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Abstract: We study the problem of sorting by transpositions, which consists in com-
puting the minimum number of transpositions required to sort a permutation. This
problem is NP-hard and the best approximation algorithms for solving it are based on
a standard tool for attacking problems of this kind, the cycle graph. In an attempt
to bypass it, some researches posed alternative approaches. In this paper, we address
three algorithms yielded by such approaches: a 2.25-approximation algorithm based on
breakpoint diagrams, a 3-approximation algorithm based on permutation codes, and a
heuristic based on longest increasing subsequences. Regarding the 2.25-approximation
algorithm, we show that previous experimental data on its approximation ratio are in-
correct. Regarding the 3-approximation algorithm, we close a missing gap on the proof
of its approximation ratio and we show a way to run it in O(n log n) time. Regarding
the heuristic, we propose a minor adaptation that allow us to prove an approximation
bound of 3. We present experimental data obtained by running these algorithms for
all permutations with up to 13 elements and by running these algorithms and the best
known algorithms based on the cycle graph for large permutations. The data indicate
that the 2.25-approximation algorithm is the best of the algorithms based on alterna-
tive approaches and that it is the only one comparable to the algorithms based on the
cycle graph.
Key Words: genome rearrangement, sorting by transpositions, approximation algo-
rithms
Category: F.2.0, G.2.3

1 Introduction

A transposition is the rearrangement event that switches the location of two

contiguous portions of a genome. The problem of computing the transposition

distance between two genomes consists in finding the minimum number of trans-

positions needed to transform one genome into the other. Such problem finds

application in comparative genomics because the transposition distance can be

used to estimate the evolutionary distance between two genomes.

Representing the order of the genes in the genomes as permutations, that

problem can be reduced to the combinatorial problem of finding the minimum

1 An earlier version of this paper appeared in the Proceedings of BSB’2012 [Galvão
and Dias 2012].
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number of transpositions required to sort a permutation, which is referred to as

the Problem of Sorting by Transpositions. This problem was recently proven to

be NP-hard [Bulteau et al. 2012], therefore it is not likely that a polynomial-time

algorithm exists. It was introduced by Bafna and Pevzner [Bafna and Pevzner

1998], who presented a 1.5-approximation algorithm that runs in quadratic time.

Later, Elias and Hartman [Elias and Hartman 2006] improved the approxima-

tion bound to 1.375, maintaining quadratic time complexity. Recently, Dias and

Dias [Dias and Dias 2010a, Dias and Dias 2010b] presented improved versions

of Bafna and Pevzner’s algorithm and Elias and Hartman’s algorithm, which

keep the original approximation ratios, and these have been the best known

algorithms for the problem of sorting by transpositions.

These approximation algorithms, as well as others [Hartman and Shamir

2006, Christie 1999, Gu et al. 1999] with relatively low approximation ratios

(i.e. less or equal than 1.5), are based on a structure named the cycle graph.

This structure is regarded as complex by some authors, therefore they posed

alternative approaches in order to bypass it. For a detailed literature survey, the

reader is referred to the book of Fertin and colleagues [Fertin et al. 2009].

Walter, Dias, and Meidanis [Walter et al. 2000] presented a 2.25-approxima-

tion algorithm based on a structure named the breakpoint diagram that runs

in O(n2) time. They ran some experiments in order to observe the approxi-

mation ratio of their algorithm in practice, but it was not conclusive. Benôıt-

Gagné and Hamel [Benôıt-Gagné and Hamel 2007] developed a 3-approxima-

tion algorithm based on permutation codes that runs in O(n2) time. According

to them, although there exist better algorithms with respect to approximation

ratio, their algorithm is faster than any existing one. Besides, their experimental

results suggested that the approximation ratio of their algorithmmay be lowered.

Guyer, Heath, and Vergara [Guyer et al. 1997] devised a heuristic based on the

longest increasing subsequence in a permutation that runs in O(n5logn) time.

The experiments they performed suggested that it has the potential to produce

near-optimal results.

In this work, we review these algorithms in order to improve their analyses,

providing theoretical strengthening whenever possible, and to determine whether

they are good alternatives to the algorithms based on the cycle graph. Regard-

ing Walter, Dias, and Meidanis’ algorithm [Walter et al. 2000], we show that

previous experimental data on its approximation ratio are incorrect, and then

we present new experimental data suggesting that its approximation ratio may

be lowered to 2. Regarding Benôıt-Gagné and Hamel’s algorithm [Benôıt-Gagné

and Hamel 2007], we close a missing gap on the proof of its approximation ratio

and we demonstrate a way to run it in O(n logn) time. On the other hand, we

present experimental data that contradicts Benôıt-Gagné and Hamel’s hypoth-

esis that its approximation ratio may be lowered. Regarding Guyer, Heath, and
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Vergara’s heuristic [Guyer et al. 1997], we propose a minor adaptation that al-

low us to prove an approximation bound of 3. On the other hand, we present

experimental data that indicates this algorithm does not produce near-optimal

results. Finally, we compare these three algorithms to the best known algorithms

based on the cycle graph.

The remainder of this paper is organized as follows. In the next section, we

give the basic definitions and notation of the paper. In Section 3, we briefly

describe the algorithms studied in this paper, close a missing gap on Benôıt-

Gagné and Hamel’s proof [Benôıt-Gagné and Hamel 2007] for the approxima-

tion ratio of their algorithm (Lemma 3), and demonstrate that a constrained

version of Guyer, Heath, and Vergara’s heuristic [Guyer et al. 1997] still has an

approximation bound of 3 (Theorem 8). In Section 4, we show how to compute

the permutation codes in O(n log n) time, what allow us to implement Benôıt-

Gagné and Hamel’s algorithm [Benôıt-Gagné and Hamel 2007] in such a way

that its running time becomes O(n log n). In Section 5, we present experimental

results along with a discussion on the performance of the algorithms in practice.

In the last section, we conclude the paper.

2 Preliminaries

We represent genomes as permutations, where genes appear as elements. A per-

mutation π is a bijection of {1, 2, . . ., n} onto itself. The group of all permutations

of {1, 2, . . ., n} is denoted by Sn and we write a permutation π ∈ Sn as π =

(π1 π2 . . . πn). Sometimes, we extend it with two elements π0 = 0 and πn+1 =

n+ 1. The extended permutation will still be called π.

A transposition is an operation ρ(i, j, k), 1 ≤ i < j < k ≤ n+1, that moves

blocks of contiguous elements of a permutation π ∈ Sn in such way that ρ(i, j,

k) · (π1 . . . πi−1 πi . . . πj−1 πj . . . πk−1 πk . . . πn) = (π1 . . . πi−1 πj . . . πk−1

πi . . . πj−1 πk . . . πn). The Problem of Sorting by Transpositions consists in

finding the minimum number of transpositions that transform a permutation π

∈ Sn into the identity permutation In = (1 2 . . . n). This number is known as

the transposition distance of a permutation π and it is denoted by d(π).

Given a permutation π ∈ Sn, a breakpoint is a pair of adjacent elements that

are not consecutive, that is, a pair (πi, πi+1) such that πi+1 − πi �= 1, 0 ≤ i ≤
n. The number of breakpoints of π is denoted by b(π). Note that In is the only

permutation in Sn having zero breakpoints. Since a transposition can remove at

most three breakpoints, we can state the following lemma.

Lemma1. [Bafna and Pevzner 1998] For any permutation π ∈ Sn, d(π) ≥ b(π)
3 .

A strip of a permutation π is a maximal series of consecutive elements without

a breakpoint. We denote the number of strips in π by s(π).
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Example 1. Let π = (0 4 5 2 3 1 6) be the extended permutation of (4 5 2 3 1).

We have that the pairs (0, 4), (5, 2), (3, 1), and (1, 6) are breakpoints, thus b(π)

= 4. We also have that 4 5, 2 3, and 1 are strips of π, thus s(π) = 3.

Let π ∈ Sn, π �= In, s1 be the first strip of π, and sm be the last strip of

π, m ≤ n. If we assume that π1 = 1, we can transform π into a permutation σ

∈ Sn−|s1| such that σi = πi − |s1|, i > |s1|. It is not hard to see that d(π) =

d(σ). An analogous argument can be used to show that we can transform π into a

permutation γ ∈ Sn−|sm| such that d(π) = d(γ) if πn = n. These transformations

are referred to as reductions, and we call irreducible any permutation in which

such reductions cannot be applied. Furthermore, we denote by S∗
n the set formed

by all irreducible permutations of Sn.

Lemma2. For any permutation π ∈ S∗
n, s(π) = b(π) − 1.

Proof. Let s1, s2, . . ., ss(π) be the strips of a permutation π ∈ S∗
n. The last

element of strip si and the first element of strip si+1, 1 ≤ i ≤ s(π) − 1, form a

breakpoint, and the pairs (π0, π1) and (πn, πn+1) are always breakpoints on an

irreducible permutation. Therefore, we have that b(π) = s(π) + 1 and the claim

follows. ��

Given a permutation π ∈ Sn, the left and right codes of an element πi,

denoted lc(πi) and rc(πi) respectively, are defined as lc(πi) = |{πj : πj > πi and

1 ≤ j ≤ i− 1}| and rc(πi) = |{πj : πj < πi and i+1 ≤ j ≤ n}|. The left (resp.,

right) code of a permutation π is then defined as the sequence of lc’s (resp., rc’s)

of its elements, and it is denoted by lc(π) (resp., rc(π)).

Let us call plateau any maximal length sequence of contiguous elements in

a number sequence that have the same nonzero value. The number of plateaux

in a code c is denoted p(c). We denote by p(π) the minimum of p(lc(π)) and

p(rc(π)). Note that In is the only permutation in Sn having zero plateaux.

Example 2. Let π = (5 3 2 4 1). We have that lc(π) = lc(π1) lc(π2) lc(π3) lc(π4)

lc(π5) = 0 1 2 1 4, and rc(π) = rc(π1) rc(π2) rc(π3) rc(π4) rc(π5) = 4 2 1 1 0.

Then, p(π) = min{p(lc(π)), p(rc(π))} = min{4, 3} = 3.

An increasing subsequence of a permutation π is a subsequence πi1 πi2 . . .

πij of nonnecessarily contiguous elements of π such that for all k, 0 < k < j, we

have ik < ik+1 and πik < πik+1
. A longest increasing subsequence is an increasing

subsequence of π of maximum length. The set of the elements belonging to a

longest increasing subsequence is denoted by LIS(π). It is easy to see that, for

any π ∈ Sn, |LIS(π)| = n if and only if π = In.

Example 3. Let π = (2 3 1 5 4). The increasing subsequences 2 3 5 and 2 3 4 are

maximal, therefore either LIS(π) = {2, 3, 5} or LIS(π) = {2, 3, 4}.
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3 Algorithms

The following sections describe three algorithms for sorting by transpositions

based on alternative approaches, namely Walter, Dias, and Meidanis’ 2.25-ap-

proximation algorithm [Walter et al. 2000], Benôıt-Gagné and Hamel’s 3-approx-

imation algorithm [Benôıt-Gagné and Hamel 2007], and a constrained version of

Guyer, Heath, and Vergara’s heuristic [Guyer et al. 1997]. Moreover, Section 3.2

contains the missing proof for the approximation ratio of Benôıt-Gagné and

Hamel’s algorithm [Benôıt-Gagné and Hamel 2007] and Section 3.3 contains

the demonstration that the constrained version of Guyer, Heath, and Vergara’s

heuristic has an approximation bound of 3.

3.1 Algorithm based on the breakpoint diagram

Walter, Dias, and Meidanis [Walter et al. 2000] developed an approximation al-

gorithm based on breakpoints. We will not discuss in detail how this algorithm

works because it relies on an extensive case by case analysis that is not relevant

to the discussion we set in this paper. Nevertheless, we present below a sketch

of this algorithm (Algorithm 1) to make it clear why it is a 2.25-approximation

algorithm.

Algorithm 1: Sketch of the 2.25-approximation algorithm proposed by

Walter, Dias, and Meidanis [Walter et al. 2000].

Data: A permutation π ∈ Sn.

Result: Number of transpositions applied for sorting π.

1 d ← 0;

2 while π �= In do

3 if there exists a transposition ρ(i, j, k) that removes more than 1

breakpoint of π then

4 π ← ρ(i, j, k) · π;
5 d ← d + 1;

6 else

7 Find up to 3 transpositions that removes at least 4 breakpoints

when applied on π;

8 Apply on π the transpositions found and update d accordingly;

9 end

10 end

11 return d;

Note that, in the worst case, Algorithm 1 removes 4 breakpoints applying 3
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transpositions. Thus, denoting by A1(π) the number of transpositions applied by

Algorithm 1 for sorting π, we have A1(π) ≤ 3
4b(π). Since d(π) ≥ b(π)

3 (Lemma 1),

we conclude that Algorithm 1 is a 2.25-approximation. As for its time complexity,

Walter, Dias and Meidanis [Walter et al. 2000] showed that it runs in O(n2) time.

3.2 Algorithm based on permutation codes

Benôıt-Gagné and Hamel [Benôıt-Gagné and Hamel 2007] showed that it is al-

ways possible to decrease by one unit the number of plateaux of a (right or

left) code by applying a transposition. Since p(π) represents the minimum value

between p(lc(π)) and p(rc(π)), it is possible to sort π applying at most p(π)

transpositions. Thus, Benôıt-Gagné and Hamel [Benôıt-Gagné and Hamel 2007]

proposed a simple algorithm for approximating the transposition distance that

only computes the value of p(π). Such algorithm is described below (Algorithm

2).

Algorithm 2: Algorithm proposed by Benôıt-Gagné and Hamel [Benôıt-

Gagné and Hamel 2007].

Data: A permutation π ∈ Sn.

Result: Number of transpositions applied for sorting π.

1 Compute lc(π);

2 Compute rc(π);

3 i ← p(lc(π));

4 j ← p(rc(π));

5 d ← min{i, j};
6 return d;

Although Benôıt-Gagné and Hamel [Benôıt-Gagné and Hamel 2007] stated

that Algorithm 2 is a 3-approximation, we think that they did not provide a

complete proof for such claim. That is, they proved that Algorithm 2 has the

following approximation ratio

c · p(π)
b(π)

, where c =
3	 b(π)

3 
 + b(π) mod 3

� b(π)
3 �

,

and they also proved that c ≤ 3, but it lacked the proof that p(π) ≤ b(π). Such

proof is given by Lemma 3.

Lemma3. Given a permutation π ∈ Sn, π �= In, we have that p(π) < b(π).

1264 Galvao G.R., Dias Z.: On Alternative Approaches ...



Proof. Let π ∈ Sn, π �= In, s1 be the first strip of π, and sm be the last strip

of π, m ≤ n. If π1 = 1, then lc(πi) = rc(πi) = 0 for any element πi ∈ s1. Thus,

the elements belonging to s1 do not affect p(π). The same can be observed for

the elements belonging to sm when πn = n. It means that if we reduce π to σ,

then p(π) = p(σ). Since it is not hard to see that b(π) = b(σ), we can restrict

our analysis to irreducible permutations.

Let γ ∈ S∗
n, and let the series of consecutive elements γi γi+1 . . . γj be a

strip of γ. We have that lc(γk+1) = lc(γk) and rc(γk+1) = rc(γk), i ≤ k < j. It

means that, with respect to lc(γ) and rc(γ), the elements belonging to a strip

of γ either have zero value or are contained in the same plateau. Therefore, s(γ)

≥ p(lc(γ)) and s(γ) ≥ p(rc(γ)), thus s(γ) ≥ p(γ). Since, by Lemma 2, b(γ) >

s(γ), the claim follows. ��

Regarding the time complexity of Algorithm 2, Benôıt-Gagné and Hamel

[Benôıt-Gagné and Hamel 2007] noted that lc(π) and rc(π) can be easily com-

puted in O(n2) time, while p(lc(π)) and p(rc(π)) can be easily computed in O(n)

time. Therefore, they concluded that Algorithm 2 runs in O(n2) time. In Section

4, we show how to compute lc(π) and rc(π) in O(n logn) time.

3.3 Algorithm based on the longest increasing subsequence

Guyer, Heath, and Vergara [Guyer et al. 1997] developed a greedy algorithm

based on the longest increasing subsequence of a permutation π ∈ Sn. At each

iteration, the algorithm selects, from the
(
n+1
3

)
possible transpositions, the trans-

position ρ(i, j, k) such that |LIS(ρ(i, j, k) · π)| is maximum. We say that a trans-

position satisfying this greedy choice is a greedy transposition. Since there may

exist more than one greedy transposition, the performance of this algorithm may

vary depending on the rule used to choose among greedy transpositions. Guyer,

Heath, and Vergara [Guyer et al. 1997] neither pointed out any specific rule nor

presented an approximation guarantee, therefore we decided to define a rule that

could lead us to determine an approximation guarantee.

One might think of the rule that only greedy transpositions which remove

breakpoints should be applied. Note that, using this rule, it would be trivial to

prove an approximation bound of 3 due to Lemma 1. It is not true, however,

that there always exists a greedy transposition satisfying this rule. For instance,

among all the 56 permutations that can be obtained from permutation π = (7

5 6 4 2 3 1) by applying a transposition, there are 8 permutations yielded by

greedy transpositions, but none of them has less breakpoints than π.

We say that a transposition ρ(i, j, k) does not cut a strip of a permutation

π if the pairs of adjacent elements (πi−1, πi), (πj−1, πj) and (πk−1, πk) are

breakpoints. The rule we considered is that only greedy transpositions which do

not cut strips of permutations should be applied. Although it is possible that a
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greedy transposition cuts a strip of permutation (see Example 4), Lemma 6 shows

that there is always a greedy transposition satisfying such a rule. Algorithm 3

is the resulting algorithm from this rule.

Algorithm 3: Constrained version of Guyer, Heath, and Vergara’s heuris-

tic [Guyer et al. 1997].

Data: A permutation π ∈ Sn.

Result: Number of transpositions applied for sorting π.

1 d ← 0;

2 while π �= In do

3 d ← d + 1;

4 ρd ← a transposition such that |LIS(ρd · π)| is maximum and that

does not cut a strip of π;

5 π ← ρd · π;
6 end

7 return d

Example 4. Let π = (5 6 3 4 1 2). We have that ρ(1, 3, 6) is a greedy transposition

and it cuts the strip 1 2.

Lemma4. Let π1 π2 . . . πr be the first strip of a permutation π ∈ Sn. If π1 =

1, then a transposition ρ(i, j, k) where i ≤ r cannot be a greedy transposition.

Proof. Let ρ(i, j, k) be a transposition where i ≤ r and let π′ be the permutation

π′ = ρ(i, j, k) · π. There are two cases to consider:

a) j − 1 ≤ r. In this case, it is not hard to see that |LIS(π′)| ≤ |LIS(π)| because
the elements πi, πi+1, . . ., πj−1 are all smaller than the elements πj , πj+1,

. . ., πk−1, therefore ρ(i, j, k) could not be a greedy transposition.

b) j − 1 > r. In this case, we argue that, if ρ(i, j, k) was a greedy transposition,

then none of the elements πi, πi+1, . . ., πr could belong to LIS(π′). For the
sake of the contradiction, assume they could. Then none of the elements πj ,

πj+1, . . ., πk−1 could belong to LIS(π′) because they are greater than the

formers. This implies that the elements in LIS(π′) would form an increasing

subsequence in π, therefore |LIS(π′)| ≤ |LIS(π)| and ρ(i, j, k) could not be

a greedy transposition. But if none of the elements πi, πi+1, . . ., πr could

belong to LIS(π′), then ρ(i, j, k) could not be a greedy transposition since

|LIS(ρ(i + 1, j, k) · π)| > |LIS(π′)|. ��
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Lemma5. Let πs πs+1 . . . πn be the last strip of a permutation π ∈ Sn. If πn =

n, then a transposition ρ(i, j, k) where k > s cannot be a greedy transposition.

Proof. Analogous to the proof of Lemma 4. ��

Lemma6. Given a permutation π, there exists a greedy transposition which does

not cut any of its strips.

Proof. Let ρ(i, j, k) be a greedy transposition, and let π′ be the permutation

such that π′ = ρ(i, j, k) · π. If ρ(i, j, k) does not cut a strip of π, then we are

done. Otherwise, we have to basically consider three possibilities:

(a) (πi−1, πi) is not a breakpoint.

In this case let i′ be the greatest integer such that i′ < i and (πi′−1, πi′) is

a breakpoint (Lemma 4 guarantees that i′ ≥ r when π1 = 1), and let π′′ be
the permutation such that π′′ = ρ(i′, j, k) · π. Then, we have four subcases

to analyze:

(i) πi ∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} ∈ LIS(π′). In this subcase we

have that the elements in LIS(π′) form an increasing subsequence in π′′,
therefore |LIS(π′′)| ≥ |LIS(π′)|. Since ρ(i, j, k) is a greedy transposition

by hypothesis, we have that |LIS(π′′)| ≤ |LIS(π′)|. Therefore |LIS(π′′)|
= |LIS(π′)| and ρ(i′, j, k) is also a greedy transposition.

(ii) πi ∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} /∈ LIS(π′). In this subcase we

have that the elements in {πi′ , πi′+1, . . ., πi−1} along with the elements

in LIS(π′) form an increasing subsequence in π′′, therefore |LIS(π′′)| >
|LIS(π′)| and this contradicts our hypothesis that ρ(i, j, k) is a greedy

transposition.

(iii) πi /∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} ∈ LIS(π′). In this subcase we

have that |LIS(ρ(i + 1, j, k) · π)| > |LIS(π′)| and this contradicts our

hypothesis that ρ(i, j, k) is a greedy transposition.

(iv) πi /∈ LIS(π′) and {πi′ , πi′+1, . . ., πi−1} /∈ LIS(π′). The proof for this

subcase is the same as that in subcase (a.i).

(b) (πj−1, πj) is not a breakpoint.

In this case let j′ be the least integer such that j < j′ and (πj′−1, πj′ ) is a

breakpoint, and let j′′ be the greatest integer such that j′′ < j and (πj′′−1,

πj′′ ) is a breakpoint. It may be the case that either j′ = k or j′′ = i, but it

is impossible that j′ = k and j′′ = i, otherwise ρ(i, j, k) would only move

elements belonging to the same strip, therefore |LIS(π′)| ≤ |LIS(π)| and ρ(i,

j, k) could not be a greedy transposition. Also note that a situation where
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πj−1 ∈ LIS(π′) and πj ∈ LIS(π′) is not possible given the definition of an

increasing subsequence. Then, if we assume that j′ �= k and let π′′ be the

permutation such that π′′ = ρ(i, j′, k) · π, we have three subcases to analyze:

(i) πj−1 ∈ LIS(π′) and {πj , πj+1, . . ., πj′−1} /∈ LIS(π′). This subcase is

analogous to subcase (a.ii).

(ii) πj−1 /∈ LIS(π′) and {πj , πj+1, . . ., πj′−1} ∈ LIS(π′). In this subcase we

have that |LIS(ρ(i, j − 1, k) · π)| > |LIS(π′)| and this contradicts our

hypothesis that ρ(i, j, k) is a greedy transposition.

(iii) πj−1 /∈ LIS(π′) and {πj , πj+1, . . ., πj′−1} /∈ LIS(π′). This subcase is

analogous to subcase (a.iv).

On the other hand, if we assume that j′′ �= i and let π′′ be the permutation

such that π′′ = ρ(i, j′′, k) · π, we also have three subcases to analyze:

(i) πj ∈ LIS(π′) and {πj′′ , πj′′+1, . . ., πj−1} /∈ LIS(π′). This subcase is

analogous to subcase (a.ii).

(ii) πj /∈ LIS(π′) and {πj′′ , πj′′+1, . . ., πj−1} ∈ LIS(π′). In this subcase we

have that |LIS(ρ(i, j + 1, k) · π)| > |LIS(π′)| and this contradicts our

hypothesis that ρ(i, j, k) is a greedy transposition.

(iii) πj /∈ LIS(π′) and {πj′′ , πj′′+1, . . ., πj−1} /∈ LIS(π′). This subcase is

analogous to subcase (a.iv).

(c) (πk−1, πk) is not a breakpoint.

In this case let k′ be the least integer such that k < k′ and (πk′−1, πk′ ) is a

breakpoint (Lemma 5 guarantees that k′ ≤ s when πn = n), and let π′′ be
the permutation such that π′′ = ρ(i, j, k′) · π . Then, we have four subcases

to analyze:

(i) πk−1 ∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} ∈ LIS(π′). This subcase is

analogous to subcase (a.i).

(ii) πk−1 ∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} /∈ LIS(π′). This subcase is

analogous to subcase (a.ii).

(iii) πk−1 /∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} ∈ LIS(π′). In this subcase we

have that |LIS(ρ(i, j, k − 1) · π)| > |LIS(π′)| and this contradicts our

hypothesis that ρ(i, j, k) is a greedy transposition.

(iv) πk−1 /∈ LIS(π′) and {πk, πk+1, . . ., πk′−1} /∈ LIS(π′). This subcase is

analogous to subcase (a.iv).
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Although more than one possibility can occur at the same time, they are inde-

pendent from each other, in such a way that in all possible cases, if transposition

ρ(i, j, k) cuts a strip of π, then it is possible to derive a greedy transposition

which does not, thus the claim follows. ��

Based on the fact that Algorithm 3 does not apply greedy transpositions that

cut strips, we are able to prove an upper bound on the number of transpositions

it applies for sorting permutations (Lemma 7). Using this upper bound, it is

possible to prove that Algorithm 3 is a 3-approximation (Theorem 8).

Lemma7. Let A3(π) be the number of transpositions applied by Algorithm 3

for sorting a permutation π. Then, we have A3(π) ≤ s(π) − 1.

Proof. For helping us to determine an upper bound to the number of transpo-

sitions applied by Algorithm 3, we define a simple procedure, called StripSum,

which sums the sizes of the strips of a permutation. It receives as input a per-

mutation π ∈ Sn and proceeds as follows. Firstly, it sorts all the strips of π with

respect to their sizes, obtaining a list of strips s0, s1, . . ., ss(π)−1 such that |si| ≥
|si+1| for all i, 0 ≤ i < s(π) − 1. Secondly, it initializes a variable named SUM

to |s0|. Finally, starting from s1, it iterates over the list of strips such that, at

iteration i, the algorithm increases the value of SUM by |si|. Let SUMi be the

value of the variable SUM at iteration i, with SUM0 = |s0|. Clearly, SUMi =

SUMi−1 + |si| for all i, 1 ≤ i ≤ s(π) − 1. Besides, when the algorithm stops,

SUM = SUMs(π)−1 = |s0| + |s1| + · · · + |ss(π)| = n.

Now, assume that π was given as input to Algorithm 3 and let πi be the

permutation produced after i iterations, with π0 = π. We can prove by induction

that |LIS(πi)| ≥ SUMi. For the base case, we have |LIS(π0)| ≥ SUM0 because,

by definition, |LIS(π0)| must be equal or greater than the size of any strip of π0.

For the induction step, assume the claim holds for some 0 < i < A3(π). Since

Algorithm 3 never cuts a strip, all the strips of πi are formed by strips of π0.

Let s′ be the strip of greatest size among all strips of π0 whose elements do not

belong to a given LIS(πi). We have that |LIS(πi+1)| ≥ |LIS(πi)| + |s′| because
it is possible to apply a transposition on πi and obtain a new permutation

containing an increasing subsequence formed by the elements of s′ and LIS(πi).

If |s′| ≥ |si+1|, then |LIS(πi+1)| ≥ |LIS(πi)| + |s′| ≥ SUMi + |si+1| = SUMi+1.

Otherwise, if |s′| < |si+1|, it means that the elements of all strips st, 0 ≤ t ≤
i+ 1, belong to LIS(πi), therefore |LIS(πi+1)| > |LIS(πi)| ≥ SUMi+1.

The inequality |LIS(πi)| ≥ SUMi implies that Algorithm 3 makes |LIS(π)|
converge to n applying no more transpositions than the number of iterations

that procedure StripSum performs. Since it performs s(π) − 1 iterations, the

lemma follows. ��

Theorem 8. Algorithm 3 is a 3-approximation.
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Proof. Lemma 4 guarantees that Algorithm 3 will never apply a transposition

which moves the elements of the first strip of π when π1 = 1. Similarly, Lemma

5 guarantees that Algorithm 3 will never apply a transposition which moves

the elements of the last strip of π when πn = n. For this reason, if we reduce

permutation π to a permutation σ, it is not hard to see that A3(π) = A3(σ).

Thus, we can restrict our analysis to irreducible permutations.

Let γ ∈ S∗
n. By Lemma 7, we have that A3(γ) ≤ s(γ) − 1. Since, by Lemma

2, s(γ) = b(γ) − 1, we conclude that A3(γ) ≤ b(γ) − 2. It means that A3(γ) ≤
3d(γ) once d(γ) ≥ b(γ)

3 (Lemma 1), and the theorem has been proved. ��

Since there are O(n3) possible transpositions to consider per iteration, it

takes O(nlog n) time to determine a longest increasing subsequence of a per-

mutation, it takes O(1) time to determine whether a transposition cuts a strip

of a permutation, and the while loop executes O(n) times, we conclude that

Algorithm 3 runs in O(n5log n) time.

4 Computing Permutation Codes in O(n logn) Time

In this section, we describe how to compute the left and right codes of a permu-

tation with n elements in O(n log n) time, what allow us to implement Benôıt-

Gagné and Hamel’s algorithm [Benôıt-Gagné and Hamel 2007] in such a way

that its running time becomes O(n log n). We note that permutation codes are

closely related to the Lehmer code [Lehmer 1960] (in fact, the Lehmer code is

equivalent to the right code of a permutation) and there are known algorithms

for computing the Lehmer code in O(n log n) time (see [Arndt 2010, page 235]).

Given a permutation π ∈ Sn, the left code of the element πk in the interval

[i, j], denoted by lc[i,j], is defined as

lc[i,j](πk) = |{πl : πl > πk and i ≤ l ≤ k − 1}|
for all i ≤ k ≤ j. Similarly, the right code of the element πk in the interval [i,

j], denoted by rc[i,j], is defined as

rc[i,j](πk) = |{πl : πl < πk and k + 1 ≤ l ≤ j}|
for all i ≤ k ≤ j. If i = j, then we define lc[i,i](πk) = rc[i,i](πk) = 0.

It is not hard to realize that lc[i,j](πk) = lc(πk) and rc[i,j](πk) = rc(πk)

when i = 1 and j = n. By looking at the problem of computing the left/right

code of the elements of a permutation π ∈ Sn as the problem of computing

the left/right code of such elements in the interval [1, n], it becomes clearer

that we can use a divide-and-conquer approach to solve it. Firstly, we compute

recursively the left/right code of the elements π1 π2 . . . πm in the interval [1, m]

and the left/right code of the elements πm+1 πm+2 . . . πn in the interval [m+1,
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n] such that m = 	n+1
2 
. As for the base case, we have lc[i,i](πi) = rc[i,i](πi)

= 0 for all 1 ≤ i ≤ n. Once the left/right codes of these elements have been

computed in the referred intervals, we have that:

– lc[1,n](πk) = lc[1,m](πk) for all 1 ≤ k ≤ m and lc[1,n](πk) = lc[m+1,n](πk) +

|{πl : πl > πk and 1 ≤ l ≤ m}| for all m + 1 ≤ k ≤ n;

– rc[1,n](πk) = rc[m+1,n](πk) for allm + 1 ≤ k ≤ n and rc[1,n](πk) = rc[1,m](πk)

+ |{πl : πl < πk and m+ 1 ≤ l ≤ n}| for all 1 ≤ k ≤ m.

This means that, regarding the left code, the main question is how to efficiently

compute |{πl : πl > πk and 1 ≤ l ≤ m}| for every element πk such that m + 1

≤ k ≤ n; regarding the right code, it is how to efficiently compute |{πl : πl <

πk and m+ 1 ≤ l ≤ n}| for every element πk such that 1 ≤ k ≤ m.

The answer for the above questions relies on mergesort, that is, it is possible

to adapt the merge step of mergesort so that we can efficiently establish the order

relations between the elements and, consequently, we can efficiently compute

those values. Firstly, we present an algorithm, called MergeLeftCodes, that shows

how to accomplish it regarding the left code.

Algorithm MergeLeftCodes receives four parameters as input: a vector L

containing the elements πi, πi+1, . . ., πj ordered in ascending order; a vector R

containing the elements πj+1, πj+2, . . ., πk ordered in ascending order; a vector

LC such that LC[e] = lc[i,j](πe) for all i ≤ e ≤ j and LC[e] = lc[j+1,k](πe) for

all j+1 ≤ e ≤ k; and the inverse permutation of π, π−1. As a result, it returns a

vector M containing the elements of vectors L and R ordered in ascending order

and updates vector LC in such a way that LC[e] = lc[i,k](πe) for all i ≤ e ≤ k.

We will prove the correctness of Algorithm MergeLeftCodes by proving that

the following loop invariants hold for the while loop of lines 7-18:

– vector M contains the m − 1 smallest elements of L and R ordered in

ascending order;

– LC[e] = lc[i,k](πe), where e = π−1
M [t], for all 1 ≤ t ≤ m − 1;

– L[l] and R[r] are the smallest elements of vectors L and R that have not

been copied to M .

It not hard to see that these loop invariants hold before the first iteration of

the while loop of lines 7-18. At each iteration, we have to consider two possibil-

ities: either R[r] < L[l] or R[r] > L[l].

If R[r] < L[l], then R[r] is the smallest element that has not been copied to

M , therefore it is copied to M (line 9). Since the elements of L are to the left

of the elements of R in the permutation π, it means that there exists |L| − l

elements greater than M [m] and to its left in π considering just the elements of

L (note that the element n + 1 must not be considered). Given that LC[e], e

1271Galvao G.R., Dias Z.: On Alternative Approaches ...



Algorithm 4: MergeLeftCodes.

Data: Three vectors L, R and LC, and permutation π−1 ∈ Sn.

Result: Returns a vector containing the elements of L and R ordered in

ascending order and updates vector LC in such a way that LC[e]

= lc[i,k](πe) for all i ≤ e ≤ k.

1 l ← 1;

2 r ← 1;

3 m ← 1;

4 Let M be a vector of size |L| + |R|;
5 R[|R| + 1] ← n + 1;

6 L[|L| + 1] ← n + 1;

7 while m ≤ |M | do
8 if R[r] < L[l] then

9 M [m] ← R[r];

10 e ← π−1
M [m];

11 LC[e] ← LC[e] + |L| − l;

12 r ← r + 1;

13 else

14 M [m] ← L[l];

15 l ← l + 1;

16 end

17 m ← m + 1;

18 end

19 return M ;

= π−1
M [m], equals the number of elements greater than M [m] and to its left in π

considering just the elements of R, we conclude that LC[e] + |L| − l equals the

number of elements greater then M [m] and to its left in π considering both the

elements of L and R. In other words, we have LC[e] = lc[i,k](πe) after line 11.

Finally, the variables r and m are incremented (lines 12 and 17), thus the loop

invariants still hold.

If R[r] > L[l], then L[l] is the smallest element that has not been copied to

M , therefore it is copied to M (line 14). Since the elements of L are to the left of

the elements of R in the permutation π, we have LC[e] = lc[i,k](πe), e = π−1
M [m],

therefore it is not necessary to update vector LC. Finally, the variables l and m

are incremented (lines 15 and 17), thus the loop invariants still hold.

After the while loop of lines 7-18 terminates, it is clear that vector M will

contain the elements of vectors L and R ordered in ascending order. Besides,

vector LC will have been updated in such a way that LC[e] = lc[i,k](πe) for all
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i ≤ e ≤ k.

As for the time complexity of Algorithm MergeLeftCodes, we have that each

of the lines 1, 2, 3, 5, and 6 runs in time O(1), line 4 runs in time O(n), and the

while loop executes O(n) times. Therefore, Algorithm MergeLeftCodes runs in

O(n) time.

With Algorithm MergeLeftCodes in hand, the recursive algorithm that com-

putes the left code of the elements πi πi+1 . . . πj in the interval [i, j] can be

trivially derived from the discussion held at the beginning of this section. This al-

gorithm is called RecursiveLeftCode and it is presented below. In order to obtain

the left code of a permutation π, we simply execute Algorithm RecursiveLeftCode

as described by Algorithm 6.

Algorithm 5: RecursiveLeftCode.

Data: A permutation π ∈ Sn and its inverse, π−1, vector LC, and

indexes i and j.

Result: Returns a vector containing the elements πi πi+1 . . . πj ordered

in ascending order and updates vector LC in such a way that

LC[e] = lc[i,j](πe) for all i ≤ e ≤ j.

1 m ← 	 i+j
2 
;

2 if i < j then

3 L ← RecursiveLeftCode(π, π−1, LC, i, m);

4 R ← RecursiveLeftCode(π, π−1, LC, m+ 1, j);

5 M ← MergeLeftCodes(L, R, LC, π−1);

6 else

7 Let M be a vector of size 1;

8 M [1] ← πi;

9 LC[i] ← 0;

10 end

11 return M ;

The time complexity of Algorithm RecursiveLeftCode equals the time com-

plexity of mergesort, which is O(n log n). Computing π−1 as well as creating a

vector of size n takes O(n) time, therefore Algorithm 6 runs in O(n log n) time.

In the case of the right code, the adaptation to the merge step of mergesort is

very similar to the one made in the case of the left code, except that the elements

are ordered in descending order rather than in ascending order. Moreover, it is

not hard to see that the correctness and complexity analyses of the algorithms for

computing the right code of a permutation are analogous to the ones performed

for algorithms MergeLeftCodes and RecursiveLeftCode, therefore we omit them.
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Algorithm 6: Computing the left code of a permutation.

Data: A permutation π ∈ Sn.

Result: Returns a vector containing the left codes of the elements of π.

1 Compute π−1;

2 Let LC be a vector of size n;

3 RecursiveLeftCode(π, π−1, LC, 1, n);

4 return LC ;

5 Experimental Results and Discussion

The following sections describe the experiments we have performed and dis-

cuss the results we have obtained. The algorithms described in this paper were

implemented in Java, while the algorithms based on the cycle graph were im-

plemented in Python (we used Dias and Dias [Dias and Dias 2010a, Dias and

Dias 2010b] implementations). The experiments were performed on an Intel R©

Core
TM

i7-2600K CPU at 3.40GHz with 16GB of RAM running Ubuntu 12.04.2

LTS operating system.

5.1 Experiments on small permutations

The approximation algorithms presented in Section 3 were implemented and

tested by their authors for verifying their performance in practice. One kind of

test was to compare the distance computed by the algorithm with d(π) for every

π ∈ Sn in order to obtain the real approximation ratio of the respective approx-

imation algorithm for small permutations. More specifically, Walter, Dias, and

Meidanis [Walter et al. 2000] ran this test for 1 ≤ n ≤ 11, Benôıt-Gagné and

Hamel [Benôıt-Gagné and Hamel 2007] ran it for 1 ≤ n ≤ 9, and Guyer, Heath,

and Vergara [Guyer et al. 1997] ran it just for n = 6.

We ran this kind of test for 1 ≤ n ≤ 13 for all algorithms using GRAAu

[Galvão and Dias 2014], and the results are presented in tables 1, 2, and 3, where

n is the size of the permutations, Max. Dist. is the greatest distance outputted

by the algorithm, Avg. Dist. is the average of the distances outputted by the

algorithm, Avg. Ratio is the average of the ratios between the distance outputted

by the algorithm and the transposition distance, Max. Ratio is the greatest ratio

among all the ratios between the distance outputted by the algorithm and the

transposition distance, and Equals is the percentage of distances outputted by

the algorithm that is equal to the transposition distance.

Firstly, we note that the results obtained by Walter, Dias, and Meidanis for

their 2.25-approximation algorithm are incorrect. For instance, the maximum

value of A1(π)
d(π) they observed for n = 11 was 10

5 . But this result cannot be right
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n Max. Dist. Avg. Dist. Avg. Ratio Max. Ratio Equals

1 0 0.00 1.00 1.00 100.00%

2 1 0.50 1.00 1.00 100.00%

3 2 1.00 1.00 1.00 100.00%

4 3 1.54 1.00 1.00 100.00%

5 3 2.08 1.00 1.00 100.00%

6 4 2.61 1.00 1.33 99.17%

7 5 3.14 1.00 1.33 98.57%

8 6 3.66 1.01 1.50 97.12%

9 6 4.19 1.01 1.50 96.06%

10 7 4.70 1.01 1.50 94.15%

11 8 5.22 1.01 1.60 92.84%

12 9 5.73 1.02 1.60 90.68%

13 9 6.24 1.02 1.60 89.30%

Table 1: Results obtained from the audit of the implementation of Walter, Dias,

and Meidanis’ algorithm.

n Max. Dist. Avg. Dist. Avg. Ratio Max. Ratio Equals

1 0 0.00 1.00 1.00 100.00%

2 1 0.50 1.00 1.00 100.00%

3 2 1.00 1.00 1.00 100.00%

4 3 1.54 1.00 1.00 100.00%

5 4 2.13 1.02 1.50 95.00%

6 5 2.75 1.06 1.67 85.00%

7 6 3.42 1.10 2.00 71.77%

8 7 4.13 1.14 2.00 56.41%

9 8 4.87 1.18 2.00 41.62%

10 9 5.63 1.22 2.25 28.80%

11 10 6.42 1.25 2.25 18.74%

12 11 7.22 1.29 2.25 11.57%

13 12 8.05 1.32 2.40 6.77%

Table 2: Results obtained from the audit of the implementation of Benôıt-Gagné

and Hamel’s algorithm.
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n Max. Dist. Avg. Dist. Avg. Ratio Max. Ratio Equals

1 0 0.00 1.00 1.00 100.00%

2 1 0.50 1.00 1.00 100.00%

3 2 1.00 1.00 1.00 100.00%

4 3 1.54 1.00 1.00 100.00%

5 4 2.10 1.01 1.50 97.50%

6 5 2.67 1.03 1.50 92.78%

7 6 3.26 1.05 1.67 86.45%

8 7 3.86 1.06 1.67 77.93%

9 8 4.48 1.08 2.00 69.06%

10 9 5.10 1.10 2.00 58.94%

11 10 5.73 1.12 2.00 49.61%

12 11 6.38 1.14 2.00 40.23%

13 12 7.03 1.15 2.25 32.18%

Table 3: Results obtained from the audit of the implementation of Algorithm 3,

which is a constrained version of Guyer, Heath, and Vergara’s heuristic.

Permutation Transposition Sorting Sequence
π5 = (16 9 4 11 6 15 8 2 12 7 5 3 14
13 10 1)

ρ(5, 9, 12), ρ(1, 7, 10), ρ(3, 9, 14), ρ(5, 10, 17),
ρ(6, 10, 14), ρ(1, 7, 11)

π6 = (19 11 4 18 6 14 8 13 10 2 15
5 9 7 3 17 16 12 1)

ρ(4, 12, 17), ρ(7, 12, 16), ρ(6, 9, 15), ρ(1, 5, 11),
ρ(3, 8, 20), ρ(4, 13, 17), ρ(1, 5, 13)

π7 = (22 13 4 21 6 17 8 16 10 15 12
2 18 5 11 9 7 3 20 19 14 1)

ρ(4, 14, 20), ρ(8, 13, 19), ρ(7, 10, 18), ρ(6, 9, 17),
ρ(1, 5, 11), ρ(3, 8, 23), ρ(4, 16, 20), ρ(1, 5, 15)

Table 4: Permutations πm of size 3m+1, m ∈ {5, 6, 7}, for which p(πm)
d(πm)

= 3m
m+1

. Note

that d(πm) ≥ b(πm)
3

≥ m + 1.

because A1(π) ≤ 9 for every π ∈ S11. Given a permutation π ∈ Sn, it is easy to

see that 0 ≤ b(π) ≤ n+1. As discussed in Section 3.1, A1(π) ≤ 3
4b(π), therefore

A1(π) ≤ 3n+3
4 , and the claim follows.

The real approximation ratios observed for the 2.25-approximation algorithm

seem to increase in a progression that converges to 2, that is, 2
2 ,

4
3 ,

6
4 ,

8
5 , . . .,

2k
k+1 . This may indicate that a deeper analysis of this algorithm could lead one

to prove that it is in fact a 2-approximation.

Regarding the 3-approximation algorithm developed by Benôıt-Gagné and

Hamel, if we just consider the real approximation ratios obtained for n ∈ {7, 10,
13}, we can observe that they seem to follow the progression 6

3 ,
9
4 ,

12
5 , . . ., 3k

k+1 .

We ran further experiments to verify the strength of this assumption, and we
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found permutations πm of size 3m + 1, m ∈ {5, 6, 7}, for which p(πm)
d(πm) = 3m

m+1

(these permutations are presented in Table 4). Note that, for m = 7, the real

approximation ratio of Benôıt-Gagné and Hamel’s algorithm equals 21
8 = 2.625.

This is an indication that the approximation ratio of this algorithm may not be

lowered, contradicting the hypothesis raised by Benôıt-Gagné and Hamel that

its approximation ratio “tends to a number significantly smaller than 3”.

Figure 1 illustrates that, of the three algorithms, Walter, Dias, and Meidanis’

algorithm has the best practical performance.
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Figure 1: Comparison of Walter, Dias, and Meidanis’ algorithm (WDM), Benôıt-

Gagné and Hamel’s algorithm (BH), and the constrained version of Guyer,

Heath, and Vergara’s heuristic (GD) based on the results provided by GRAAu.
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5.2 Experiments on large permutations

In order to investigate what happens in practice for large permutations and

to compare the algorithms regarded in this paper against the best known algo-

rithms based on the cycle graph (namely Bafna and Pevzner’s 1.5-approximation

algorithm [Bafna and Pevzner 1998], Elias and Hartman’s 1.375-approximation

algorithm [Elias and Hartman 2006], Dias and Dias’ [Dias and Dias 2010a] exten-

sion of Bafna and Pevzner’s algorithm [Bafna and Pevzner 1998], and Dias and

Dias’ [Dias and Dias 2010b] extension of Elias and Hartman’s algorithm [Elias

and Hartman 2006]) we tested all these algorithms on the same set of arbitrarily

large permutations. This set consisted of 59,000 random permutations of sizes

varying between 10 and 300 in intervals of 5, with 1,000 permutations of each

size.

Figure 2 shows the average distance computed for all algorithms. As can

be seen, these data corroborate with the data obtained for small permutations,
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Figure 2: Comparison of Walter, Dias, and Meidanis’ algorithm (WDM), Benôıt-

Gagné and Hamel’s algorithm (BH), the constrained version of Guyer, Heath,

and Vergara’s heuristic (GD), Bafna and Pevzner’s algorithm (BP), Elias and

Hartman’s algorithm (EH), and Dias and Dias’ algorithms (DD (BP) and DD

(EH)) based on the average distance. Due to time constraints, we could not

compute the average distance of the constrained version of Guyer, Heath, and

Vergara’s heuristic for permutations with more than 115 elements (note that

this algorithm runs in O(n5logn) time). The average distances computed for

algorithms WDM, EH, DD (BP), DD (EH) and BP were about equal, therefore

they are overlapping in the graph.
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Figure 3: Relative number of times each algorithm provided the best distance.

Note that more than one algorithm can have provided the best distance.
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Figure 4: Relative number of times each algorithm provided the best distance.

Note that more than one algorithm can have provided the best distance.
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that is, of the three algorithms studied in this paper, Walter, Dias, and Meidanis’

algorithm has the best practical performance. Figure 2 also shows that Walter,

Dias, and Meidanis’ algorithm provided results comparable to those provided by

the algorithms based on the cycle graph. For the purpose of further verifying

how good the algorithms studied in this paper performed in comparison to the

algorithms based on the cycle graph, we computed how often each algorithm

provided the best distance. The results are presented in figures 3 and 4.

We can notice that the results were consistently the same regardless of the size

of the permutations. Benôıt-Gagné and Hamel’s algorithm and the constrained

version of Guyer, Heath, and Vergara’s heuristic provided the best distance less

times than the other algorithms (for permutations with more than 20 elements,

they did not provide the best distance even once). Walter, Dias, and Meidanis’

algorithm provided the best distance more times than Bafna and Pevzner’s al-

gorithm and Elias and Hartman’s algorithm, but less times than Dias and Dias’

algorithms. Although Walter, Dias, and Meidanis’ algorithm did not outperform

Dias and Dias’ algorithms, which are the best known algorithms for sorting by

transpositions, it is remarkable that it outperformed two approximation algo-

rithms with much better approximation ratios.

6 Conclusions

In this paper, we revisited three algorithms for the problem of sorting by transpo-

sitions: Walter, Dias, and Meidanis’ 2.25-approximation algorithm [Walter et al.

2000], Benôıt-Gagné and Hamel’s 3-approximation algorithm [Benôıt-Gagné and

Hamel 2007], and Guyer, Heath, and Vergara’s heuristic [Guyer et al. 1997].

These algorithms are based on alternative approaches to the cycle graph, which

is the standard tool for tackling permutation sorting problems.

Regarding theoretical aspects, we closed a missing gap on the proof of the

approximation ratio of Benôıt-Gagné and Hamel’s algorithm [Benôıt-Gagné and

Hamel 2007] and we demonstrated a way to run their algorithm in O(n log n)

time. This latter reinforces Benôıt-Gagné and Hamel’s argument that, although

there does exist better algorithms with respect to approximation ratio, their al-

gorithm is fast. We proposed a minor adaptation to Guyer, Heath, and Vergara’s

heuristic [Guyer et al. 1997] that allowed us to prove an approximation bound of

3. Finally, with respect to Walter, Dias, and Meidanis’ algorithm [Walter et al.

2000], we did not present any theoretical improvement, but we demonstrated

that previous experimental data on its approximation ratio are incorrect.

Regarding practical aspects, we performed an experimental investigation of

these three algorithms for small and large permutations. For the experiments on

small permutations, we considered all permutations with up to 13 elements. To

the best of our knowledge, this was the first time these algorithms were tested
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for all permutations with more that 11 elements. For the experiments on large

permutations, we also taken into account approximation algorithms based on the

cycle graph, namely Bafna and Pevzner’s 1.5-approximation algorithm [Bafna

and Pevzner 1998], Elias and Hartman’s 1.375-approximation algorithm [Elias

and Hartman 2006], Dias and Dias’ [Dias and Dias 2010a] extension of Bafna

and Pevzner’s algorithm [Bafna and Pevzner 1998], and Dias and Dias’ [Dias

and Dias 2010b] extension of Elias and Hartman’s algorithm [Elias and Hartman

2006]. The latter two are the best known algorithms for the problem of sorting

by transpositions.

The experimental data yielded by the experiments on small permutations

gave some insights on the approximation ratio of the algorithms under study.

It indicated that the approximation ratio of Benôıt-Gagné and Hamel’s algo-

rithm [Benôıt-Gagné and Hamel 2007] may not be lowered, contradicting a first

hypothesis [Benôıt-Gagné and Hamel 2007] that it could be, and that the ap-

proximation ratio of Walter, Dias, and Meidanis’ algorithm [Walter et al. 2000]

may be lowered to 2. Unfortunately, we could not obtain any proof regarding

the tightness of the approximation ratio of the studied algorithms.

Both the experiments on small and large permutations pointed out Walter,

Dias, and Meidanis’ algorithm [Walter et al. 2000] as the best algorithm out

of the three algorithms based on alternative approaches. Moreover, the exper-

iments on large permutations showed that Walter, Dias, and Meidanis’ algo-

rithm [Walter et al. 2000] provided results comparable to the ones provided by

the algorithms based on the cycle graph. In fact, Walter, Dias, and Meidanis’ al-

gorithm [Walter et al. 2000] outperformed on average both Bafna and Pevzner’s

algorithm [Bafna and Pevzner 1998] and Elias and Hartman’s algorithm [Elias

and Hartman 2006], what is remarkable since these algorithms have much better

approximation ratios.

We conclude that, although the algorithms based on alternative approaches

have worse approximation ratios, Benôıt-Gagné and Hamel’s algorithm [Benôıt-

Gagné and Hamel 2007] is a good alternative due to its simplicity and its practi-

cal and asymptotic speed, while Walter, Dias, and Meidanis’ algorithm [Walter

et al. 2000] is a good alternative in terms of practical results. The constrained

version of Guyer, Heath, and Vergara’s heuristic [Guyer et al. 1997] proposed by

us does not figure as a good alternative because it did not present good practical

results and it has a prohibitive time complexity, just as the original heuristic.

Although the experimental data on small permutations suggested that none

of the studied algorithms are promising alternatives in terms of approximation

ratios, it is still not clear whether the approaches they rely on can or cannot yield

algorithms with low approximation ratios. Therefore, searching for results that

could help make progress on this question either way is an interesting direction

to follow for future work.
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