To avoid this phenomenon, e is used as a base for the final calculation of a 

variable when the instance is 0. Multiplication is applied in this calculation to 

improve the influence of positive movement during the final assessment of the small 

group learning performance. Also because the number of group members is different 

from group to group, an average function is used in our formula to leverage the 

difference.  In sum, each action x  for the interaction that moves the group towards 

the goal is expressed as:  

 

{ }

{ }

4
2 2

1

1 4
2 2

1 1

   , 0, ,( 1) , ( 1)

    ,   0, {1,2,3,4}, ,( 1) , ( 1)  ijs

ijk

ijk

k

s
A ijk ijk

ijk

k k s

rA
A r

N
X

rA rA
e A s r

N N

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

=

−

= = +


∀ ≠ ∈ − −


=
 ∃ = ∈ ∈ − −

∏

∏ ∏
(1) 

 

Actions in 2T , which move away from problem solving to other directions in that 

there is less need for these actions to complete the current task, have development 

procedures similar to those that move the group towards their goal. The modification 

that has been employed is to use a log function to dampen the influence of those 

actions on assessment model construction. Similarly, the 0 frequency situation is also 

taken into account.  
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Drawing inferences from key words and key symbols is different than drawing 

inferences from tool use. When a tool is used, we can make a deterministic judgment 

about whether that tool is relevant to a particular topic.  With words, our 

determinations of the utility of the words for problem solving and assessment must be 

based on probabilities. Also, groups may use vocabularies and signs that are widely 

different from one another. Therefore, we limit the number of key words or symbols 

in the assessment model, focusing only on those that are most useful and commonly 

used by the group while completing a task. We do not assign different weights to 

reduce the influence of those words. A summation function is used instead of 

multiplication to reduce this influence. As a result, for interactions that move the 

group forward or backward, variables from the key words are presented as: 

                              

4

1     
i j k

k

A

X
N

==
∑

                                              (3)  

Besides some keywords which are identified as neural functions, 1T  

(‘Awareness’), 4
T  (‘System’), and 5

T (‘Wb’) are seen as actions that do not directly 

move the group towards or away from problem-solving. Therefore, the influence of 

those interactions is the same with definitions of keywords using a simple summation, 

such as (3). In sum, there is not much difference between which group members 

perform the action or use the key word because the group is considered as a whole. 

However, the frequency and amount of time it takes to perform a particular action or 

use a particular keyword from any member of the group may influence the group 

performance significantly because different weights are assigned to different 

actions/keywords performed at different times.  

5.3 TAN Model  

The aim of the assessment model is based on the previously discussed aim of 

exposing temporally embodied features to automatically estimate the performance of 

each team (high, medium, or low). This assignment focuses on process rather than 

simply evaluating a final solution or product. In this VMT case, and in the discipline 

of education in general, the feature space contains too many attributes to build an 

accurate classifier model. Even if machine learning algorithms could be incorporated 

under these conditions, it is still extremely useful to select only the most influential 

factors; those best able to distinguish among the different classes. Therefore, a 

correlation-based feature subset selection method [Hall, 99] is used to reduce the 

dataset domains to 9 features only: triangle, angle circle, intersect, segment, question 

mark, drag, viewing tab, and perpendicular line. As a result, each group is represented 
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as a 9 dimensional set. Furthermore, these groups and their associated performance 

category (High, Medium, Low) constitute the 28 lines of data that are used to train an 

assessment model, where we use the 9 features to predict the categorical value of the 

group.  

In educational contexts, which often produce less than 100 lines of data, we 

decided to exclude commonly used techniques such as nearest neighbor classifiers, 

neural networks and variations of decision trees, as they usually require much more 

data in order to function accurately. Regression, especially linear or logistic 

regression, is a more optimal candidate for a “small data” assessment model. The 

main limitations associated with these regression techniques are their sensitivity to 

outliers and collinearity. However, educational data almost always contain 

exceptional students and groups (outliers) who can achieve a good performance with 

little effort or fail without any sensible reason. Collinearity indicates strong linear 

dependencies among those variables or features. It is not uncommon that educational 

factors are more or less related to each other. It is difficult to provide any exact 

threshold value for correlations to be harmless. Empirical studies [Hämäläinen and 

Vinni, 06] show that correlation coefficient r > 0.7 affects model performance 

significantly, while weaker correlations usually do not have any significant impact. 

Support vector machines (SVM) are another good choice for the classification model 

of small educational data in that the classification model depends only on some data 

points [Schuldt et al., 04]. However, SVM is a “black-box” model, which does not 

show a tangible relationship among variables. This is not ideal from the perspectives 

of application and comprehension, which require the model to be transparent.  

Alternately, a Bayesian network model is an attractive and understandable option 

within the educational domain, where an element of uncertainty is always involved. 

However, general Bayesian networks are too complex for small data sets, and as a 

consequence, the developed model over fits easily. The Naïve Bayes model, due to its 

simplicity, avoids this problem to some extent. In the present study specifically, 

Group G is represented by a tuple of 9 selected feature values { }1 1 1, , ,..., nx x x x , where 

ix is the value of attribute i
X . Let C  denote performance level (high, medium, 

low) and use c as the value of C . According to Bayes rule, the probability of an 

example { }1 2 3, , ,..., nG x x x x= in class c  is  

( | ) ( )
( | )  

( )

p G c p c
p c G

p G
=                                         (4) 

Assuming that all attributes are independent for the value of the class variable, then  

1 2 3
1

( | ) ( , , ,..., ) ( | )
n

n i
i

p G c p x x x x p x c
=

= =∏                              (5) 

Hence, Naïve Bayes classifies group performance by selecting  

1

arg max ( ) ( | )
n

i
c i

p c p x c
Λ Λ

=

 
 
 
∏                                         (6) 

where (c)p
Λ

and (x | c)ip
Λ

 are estimations of the probabilities derived from the 

frequency of their arguments in the training data respectively. This is the basic 
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reasoning behind the Naïve Bayes model. Compared to a Bayesian network, this 

model only has two layers, the class variable c  in the root node, and all the other 

variables i
X  in the leaf nodes, as shown in Figure 5. The Naïve Bayes model 

assumes that the all leaf nodes are conditionally independent, given the class value. 

Even though this assumption is often unrealistic, especially in the educational sphere, 

in practice Naïve Bayes model has worked well and has in some cases outperformed 

more sophisticated models such as decision trees and general Bayesian networks, 

especially in small datasets (e.g. [Domingos, 97], [Friedman, 97], [Hämäläinen, 06]).  

 

Figure 5: An Example of Naïve Bayes Model  

Notwithstanding the fact that some violations of the variable independence 

assumption for Naïve Bayes model do not matter, many do. Therefore, substantial 

effort has been invested to remove any violations to variable independence, while 

maintaining a desirable level of simplicity (e.g. [Friedman et al., 97], [Webb, 01]). Of 

these techniques, TAN has demonstrated remarkable accuracy [Keogh 99][Friedman, 

97].  TAN enlarges the Naïve Bayes model by allowing additional dependencies 

among features. That is, the TAN model allows every attribute ix  to depend on the 

class and on another attribute ( )
i

p x , named the parent of ix as shown in Figure 8. 

Thus, G is classified by selecting:  

       
1

argmax (c) (x | c, (x ))
n

i i
c i

p p p
Λ Λ

=

 
 
 
∏                                  (7) 

TAN uses conditional mutual information to select the parent function (.)p , 

which is developed at the time of training. This model is often a good compromise 

between a Naïve Bayes model and a general Bayesian network model. The general 

procedure for TAN includes:  

� Taking the training data set and X \ ( )c as input.  

� Computing the conditional mutual information ( , | { })i jI x x c  between each 

pair of attributes, i j≠ . 

� Developing a complete undirected maximum weighted spanning graph in 

which nodes are attributes 1 1 1
, , ,...,

n
x x x x as shown in Figure 6. 

� Transforming the developed undirected graph into a directed graph by 

selecting a root attribute and setting the all edges to be directed outward from 

it (Figure 7).  
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� Learning the parameters and outputting the TAN model (Figure 8) by adding 

a node labeled by C and adding an edge from C to each i
X .  

 

Figure 6: An Example of the undirected tree 

 

Figure 7: The directed Tree by Selecting  X2  as the root node  

 

Figure 8: An Example of TAN Model  

To strengthen our argument for the TAN model, we executed various models e.g. 

C4.5, Logistic Regression, Neural Network (Perceptron), Naïve Bayes to benchmark 

the proposed model for the educational dataset. All algorithms are evaluated using 

tenfold cross-validation, which is helpful in limiting problems such as over-fitting and 

increases the likelihood that the generated model can be generalized to an 

independent dataset.    

6 Results 

6.1 Complex Systems based Measures 

Small groups as complex systems involve many factors that affect learning and 

performance. It is impossible to take all factors into account when building an 

assessment model, especially considering the limited data usually available. Highly 

dimensional datasets become even more difficult for a machine algorithm to learn. 

The grounding of this study in complex systems theory, specifically applied emergent 

complexity and emergent simplicity concepts addresses this issue.  As a result, 30 

features were chosen. To further reduce the data dimensionality, correlation-based 

feature subset selection (Hall 98) was conducted and 9 features were selected and 

constructed to model the group dynamics and interaction as in Table 1.  
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Rule Type Feature Group1 Group2 Group3 Group4 … 

Move 

Forward 

‘Chat’ 

 

Triangle 
4.67 4.00 11.33 2.33 … 

Angle 

 
0.50 0.80 0.33 4.60 … 

‘Tool’ 

Circle 

 
5.24 22.25 2.62 13.09 … 

Intersect 

 
1.75 1.96 0.87 1.75 … 

Segment 10.47 5.45 11.31 3.49 … 

Maintain 

Status 

Quo 

‘Chat’ 

Question 

Mark 
11.75 9.50 12.33 9.33 … 

Drag 0.75 1.40 0.20 0.67 … 

‘System’ 
Viewing 

tab 
8.80 10.75 11.25 11.67 … 

Move 

Away 
‘Tool’ 

Perpendi

-cular 
-0.14 1.00 1.00 0.04 … 

Table 1: Sample Group Modeling Features Based on Complex Systems Theory 

In Table 1, the first three columns show the Rule, Type and Feature and the 

remaining columns present values computed for each group. Therefore, each row 

provides the specific feature name, its type and whether it moves the group towards or 

away from its goal, or initiates no movement. In addition, it tells you the specific 

values of a feature across groups computed using the equations from the Measure 

Construction section. Each group is represented by a 9-dimensional vector. To some 

degree, each feature is an aggregation of frequency from all group members and 

multiplied by different weights, based on different time of usage and importance. 

These constructed features include a coarse time-dimension derived from weighting 

the features based on their significance during the different stages of problem solving 

progression. Compared with other ad-hoc guesswork or solely feature selection and 

construction methods, it is expected that this theory-based methodology will enhance 

the accuracy and rhetorical power of the modeling of group dynamics in a 

technology-mediated space. This accuracy is reflected in the next section from the 

TAN model application to the automatic assessment of small group learning. 

Furthermore, each feature selected is semantically grounded as either advancing the 

group’s problem solving or maintaining status quo. This semantic information would 

enable teachers to have a rationale for understanding the assessment model and 

providing feedback, scaffolding and intervention accordingly, which is discussed 

further in the web-based tool section. In other words, how we apply our analytic 

approach to discern findings is designed explicitly to facilitate teacher engagement in 

the interpretation of analytics. 

The selected features are reasonable and intuitively important for groups’ 

problem solving. In order to build an isosceles triangle in the VMT context, Angles, 
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Circles, and Segments are absolutely necessary. Groups working with these tools 

more often have a better chance of accomplishing the goal (learning). For the actions 

and words under the ‘Maintain Status Quo’ category, even though they do not directly 

contribute to move the group towards building the isosceles triangle or exploring the 

dynamic triangle relationships, these actions are also important indicators of group 

dynamics and collaboration. When students use the Perpendicular Line function, it 

shows students are off track because this particular topic does not require the 

Perpendicular Line function. Therefore, it is expected that these features informed by 

complex-systems are good indicators of whether small group learning is taking place 

in VMT.  

6.2 Model Performance  

Algorithm 

 

Result 

TAN 
Naïve 

Bayes 
C4.5 

Logistic 

Regression 

Neural 

Network 

F-Measure 

 
93.4% 89.5% 78.0% 78.7% 52.7% 

Accuracy 95.8% 90.0% 78.8% 80.6% 55.5% 

Table 2 Assessment of Model Performance: The F-measure acts as an overall 
evaluation of model performance. Compared with other more complex models such as 

tree-based (C4.5) and Neural Networks (Perceptron), the TAN model has the best 

performance in both F-Measure (93.4%) and Accuracy (95.8%) for this small data 

set, 

The objective of this paper is to provide a framework for automating the 

assessment process for small group learning and performance, using indications from 

the collaboration process rather than the final product or solution of the group. The 9 

features representing each group with manually assigned performance labels for that 

group become the dataset and input for the TAN and other algorithms to build the 

assessment model. In our context, there are 28 lines of data, each representing a single 

group as [Triangle, Angle, Circle, Intersect, Segment, Question Mark, Drag, Viewing 

Tab, Perpendicular, Performance Label], where Triangle, Angle, Circle, Intersect, 

Segment, Question Mark, Drag, Viewing Tab, Perpendicular are independent 

variables/features and are used to predict the dependent variable/class, the 

performance label of the group. The weighted results of the various models after 

performing 10-fold cross validation are listed in Table 2. 

Table 2 presents both the accuracy and the F-measure, The F-measure acts as an 

overall evaluation of model performance. As shown in Table 2, compared with other 

more complex models such as tree-based (C4.5) and Neural Networks (Perceptron), 

the TAN model has the best performance in both F-Measure (93.4%) and Accuracy 

(95.8%) for this small data set, which is immediately followed by Naïve Bayes with 

F-Measure 89.5% and accuracy 90.0% respectively. The TAN model also has better 

performance in comparison with the Logistic Regression and Naïve Bayes model, 

which are more sensitive to collinearity. Therefore, based on the complex systems 
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informed features, the relatively simpler TAN modeling technique is able to construct 

the most accurate and reliable assessment model for small group learning. 

6.3 Web-based Tool for Time-Series Visualization  

Enabling formative assessment provides actionable information for teachers.  

Enabling formative assessment through analytics is an important aim, and is 

sometimes referred to as “teaching analytics” [Ebner and Schön, 13][Taraghi et al., 

14]. Simply assigning a High, Medium or Low labels automatically, based on the 

proposed methodology for a group performance, though helpful to teachers, does not 

convey actionable intelligence. We need to present information to teachers in a 

manner where it is easier to consume. In this way, our aim is to scaffold group 

progression during collaboration or provide in-time intervention for groups, especially 

for groups rated as low performance. The research community in learning analytics 

recognizes the significance of visualization design.  In fact, visualization is a required 

component in the learning analytics cycle [Ferguson and Shum, 11]. In order to offer 

information for teachers to act upon in real time, we describe a web-based 

visualization tool to be used as shown in Figure 9. 

This visualization tool is developed using a time-series perspective in order for 

instructors to understand how group collaboration evolves and varies over time. We 

focus on only one topic for the current study, but we expect this tool to work for any 

and all combinations of topics. Teachers may also choose to show only one group, or 

any combination of groups, using the check box in Figure 9 (a). Also, since the 

features selected matter the most for group performance, we choose to visualize 9 

features (Figure 9(a)). We put words and actions in two different graphs and the 

appearance of these features are visualized over time. Moreover, since different topics 

may have different critical features, or teachers may want to choose key words or 

symbols which they think are important to group problem solving, this tool allows for 

teachers to input chosen keywords or tool actions into the system. Furthermore, when 

the teacher clicks on one of the dots symbolizing an occurrence, the visualization 

system automatically presents additional details, such as what a group member is 

doing at that particular moment. A screen capture of the VMT system is also obtained 

as shown in Figure 9(b). There are two colors representing keywords or tool usage. 

Blue indicates that the feature appears once either in works or tool actions, while the 

red represents a co-occurrence of features. For instance, when an instructor clicks on 

the red dot on Drag in Word part Figure 9 (a), he or she will see that the sentence 

contains both the Drag and Triangle features in Figure 9 (b). This is more likely to 

indicate that learning is occurring.  
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Figure 9(a): Activity Analytics 

 

Figure 9(b): Activity Analytics, detailed view 

To illustrate this tool usage, suppose students are working to build an isosceles 

triangle in Topic 2. Our system indicates that Group 16 is in the low performance 

area. When the teacher sees that this group spends a lot of time using the 

perpendicular line tool and that there are many questions (?) back and forth (Figure 9 
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(a)), they may deduce that the group is moving away from its goal (semantic 

background). Key actions that students employ to build a triangle, such as Circle, 

Intersect, and Segment (in the early part of the graph), occur few times in this group. 

The teacher sees the red Drag in chat and clicks on it (Figure 9(b)) and looks at the 

screenshot of the current environment, and realizes that this group is indeed off track 

from constructing the triangle. When the teacher slides over the question mark section 

and obtains the information that this group has a lot of questions regarding segment 

tool usage and circle tool usage they may then converse with the group and provide 

additional guidance concerning the functions of segment and circle tool (personalized 

help). If the personalized help offered by the teacher has been effective, the teacher 

may check on the group again and hover over the Segment tool to see that it is being 

used properly (Figure 9 (b)).   

7 Discussion 

Many studies of small group learning use summative assessment methods (e.g. final 

solution, grade) to measure performance. These assessment approaches usually 

overlook the collaborative process and the affordances of technology in contribution 

to group learning [Reimann, 09][Barab, 01]. Qualitative studies e.g. content analysis 

[Arnold, 01], and conversation analysis [Safin et al., 10] are typically time intensive, 

making them impractical to implement. Many quantitative explorations are based on 

ad-hoc guesswork to build their measures and do not systematically address complex 

small group dynamics and interactions [Mirriahi et al., 13]. We attempt to address 

these problems by designing an automated and process-based small group learning 

assessment model and then presenting a web-based tool that is informed by complex 

systems theory and learning analytics in order to provide actionable intelligence for 

teachers.  

7.1 Theoretical Implications  

Imagining small groups as complex systems provides a new frame for making sense 

of learning, and for conceptualizing future developments of learning theory.  In 

particular, the emergent behavior rising from local/low-level interactions between 

multiple agents (members), and mediated by various tools and artifacts in the 

environment we see molecules of repeated behavioral patterns emerge in the data; this 

is in part the move toward simplicity that is usually overshadowed by complexity of 

these types of analysis.  Our work provides a lens for understanding and breaking 

down the process of small group, technology mediated learning in new and interesting 

ways. While small group learning arises from and constrains the interactions and 

dynamics among individuals, it is a group-level property and cannot be reduced to 

any particular individual in the group [Kapur et al., 11]. We describe a complexity-

based approach that models complex small group learning using simple interaction 

rules. Our identified notions of emergent simplicity and emergent complexity suggest 

a potential for theoretically sound rules that can be operationalized to model the 

interactions and dynamics among group members.  

Modeling complex interaction and dynamics in small groups through a simple 

rule-based mechanism that is further operationalized into measures, while intriguing, 
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might also be unsettling and counter-intuitive [Kapur et al., 11]. For example, one 

might reasonably be concerned about oversimplification. The underlying ontological 

assumption could be that complex behavior can only be explained by complex 

mechanisms (e.g. linguistic mechanisms); and simple mechanisms may be insufficient 

[Kapur et al., 11]. While this is one possibility, [Bar-Yam, 03] concepts of emergent 

simplicity and emergent complexity suggest that some point of learning analytics 

success and robustness is possible if our choice of algorithm and computational 

approach is closely connected to the pedagogy used (small group learning) and the 

phenomena being examing.  

Theoretical approaches not presently applied to learning analytics elsewhere may 

help to directly connect our computational approach (and other computational 

approaches) to learning phenomena, with the aim of more efficiently surfacing trends. 

Complexity is critical to the theory of dynamical minimalism, which is useful for 

understanding complex psychological and social phenomena [Nowark, 04]. The main 

argument of this theory is to reconcile the scientific principle of parsimony, which is 

that simple explanations are more ideal than complex ones in investigating a 

phenomenon with an arguable loss in depth of comprehension of the phenomenon 

[Kapur et al., 11]. The principle of parsimony is to seek the simplest mechanism and 

the fewest variables to explain a complex situation. This does not necessarily sacrifice 

the depth in understanding in that repetitive and dynamic interactions guided by 

simple rules and mechanisms can generate complex behavior – the very definition of 

emergent complexity [Kapur et al., 11]. Hence, parsimony and complexity are not 

irreconcilable [Kapur and Kinzer, 09]. However, the implication here is not that 

complex small group learning ought to be studied via simple mechanisms; it is that 

the exploring and modeling complex group interaction via simple mechanisms is a 

promising and meaningful effort [Kapur et al., 11].  

On the other hand, “One way to advance science is to progressively flesh out 

theories, adding experimental details and elaborating mechanistic accounts” 

[Goldstone, 08]. In this present study, we demonstrate that modeling the dynamics 

and interaction of complex small group learning by operationalizing simple-rule 

based mechanism, which leads to the final accurate and reliable automated assessment 

model for small groups. We use theory to inform learning analytics practice. As an 

exploratory study, it is hoped that this motivates further theory-based connections 

between learning analytics and computation. The learning analytics research 

community can explore theories in an even bigger scope (e.g. human behavior 

theories, learning theories etc.) to position and contribute developments for long-term 

viability and positive impact of learning analytics on teaching and learning.  

7.2 Methodological Implications  

Comprehending and modeling the evolution of interaction over time and how 

variation in this evolution explains learning outcomes are among the significant 

challenges for CSCL research [Hmelo-Silver et al., 11] [Reimann, 09]. “Temporality 

does not only come into play in quantitative terms (e.g., duration, rates of change), but 

order matters: Because human learning is inherently cumulative, the sequence in 

which experiences are encountered affects how one learns and what one learns” 

[Reimann, 09]. However, previous measures derived from qualitative interactional 

coding or from quantitative content analyses are limited in embodying the time and 
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order dimensions of these measures [Kapur et al., 11]. What information can we infer 

if group collaboration has a high value of a particular measure or category of 

interaction? It is possible that these codes or interactions are equally distributed 

throughout the collaborative process, or they are clustered over a particular time or 

phase? Traditional analyses usually give the same weight to these measures for both 

situations or assume temporal homogeneity [Kapur et al., 08]. Such analyses, though 

informative, do not take the temporality of interactions into account and therefore 

overlook the order of interactions in the problem solving process.  

In operationalizing the simple rules to construct measures, we underscored the 

roles of temporality and sequence. Log data generated by the VMTwG environment 

are processed based on a coarse timeline (four sequential parts). Depending on the 

tool actions and chat significance on problem solving in that particular stage, different 

weights are assigned to these features based on the golden ratio function. For each 

feature in a specific time, the value of the feature is a function of weight and 

frequency. The final values for each feature are an accumulation of the values over 

time. This measure construction process lays the groundwork for process-oriented 

assessment.  

That is, assessment of a group performance is transformed to evaluate the 

contributions of these features bringing to the group problem solving. However, 

operationalization of these rules is relatively subjective and considered to be a design 

process, and therefore it may invite many questions. What essentially guides the 

construction of our indicators is the maximization of assessment accuracy and F-

measure. Therefore, the operationalization of complex systems theory involves trial 

and error and incorporates mathematical and algorithmic concerns instead of purely 

theoretical perspectives. It is the reflexive, persistent use of algorithms to filter 

observations; observations to validate and inform algorithms, which defines our 

approach.  

This integrated use of “Group Informatics” [Goggins et al., 13], which is a 

methodological approach and ontology for making sense of trace data using a 

reflexive qualitative-computational process underlies our approach. In this particular 

case and in the field of education in general, data sets for training machine learning 

algorithms are usually very small, and atheoretical approaches to computation 

therefore limited. For this reason we ruled out the more complex models such as tree-

based algorithms and neural networks. Because regression techniques are sensitive to 

outliers and dependency among features or variables, both of which are common 

phenomena within educational datasets, we did not consider regression models.  

Our results illustrate how one particular model can be optimized and show results 

that exceed those of other models.  What we argue here is not that the TAN model is a 

one-fits-all algorithm; we instead propose that the TAN model or simpler Bayesian 

model is a good start when exploring modeling techniques for small educational 

datasets. While learning analytics is accustomed to incorporating analytics practices, 

models and algorithms from data mining, business intelligence and the “big data” 

fields, our work proposes another perspective – data at small scale – to expand the 

application of learning analytics. This approach requires a systematic research process 

like the one embodied by Group Informatics [Goggins et al., 13]. As the feature 

construction and TAN model development can be totally automated; the proposed 

methodology is able to accomplish the goal of building an automatic and reliable 
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process-oriented assessment model for small group learning. In fact, the developed 

web-based tool has partially implemented this proposed methodology and moves a 

step further to visualize the identified key features from a time-series standpoint. 

Since these constructed features have a semantic background behind them (e.g. ‘move 

the group forward’), teachers could easily understand the rationale behind the model. 

Therefore, they can not only obtain the process-oriented assessment results (High, 

Medium, Low), but also provide in-time scaffolding and intervention for small group 

learning in a social-technical environment.  

8 Conclusion 

This study proposes an automatic assessment model for small group learning using a 

small dataset generated by a technology-mediated environment in conjunction with 

methods grounded in complexity theory. We first conceptualized small group learning 

as a complex system and explained how the group dynamics and interaction can be 

modeled via simple and theoretically sound rules. Then, these rules were 

operationalized to build temporally-embodied measures, and different weights were 

assigned to these measures according to their significance in that particular stage. This 

theory-based measure construction method in combination with a feature selection 

algorithm accomplishes the goal of reducing data dimensionality and contextualizes 

these measures on a semantic background to facilitate easy interpretation by teachers. 

Due to fact that the data samples generated in educational contexts are often small, 

TAN was coded to develop the group assessment model, which achieved the best 

accuracy compared to baseline models. Finally, a web-based tool was developed so 

that teachers could not only assess small group learning automatically, but could also 

provide in-time scaffolding and intervention based on the visualization of  

complexity-based features.  
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