
Decisions: Algebra, Implementation, and First Experiments

Antonina Danylenko, Jonas Lundberg, and Welf Löwe
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Abstract: Classification is a constitutive part in many different fields of Computer Sci-
ence. There exist several approaches that capture and manipulate classification infor-
mation in order to construct a specific classification model. These approaches are often
tightly coupled to certain learning strategies, special data structures for capturing the
models, and to how common problems, e.g. fragmentation, replication and model over-
fitting, are addressed.

In order to unify these different classification approaches, we define a Decision Algebra
which defines models for classification as higher order decision functions abstracting
from their implementations using decision trees (or similar), decision rules, decision
tables, etc. Decision Algebra defines operations for learning, applying, storing, merging,
approximating, and manipulating models for classification, along with some general
algebraic laws regardless of the implementation used.

The Decision Algebra abstraction has several advantages. First, several useful Decision
Algebra operations (e.g., learning and deciding) can be derived based on the imple-
mentation of a few core operations (including merging and approximating). Second,
applications using classification can be defined regardless of the different approaches.
Third, certain properties of Decision Algebra operations can be proved regardless of the
actual implementation. For instance, we show that the merger of a series of probably
accurate decision functions is even more accurate, which can be exploited for efficient
and general online learning.

As a proof of the Decision Algebra concept, we compare decision trees with decision
graphs, an efficient implementation of the Decision Algebra core operations, which cap-
ture classification models in a non-redundant way. Compared to classical decision tree
implementations, decision graphs are 20% faster in learning and classification without
accuracy loss and reduce memory consumption by 44%. This is the result of experiments
on a number of standard benchmark data sets comparing accuracy, access time, and size
of decision graphs and trees as constructed by the standard C4.5 algorithm.

Finally, in order to test our hypothesis about increased accuracy when merging decision
functions, we merged a series of decision graphs constructed over the data sets. The
result shows that on each step the accuracy of the merged decision graph increases with
the final accuracy growth of up to 16%.
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1 Introduction

Classification is a constitutive part in different application domains of Computer
Science, such as in information storage, retrieval and manipulation, knowledge
management, artificial intelligence, image processing, data processing and visu-
alization in social and behavioral sciences, software and hardware engineering,
and in many others. In general, classification is used to come to a certain decision
in a certain context. A context is a set of attribute values (e.g. a set of symptoms)
that can be derived from a particular situation or state (e.g., a patient’s health
state), and a decision is an inference based on this context, often a class (e.g., the
diagnosis of the patient). We refer to this type of classification information as to
decision information.

Decision models represent the information necessary for classification, e.g.,
distributions, coefficients, probabilities. Decision models are captured in data
structures like decision trees, support vectors, neural networks, etc. Decision
models are often constructed automatically using machine learning. Machine
learning processes, howsoever, a set of contexts and corresponding classes.

Learning is not an easy task; appropriate learning algorithms and decision
models need to address several issues [King 1967, P.-N. Tan and Kumar 2005]:

– Accuracy, i.e. the ratio of correct classifications in all classifications, is an
issue, especially, with missing or contradicting training data.

– Robustness, i.e., the accuracy of decision models learned with only a lim-
ited amount of decision information is a related issue. Learning needs to
avoid decision model overfitting, i.e., basing classifications on statistically
insignificant data.

– Scalability of learning and classifications, i.e., the time required for con-
structing and applying a decision model, resp., is another issue, since deci-
sion model size grows, in the worst case, exponentially with the number of
context attributes. Data replication, i.e., redundancy in the decision models,
adds to this problem.

Learning algorithms and corresponding decision models address these prob-
lems, e.g., by approximating decision models and by reducing redundancy in the
information captured in decision models [Feng et al. 2010, Seredin et al. 2009,
Ceci et al. 2007].

Selecting an appropriate decision model is a difficult task too, since no single
model has been found superior to all others [Han and Kamber 2000]. Accuracy,
robustness, and scalability are actually contradicting goals, which leads to trade-
offs. For instance, accuracy of a decision model might require to exactly reflect
all training data points while robustness and scalability may require to abstract
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from some of them (referred to as pruning). Therefore, different decision models
may be appropriate in different application domains [Mitchell 1997].

Learning algorithms can be presented in a general framework as suggested,
e.g., in [Rokach and Maimon 2008]. Also the data structures backing up deci-
sion models are generally well-known, along with efficient implementations
thereof. However, when adapting learning algorithms and decision models to
the needs (in accuracy, robustness, and scalability) of specific application do-
mains, generality gets lost: decision models become incomparable and, hence,
benchmarking difficult. Moreover, advances made in one domain are hardly
propagated to others.

For instance, static program analysis uses decision graphs, a kind of deci-
sion model, for capturing context-sensitive analysis information (constructed
by program analysis not learning) [Trapp 1999]. Precise program analysis is
quite expensive in terms of time and memory consumption. Therefore, deci-
sion graphs optimize memory consumption by removing any redundancy and
trade accuracy off against scalability. Decision graphs might even be beneficial
in classification problems of other application domains with similar require-
ments, but it is hard to compare them with other, also highly specified decision
models. Moreover, the approach of trading accuracy for scalability used in de-
cision graphs might be applicable even to other decision models but, again, it is
hard to transfer this approach before commonalities of the different models are
understood.

Because of this variety of application domains with classification prob-
lems each coming with different learning algorithms, decision models, vari-
ants thereof, and tailored implementations – sometimes even with different
notations – we consider it worthwhile to introduce a theoretical generalization,
referred to as Decision Algebra. We separate interface and implementation of
decision models making them (re-)usable as interchangeable black-box compo-
nents. Several interface operations can be implemented on the abstract level
using primitive operations which are specific to individual decision models.
This does not exclude more efficient algorithms and data structures overriding
the abstract implementations. Due to this generalization, insights can be gained
at an abstract level or reused between different domains, paving the way for a
deeper problem understanding. Some properties, for instance, can be proved
on Decision Algebra level and hold for all its implementations.

In this paper, we mainly focus on generalizing tree-based decision models—
including decision trees, decision graphs, and decision tables—and define Deci-
sion Algebra, a common abstraction of these models. Decision Algebra defines
the operations learn, decide, and prune, based on abstract operations restrict,
merge, approximate, apply, and evert. Restrict serves as a basic auxiliary opera-
tion. Merge enables different pruning and simple learning approaches. Different
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approximate implementations allow for further pruning approaches. Apply al-
lows for symbolic computations with information stored in decision models in
general. Evert can serve as the basis for different learning algorithms in which
selecting an appropriate attribute order is essential. In fact, several existing
approaches suggested for decision trees and tables so far come out as alterna-
tive implementation variants of the above operations. We further exploit the
Decision Algebra abstraction by benchmarking tree-based models. Finally, we
generalize tree-based models even further to also include other decision models
such as, fore example, probability-based models.

In detail, [Section 2] discusses the results of a literature study backing up
the observations discussed in this introduction. [Section 3] and [Section 4] intro-
duce Decision Algebra, the theoretical framework that describes both tree-based
decision models and the main operations required for classification. These two
sections contain the main theoretical contribution of this article. [Section 5] intro-
duces decision graphs, a specific decision model implementing Decision Algebra.
Decision graphs capture training sample in a non-redundant way and perform
the Decision Algebra operations efficiently. This is confirmed by experiments
presented in [Section 6]. [Section 7] discusses related work. Finally, [Section 8]
concludes the results and points out directions of future work.

2 Literature Study Motivating Decision Algebra

Despite the vast body of literature on applications of decision models in dif-
ferent application domains of Computer Science, no systematic study has been
performed on the usage of decision models in different domains and the ra-
tionales behind their selection. In this section we perform such a study of the
research papers published in the Journal of Universal Computer Science (J.UCS)
from January 2010 till December 2012.

2.1 Objective

The objective is to study and summarize recent existing research in different
application domains of Computer Science where decision models are used for
classification and to:

A identify what decision models are typically used,

B assess the connection between the problem domains and the decision mod-
els used,

C retrieve the rationales for applying specific decision models in particular
problem domains.

1177Danylenko A., Lundberg J., Lowe W.: Decisions: Algebra, Implementation ...



2.2 Method and Conduction of the Study

Our study comprises the primary steps of a systematic literature review as
suggested by [Kitchenham and Charters 2007]. It is a well-defined approach
to identify, evaluate and interpret all relevant studies regarding a particular
research question, topic area or phenomenon of interest.

We searched for papers to be studied further in five steps:

1. We automatically searched—the actual search string is given below—for
papers that use well-known or develop special decision models as a tool for
solving other Computer Science research problems.

2. We manually inspected the papers found in Step 1 and selected those that
we consider relevant: our primary objective is to understand reasoning and
consequences of the choice of decision models applied to Computer Science
research problems. Therefore, we excluded papers about theoretical aspects,
surveys, roadmap papers, as well as papers that addressed non Computer
Science problems including, e.g., e-learning, decisions making in society,
classification of general methods. We also excluded short papers of 1 or 2
pages as well as papers mentioning decision models only briefly in related
or future work. Finally, we excluded special issues.

3. We calculated matching frequencies of the search string in the papers found
in Step 1.1

4. We assessed the accuracy of the automated search by calculating the F-score2

based on precision P3 and recall R4 of the retrieved papers of Step 1 and the
relevant papers analyzed in Step 2.

5. We adjusted the search string to increase the accuracy of the automated
search.

These steps were repeated iteratively until the F-score did not further increased.
The search string used to produce the final set of papers is: (”genetic algorithm”,
”bayesian”, ”bayes”, ”neural network”, ”neural networks”, ”clustering”, ”support vec-
tor”, ”support vectors”, ”reinforcement learning”, ”incremental learning”, ”collabora-
tive filtering”, ”continuous learning”, ”learn continuously”, ”decision tree”, ”decision
graph”, ”decision table”, ”dispatch table”, ”opinion mining”, ”hidden-markov-model”,
”hidden markov model”, ”utility function”, ”utility-based technique”, ”logistic re-
gression”, ”linear regression”, ”BDD”, ”nearest neighbors”) AND (”unsupervised
learning”, ”supervised learning”, ”classifier”, ”decision model”, ”machine learning”,

1 using PDF-XChange Viewer http://pdf-xchange-viewer.en.softonic.com/
2 F = (2PR)/(P+ R)
3 P = |relevant papers| ∩ |retrieved papers|/|retrieved papers|
4 R = |relevant papers| ∩ |retrieved papers|/|relevant papers|
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”data mining”, ”pattern recognition”, ”artificial intelligence”, ”image processing”,
”decision tree”, ”genetic algorithm”, ”incremental learning”, ”classification”, ”linear
regression”, ”BDD”) with 111 (56) retrieved (relevant) papers, a precision (recall)
of 0.51 (1) and an F-score of 0.67. We studied the 56 relevant out of a total of 430
papers.

For each paper the following data items were collected: (F1) a title of the
paper and (F2) a year of the paper, both for documentation. (F3) a category of
the paper as selected by the author(s) based on the list of topics pre-defined
by JUCS; a paper can have more than one category. (F4) a short description
of a problem addressed in the paper. (F5) a decision model that was used or
implemented in the paper. It is the model that captures decision information
required for learning, deciding or continuous learning. This could be, e.g. deci-
sion trees, Naı̈ve Bayes (probabilistic model), support vector machines or neural
networks (maximum-margin model) or others found in the paper. (F6) a short
description of the rational for using this decision model. Such rationales can
be given by a discussion in the paper, by formal proofs, or by some references
justifying the choice. (F7) any relevant additional information, e.g. the purpose
of using the decision model or a tool that was used as an implementation of the
decision model. Every paper was read carefully; data was extracted in a form
as described.

2.3 Results

We now discuss the study results based on the objectives A, B, and C.
Objective A: Identify what decision models are typically used.

Altogether around 30 different types of decision models were used in the 56
papers. We further classified them based on the type of data a decision model
captures for the actual decision making:

DM1 Tree-based models capture a seach tree for decision making. For each at-
tribute value, the search space is restricted which finally leads to a class. They
include, e.g., decision trees, decision tables, decision rules, multi-variant bi-
nary decision diagrams, and decision graphs.

DM2 Probability-based models capture probabilities of attribute values belong-
ing to different classes. They contain, e.g., Naı̈ve Bayes classifiers, Bayesian
networks, conditional-probability models, and hidden Markov models.

DM3 Maximum-margin models capture hyperplanes separating vectors of at-
tribute values belonging to different classes. They include support vector
machines (svm), artificial neural networks, and similar.

DM4 Vector-based models define vectors of attribute values as centroids of dif-
ferent classes. They are results of instance-based learning (such as k-nearest
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Figure 1: Decision models distribution

neighbours) and clustering algorithms (such as k-means, hierarchical clus-
tering, distribution- and density-based clustering).

DM5 Regression models capture coefficients of certain function families that
map attribute values to classes. They capture, e.g, the coefficients of linear
and logistic functions derived from linear and logistic regression, resp.

DM6 Ad hoc solutions are self-developed decision models that do not fall into
any of the above categories.

DM7 Related papers discuss the learning method, not the decision model.
Hence, the decision model itself is unclear as the learning methods are not
implying a particular model of any of the above categories. These generic
learning methods include, e.g., genetic algorithms, collaborative filtering,
population-based incremental learning, reinforcement learning, etc.

Figure 1 shows the categories of decision models introduced in the 56 relevant
papers of the study. We are particularly interested in the first category (DM1).
This contains decision models that are covered by our theoretical framework
of Decision Algebra in Sections 3 and 4. Also, we should look at the first six
categories of decision models (DM1 – DM6). These are decision models that
can be generalized by Decision Algebras. We discuss this generalization in
Section 3.6. The first (six) category (-ies) cover more than 13% (almost 84%)
of the decision models used in the papers. In total we found 10 (73) decision
models in DM1 (DM1 – DM6). Note that some papers introduce more than one
model. Most popular are vector-based models (DM4) with 22% of the papers.

Around 16% of the decision models fall into the ”others” category (DM7). It
cannot be excluded that there are decision models of one of the categories DM1
– DM6 even among those.
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Figure 2: Decision models in problem domains

Objective B: Assess the connection between the problem domains and the decision
models used in these domains.

Problem domains were derived from the data items F3 and F4, the category
and the problem description of the papers. We define five problem domains
addressed in the 56 relevant papers:

P1 Storage, retrieval and manipulation of information,

P2 Knowledge management,

P3 Applied mathematics including artificial intelligence, image processing, log-
ics, and formal languages,

P4 Data processing and visualization in social and behavioral sciences, and

P5 Software and hardware engineering including software technology, pro-
gramming, operating and control systems, and logic circuit design.

Figure 2 shows how the decision models are distributed over problem domains
and decision model categories: the bars are the number of all decision models
used in a problem domain, the number of decision model of categories DM1
– DM6, the number of decision models of DM1, and the number of decision
model in the most popular category for each problem domain, respectively.

In all problem domains, the decision models of DM1 are used, and the
decision models of DM1 – DM6 are dominating. Vector-based models (DM4)
are most popular in most domains. Tree-based models (DM1) are not far behind
in the respectively most popular models (DM4 and DM2, DM5, DM7, resp.) in
the domains P1 and P5. However, there is no single decision model category
dominating all problem domains or any particular one.
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Figure 3: Distribution of rationales for choosing decision models in problem
domains

Objective C: Retrieve the rationales for applying specific decision models in particular
problem domains.

To answer this question we drew on data extracted from a short description
of the rational for using the decision model (F6) and any relevant additional in-
formation (F7). The set of rationales derived from the papers can be generalized
into four groups:

R1 references to the previous studies in this problem domain (choosing well-
known decision model for this particular problem),

R2 references to requirements of the specific type of input or output data sug-
gesting a decision model,

R3 references to requirements of the specific performance or representation
properties suggesting a decision model,

R4 none of the above; choice in favor of a popular, commonly used, random
decision model.

Figure 3 shows how the rationales are distributed among the papers and prob-
lem domains. Notice, that several papers use more than one rational to motivate
the choice of a specific decision model. Around 21 papers (38% of all papers) do
not specify any particular rationales for using one or the other decision model.
In four out of five problem domains (P1, P2, P3, and P5) the majority of papers
do not motivate the choice of a specific decision model. A reference to non-
functional properties of a decision model (R3) is the least frequently used (in
six papers alltogether) and does not at all occur in three out of five problem
domains (P2, P4, and P5).
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2.4 Conclusions

In this study we observed that

A decision models [DM1 - DM6] that we attempt to abstract with our theoret-
ical framework Decision Algebra are popular (84%) and tree-based models
[DM1] constitute an important category among them (13%),

B decision models that we abstract with Decision Algebra including tree-based
models are popular in all (considered) Computer Science problem domains
but, there is no single decision model dominating any problem domain, and

C the selection of a decision model is mostly ad-hoc.

As we have only looked at a limited set of papers of J.UCS (2010 - 2012),
there is a threat to external validity of a generalization of these observations.
However, the results indicate that (A) different decision models co-exist, they
are (B) applicable across problem domains and (C) culture of comparing pros
and cons of the decision models to select one could be further developed in
general and in any individual problem domain (assessed). The reason is the
difficulties in adapting, configuring or even re-implementing decision models
for a specific problem domain which lead to problems in benchmarking their
accuracy, robustness, and scalability. This motivates the present work: Decision
Algebra allows using decision models as black-box components hiding the
different kinds (categories) of decision models and their implementation details
behind a common interface.

3 Decision Algebra

In this section we introduce a set of notions that characterize decision informa-
tion and decision functions (which formalize decision information). Moreover,
we also give a formal definition of the theoretical framework of Decision Alge-
bra (DA).

We define the notion of decision information in [Section 3.1] and the notion
of a decision function and its term representation in [Section 3.2]. Furthermore,
in [Section 3.3] we show how to learn a decision function and how to decide
using a decision function. For implementing the other operations in a number
of variants, we define the auxiliary operations restrict, merge, approximate, apply,
and evert in [Section 3.4]. In [Section 3.5] we formally define DA. Finally, in
[Section 3.6] we define a generalization of DA.
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3.1 Decision Information

Definition 1. A decision tuple (a, c) is a tuple that relates an actual context
a ∈ A with an actual decision c ∈ C, where A is a formal context and C is a
formal decision.

The decision tuple can also be referred to as a decision fact or a training
instance. Notice that we distinguish between an actual context and a formal
context.

Definition 2. An actual context a = (a1, . . . , an) is a tuple of attribute values ai ∈
Ai, where Ai is an attribute that corresponds to a property in a certain problem
domain. A formal context A is the set of all actual contexts a = (a1, . . . , an) for
all possible ai ∈ Ai. Hence, it is the Cartesian product A = A1 × A2 . . . × An over
sets of possible values of attributes A1, . . . ,An. Finally, an actual decision c ∈ C
is one out of a set of alternative decisions. A formal decision C is the set of all
alternative decisions.

As an example of a formal context, consider weather attributes like “Tem-
perature” and “Rain probability”; an actual context could be values like “hot”
and “0.86”. A corresponding formal decision could be “Should we go out?”
with actual decisions “yes” or “no”.

Definition 3. Decision Information is a set of decision tuples:
DI = {(a1, c1), . . . , (an, cn)}. Decision information is:

– complete if and only if: ∀a ∈ A : (a, c) ∈ DI

– non-contradictive if and only if: ∀(ai, ci), (a j, cj) ∈ DI : ai = a j ⇒ ci = cj

Decision information can also be referred to as dataset, training set or training
sample. Complete decision information contains decisions for all possible actual
contexts within a given problem domain; in non-contradictive decision infor-
mation there are no two tuples having the same actual context a leading to
different decisions.

3.2 Decision Functions

A decision function is a representation of complete and non-contradictive deci-
sion information defined as:

Definition 4. A decision function d f is a mapping of a formal context A (do-
main of df) to a formal decision C (co-domain of df):

df : A1 × . . . × An → C.
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Basically, a descision function is a mapping of attributes A1, . . . ,An to a classi-
fication decision C. We assume here that A1, . . . ,An and C are discrete (or cat-
egorical) domains; a discretization of continuous domains is outside the scope
of this section but will be captured by our implementation, cf. [Section 6].

We denote by DF the set of all decision functions with the same signature
A1 × . . . × An → C. The arity of a decision function df : A1 × . . . × An → C,
denoted by arity(df ), is the number n of attributes. If important we annotate the
definition function with its arity n as a superfix, df n.

A decision function can be represented in different ways by a specific repre-
sentation, referred to as decision model.

Definition 5. A decision model is a representation of a decision function.

Example: A decision function df : A1 × . . . × An → C over finite domains Ai can
be defined explicitly by all its tuples (a, c) with a ∈ A1 × . . . × An and c ∈ C. The
tuples can be captured in a decision table which is a decision model with n + 1
columns, one for each attribute ai and a final column for the actual decision cj.
Such a decision table would have |A1| · . . . · |An| rows. Decision tables are one
type of decision models but there exist alternative decision models that often
differ from one domain to another as discussed in [Section 2.3].

For convenience of defining alternative decision models of and operations
on decision functions, we will understand them as higher order functions where
0-ary (constant) decision functions df 0 :→ C are the result of an 1-ary decision
function df 1 : A1 → (→ C) and so forth. A decision function is then represented
by a curried function.

df n : A1 → (A2 → (. . .→ (An → C) . . .)

A curried decision function df n takes one argument (attribute) of type A1, and
generates a new decision function of type (A2 → (. . .→ (An → C) . . .) which in
its turn takes the next argument A2 and yields new decision function (A3 → . . .).
The final decision function will be of a type → C, the actual decision. These
curried functions can easily be represented as a decision tree or decision term
d f n = x1(d f n−1

1 , . . . , d f n−1
|A1 | ) where the |A1|-ary selection operator x1 is applied to

the arguments of A1. There are |A1| result functions, one for each attribute value
a ∈ A1, which are (n − 1)-ary decision functions:

df n−1
idxi(a) : A2 → . . .→ An → C

with idxi(a) being a bijective mapping of each attribute value a ∈ Ai to a unique
Natural index number. If necessary for distinction, we index a selection operator
xi with the index of the attribute Ai it switches on.

As a simple example, a 3-ary decision function df 3 with three boolean at-
tributes A1,A2,A3 can be represented as:

df 3 = x1(x2(x3(1, 2), x3(1, 2)), x2(x3(1, 2), x3(2, 2))).
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Figure 4: left: A straight forward tree representation of df 3 =

x1(x2(x3(1, 2), x3(1, 2)), x2(x3(1, 2), x3(2, 2))). Right: a non-redundant tree represen-
tation of the same decision function.

The outermost selection operator x1 gives the result x2(x3(1, 2), x3(1, 2)) if A1

is true, otherwise x2(x3(1, 2), x3(2, 2)). In both cases the result is 2-ary decision
function containing selection operators x2 and x3 that switch depending on the
values of the remaining attributes A2 and A3, resp.

We refer to this decision model as decision trees since each decision function
can easily be depicted as a tree. The left-hand side of [Fig. 4] shows a tree
representation of the above mentioned decision function df 3. Each circle node
represents a decision term with a selection operator xn, each square leaf node
corresponds to a certain decision c ∈ C = {1, 2}.

3.2.1 Redundancy and Equivalence

Definition 6. An n-ary decision function df n = x(df n−1, . . . , df n−1) ≡ df n−1 is
redundant if all its sub-functions dfn−1 are equivalent, i.e., represent the same
decision, and can therefore be replaced with this decision.

That is, a decision function df containing a redundant sub-function d fr =
xr(d fj, . . . , d fj), where each branch leads to the same decision d f j, can without
any loss of information be rewritten as:

df = x(. . . , xr(d fj, . . . , d fj), . . .) ≡ df ′ = x(. . . , d fj, . . .)

In a decision tree representation, this corresponds to replacing a term with
with root df r by any of its (equivalent) sub-terms. The process of removing
redundancy is called redundancy elimination. Our previous example decision
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Figure 5: Equivalent decision functions: df ≡ df ′

function d f 3 contains two redundant sub-functions df 1 = x3(2, 2) ≡ 2 and df 2 =

x2(x3(1, 2), x3(1, 2)) ≡ x3(1, 2), and can therefore be rewritten as:

df 3 = x1(x2(x3(1, 2), x3(1, 2)), x2(x3(1, 2), x3(2, 2))) = x1(x3(1, 2), x2(x3(1, 2), 2))

The right-hand side of [Fig. 4] shows a non-redundant representations of df 3.
Notice, that for df 3 the first child of x1 refers to x3 due to redundancy elimination
applied to x2(x3(1, 2), x3(1, 2)), where two children of x2 correspond to x3(1, 2).

Definition 7. Two decision functions df and df ′ are equivalent, denoted by
df ≡ df ′, if they give the same decisions c for the same attribute values a
disregarding permutations of attribute values.

As an example, Figure 5 depicts two equivalent decision functions since for
each set of actual boolean attributes (a1, a2, a3) ∈ A1 ×A2 ×A3 they give the same
decision cj ∈ C.

3.3 Learning and Deciding of Decision Functions

Capturing decision information is an important part of the learning decision
functions from training sets. The training set may be incomplete, i.e., it does not
contain a decision for all possible combinations of attribute values, or contra-
dictive, i.e., it contains different decisions for the same combination of attribute
values. The latter requires a generalization of the decision terms as introduced
before. Let C be the co-domain of a decision function (a finite set of discrete
decisions) and define d(C) = {(c, n) | c ∈ C, n ∈ N} (with N the Natural numbers)
a discrete distribution over C, i.e., a total mapping of the elements of C to their
frequencies (or some weights). We denote the set of all possible distributions
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over C by D(C). For capturing decision information, which can be seen as a
simple learning, we replace 0-ary (constant) decision functions df 0 :→ C with
0-ary decision distribution functions df 0 :→ D(C). For each tuple (a, c) in a train-
ing dataset, we update d(C) of the corresponding leaf(s) by incrementing the
frequency of c in d(C) by one.

3.3.1 Deciding

Deciding means to come to a unique decision c for a given attribute tuple a
using a decision function df . Therefore, we evaluate df for a and then select the
mode element of the resulting distribution, i.e., the most frequently occurring
element in the distribution: let df (a) = d(C) then decide(df (a)) = mode(d(C)):

df n : A1 → . . .→ An → D(C)

mode : D(C)→ C

eval : (A1 → . . .→ An → D(C)) × A1 → (A2 → . . .→ An → D(C))

decide : (A1 → . . .→ An → D(C)) × (A1 × · · · × An)→ C

decide(dfn, a):=decide(eval(dfn, a1), a′) a = (a1, a′)
decide(df0, ):=mode ◦ df 0

where ” ” corresponds to an empty attribute. Obviously, we can pre-compute
decide if the learning phase precedes and is not interleaved with the decision
phase. That is, we apply the mode-function on each of the distributions learned
for a df -function. This saves space and decision time but loses information
captured in the decision distributions.

3.3.2 Learning

Learning is the construction of a decision function from a decision information.
It is actually independent of possible decision function implementations. Differ-
ent learning algorithms exist [Moshkov 1997]. As one example, [Algorithm 1]
presents (a sketch of) the commonly used C4.5 algorithm [Quinlan 1993] used
in the experiments presented in [Section 6].

The algorithm works by recursively selecting the best attribute to split the
training set (lines 6-10) and expanding the terms of the decision function (lines
14-17) until the stopping criteria are met (lines 3,11). Every decision function is
created only when each corresponding dataset DSv is processed (line 16).

3.4 Auxiliary Decision Function Operations

We now motivate and define a set of auxiliary operations on decision functions:
restrict, merge, approximate, apply, and evert.
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Algorithm 1 Learning
Dataset DS→ decision function df

1: compute distribution of classes D(C) in DS;
2: compute error of just selecting the mode of D(C) as the decision;
3: if error acceptable then
4: return df :→ D(C)
5: end if
6: let A - set of the dataset attributes;
7: for all Ai ∈ A do
8: compute gain(Ai)
9: end for

10: choose the attribute Ai with max gain(Ai)
11: if gain not acceptable then
12: return df :→ D(C)
13: end if
14: for all v ∈ Ai do
15: let DSv ← {(a, c) ∈ DS|Ai = v}
16: recursively construct df v for a data subset DSv

17: end for
18: return df , where ∀v ∈ Ai, df (v) = df v

3.4.1 Approximating and Merging Decision Functions

Pre-computing decide after learning saves representation space without sacrific-
ing decision accuracy. Alternatively, space can be traded off against information
accuracy if we approximate a decision by ignoring one attribute and merge the
different decisions functions of alternative values of that attribute. For defining
approximations and mergers of decision functions, we first define restriction of
an n-ary decision function df to the kth value of the ith attribute, referred to as
restrict operation and denoted by df n|i:k, as a new (n − 1)-ary decision function
where the ith attribute is bound to the value a ∈ Ai with index k = idxi(a). For
example, for df 3 = x1(x3(1, 2), x2(x3(1, 2), 2)) we have

df 3|1:2 = x2(x3(1, 2), 2) and df 3|3:1 = x1(1, x2(1, 2))

The merge operation � of two distributions d(C) and d′(C) is defined as:

� : D(C) ×D(C)→ D(C)

d(C)� d′(C)={(c,w + w′)|(c,w) ∈ d(C), (c,w′) ∈ d′(C)}
Here (c,w) ∈ d(C) denotes that decision c is supported to a degree w by d(C),
corresponding to the frequency w of decision c in d(C). The + operator on
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Figure 6: Approximation and k-approximation of x1(x3(1, 2), x2(x3(1, 4), 2))

frequencies w is the plus of Natural numbers. We consider� of two distributions
as the base case of our merge operation of decision functions. We can recursively
define this merge � of two decision functions:

df , df ′ : A1 × . . . × An → D(C)

df � df ′=x1(df |1:1 � df ′|1:1, . . . , df |1:k � df ′|1:k)

where k = |A1|. Note that df |1:i and df ′|1:i are (n − 1)-ary functions. Hence, we
reduce the �-definition of decision functions eventually to � on distributions
(0-ary decision functions, base case).

We approximate a decision function df by ignoring an attribute Ai using �:

approx(i) : (A1 → . . .→ An → D(C))→
(A1 → . . .→ Ai−1 → Ai+1 → . . .→ An → D(C))

approx(i, df )=
⊔
a∈Ai

df |i:idxi(a)

In fact, the decision function df can be approximated by ignoring any number
i ≤ n of attributes, where n is the arity(df ).

Based on the above operation, it is possible to derive another approxima-
tion operation called k-approx, which represents an approximation of a decision
function d f of all attributes indexed i starting with a certain attribute index
k < i ≤ n. k − approx is a repeated approx operation starting from the leaves and
proceeding to a certain k-index of a decision function d f . This operation can be
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formalized as follows:

k − approx(k) : (A1 → . . .→ Ak → . . .→ An → D(C))→
(A1 → . . .→ Ak → D(C))

k − approx(k, d f ) = approx(i, d f i),∀i > k

Figure 6 shows an example of approximation and k-approximation of decision
function d f 3 = x1(x3(1, 2), x2(x3(1, 2), 2)). This particular approximation will also
be used in our experiment section.

We can use � to formalize a simple learning algorithm: a neutral element
⊥ ∈ C is a default class representing “don’t know”, and learning starts without
any knowledge, i.e., with the initial decision function df ≡ ⊥. Each tuple (a, c)
in the training set corresponds to a decision function:

df ′(b) =
{

c if b = a
⊥ otherwise

For each df ′ corresponding to a tuple of the dataset, learning incrementally sets
df := �(df , df ′).

3.4.2 Applying Functions to Decision Functions

We can apply functions g, defined on the co-domain of a decision function,
to the leaves of this decision function. In [Section 3.4.1] we applied mode to
the leaf distributions of a decision function and � of two distributions to the
corresponding leaves of two decision functions. These examples are just useful
special cases of applying general functions to decision functions. We define such
a general apply of arbitrary k-ary functions g to k-tuples of decision functions:

g : C1 × . . . × Ck → C

apply(g, c1 . . . ck) = g(c1 . . . ck)

dfi : A1 → . . .→ An → Ci

apply(g, df1 . . . dfk) = x1(apply(g, df1|1:1 . . .dfk|1:1), . . . ,

apply(g, df1|1:K . . . dfk|1:K))

where i ∈ [1 . . . k],K = |A1|. apply(g, df1 . . . dfk) recursively applies g to the respec-
tive subtrees of the arguments and eventually evaluates it on the leaves; the
result is a decision function over C. The special cases decide and merge discussed
earlier in Sections [ 3.3.1] and [ 3.4.1], respectively, could be redefined as:

decide(df , a) = eval(apply(mode, df), a′), where

eval(df, a) = eval(. . . eval(eval(df, a1), a2), . . . , an)

d f1 � d f2 = apply(�, df1, df2)
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In general all functions defined on the classes of decision functions could be
lifted to the decision functions over these classes.

3.4.3 Everting Decision Functions

Everting alters the order in which attributes occur in the decision functions.
This is, e.g., used in heuristics for saving space during learning. Evert is natu-
rally defined as a generalization of the so-called Shannon expansion of OBDDs
[Bryant 1986] over a decision function df with the ith attribute:

evert(i) : (A1 → . . .→ An → D(C))→
(Ai → A1 → . . .→ Ai−1 → Ai+1 → . . .→ An → D(C))

evert(i, df )=xi(df |i:1, df |i:2, . . . , df |i:k)
evert(i, df )≡df

where k = |Ai|. The Shannon expansion creates a new decision function corre-
sponding to a new decision tree but does not change the decisions. It is just a
rewrite rule that can be used to reorder the attributes of a decision function,
sometimes making the representation more compact. Hence, a decision func-
tion df is equivalent to evert(i, df ) (equivalence was discussed in [Section 5]). For
example, for df 3 = x1(x3(1, 2), x2(x3(1, 2), 2)) it holds:

df 3
1 = evert(3, df 3)=x3(x1(1, x2(1, 2)), x1(2, x2(2, 2)))

df 3
2 = evert(2, df 3

1)=x2(x3(1, 2), x3(x1(1, 2), 2))

df 3
3 = evert(1, df 3

2)=df 3

The everted decision function df 3
1 was previously depicted in Figure 5 in Sec-

tion 3.2.

3.5 Decision Algebra

Finally, DA is a theoretical framework that generalizes over different decision
models of decision functions by defining common properties and operations of
all decision functions.

Definition 8. A Decision Algebra is a triple DA =< DF, Ω,R >, where DF is a
set of decision functions, Ω is a set of operations defined over DF, and R is an
equivalence relation.

The equivalence relation R partitions the terms of the algebra DA into a number
of equivalent classes. This relation enables us to determine that two decision
functions which are syntactically distinct do, nevertheless, represent the same
decisions.
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3.6 Decision Algebra: Generalization

In the previous sections we introduced DA operations limited to tree-based
models, such as decision trees and graphs. However, in Section 2 we observed
several other decision models that are also frequently used for decision making,
e.g., probability-based models, maximum-margin models, vector-based, and
regression models. Therefore, the aim of this section is to introduce a theoretical
generalization of DA over other decision models. In [Section 3.6.1] we present
the operations over generalized decision functions, and in [Section 3.6.2] we
define a constant decision function which serves as a base case scenario for
defined operations.

In [Section 3.2] we introduced the notion of decision function that maps
a formal context A = A1 . . .An to a finite set of discrete decisions C. In prac-
tice, we have fuzzy decision bases, i.e., the decision function is rather modeled
as a mapping to a more general co-domain D(C) (a distribution over C). For
instance, a general discrete distribution is used in: decision trees and graphs
(represented by discrete distributions in the leaves), Naı̈ve Bayes (represented
by the result of multiplications of conditional probabilities) and support vec-
tor machines (represented by a distance between a vector and a maximum-
margin [Cortes and Vapnik, 1995]). Therefore, DA can be defined in terms of a
parameterized specification, with A and D(C) as parameters, that provides a
general representation of decision information as an abstract decision model
along with a set of operations. Such a generalization requires decision mod-
els [see Section 2.3] to implement the core operations of DA with its defined
pre- and post-conditions. The core operations are those that have to be imple-
mented on each specific type of decision model. The derived operations are
implemented based on the core operations, i.e., their implementation is given
on the abstract specification level using the core operations.

3.6.1 Decision Function

Let us define general parameterized decision function df : A1 × · · · ×An → D(C),
df ∈ DF[A,D(C)] as a mapping of context attributes A to a formal domain D(C).
The constructor of such a distribution function d ∈ D(C) takes a k = |C| pairs
(p, c) of frequencies of p ∈ P and a corresponding classes c ∈ C, and returns a
distribution d ∈ D(C):

consD : (C × P)k → D(C)
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The operations over distributions are the following (Di=̂D(Ci)):

gD : D1 × · · · ×Dk → D′ any function to apply, especially

�D
5 : D × · · · ×D→ D merge function, or

≡D : D ×D→ Boolean equivalence function, or

mode : D→ C

f req : D × C→ P

where mode returns a most-probable class, and freq returns a frequency for a
certain class c ∈ C. The implementation of these two operations is straightfor-
ward:

mode(consD(c1, p1, . . . , ck, pk)) := arg max
c∈C

p(consD(c1, p1, . . . , ck, pk), c)

f req(consD(c1, p1, . . . , ck, pk), c) := pi where ci = c

The general constructor of decision function df ∈ DF[A,D] reflects its higher-
order representation discussed in [Section 3.2]. It takes attribute values of the
first attribute ai ∈ A1 and corresponding decision functions dfn−1 ∈ DF[A′,D],
where A′ = A2 × · · · × An. Notice, that the constructor also fulfills the non-
redundancy property of the decision function:

cons :(A1 ×DF[A′,D]) × · · · × (A1 ×DF[A′,D])︸�������������������������������������������������︷︷�������������������������������������������������︸
|A1| times

→ DF[A,D]

cons (a1, dfn−1, . . . , a|A1 |, dfn−1) ≡ dfn−1

The only core operation of DA is restrict operation defined in [Section 3.4.1]
which restricts an n-ary decision function dfn ∈ DF[A,D] to the a ∈ Ai attribute
value of the ith attribute, and as a result it returns a new (n − 1)-ary decision
function dfn−1 ∈ DF[A′,D] where the ith attribute is bound to the value Ai:

restrict(i) : DF[A,D] × Ai → DF[A′,D], A′ = A1 × · · · × Ai−1 × Ai+1 × · · · × An

restrict(1, cons(a1, d f1, · · · , a|A1|, d f|A1|), a) ≡ d fi where a = ai and i ∈ [1 . . .n]

The derived operations of DA are eval, evert, decide, apply, equals, merge and approx.
All these operations were discussed in [Section 3] and concrete examples were
given.

Eval evaluates the given decision function dfwith regard to a specific attribute
value a ∈ A, as a result it returns another decision function with decreased set

5 The discussion of a merge operation over distribution functions is outside the scope
of this paper, as it can be implemented as shown in [Section 3.4.1] or it can refer to the
theory of random variables[Lawrence Marple 1987].
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of context attributes:

eval : DF[A,D] × A→ DF[A′,D] A′ = A2 × · · · × An

eval(df, a) := restrict(1, df, a)

Evert changes the order in which attributes occur in the decision function. This
operation was discussed in [Section 3.4]:

evert(i) : DF[A,D]→ DF[A′,D] A′ = Ai × A1 × · · · × Ai−1 × Ai+1 × · · · × An

i ∈ [1 . . .n]

evert(i, df) := cons(a1, restrict(i, df, a1), . . . , a|Ai |, restrict(i, df, a|Ai|))
a1, . . . , a|Ai | ∈ Ai

Decide [see Section 3.3.1] is a process of applying a decision function df to a given
actual context a ∈ A = (A1 × . . . × An) in order to determine a concrete decision
c ∈ C:

decide : DF[A,D] ×A→ C

decide(df, a) := decide(eval(d f , a1), a′)6 a = (a1, a′)

Apply [see Section 3.4.2] applies a function gD on a set of decision functions
df1, . . . , dfk ∈ DF. We define such a general apply of arbitrary k-ary function gD

to k-tuples of decision functions:

apply :(D ×D2 × · · · ×Dk → D′) ×DF[A,D] ×DF[A,D2] × · · · ×DF[A,Dk]→
→ DF[A,D′]

apply (gD, d f1, . . . , d fk) := cons(a1, apply(gD, eval(d f1, a1), . . . , eval(d fk, a1)), . . .

a|A1 |, apply(gD, eval(d f1, a|A1|), . . . , eval(d fk, a|A1 |)))6,

where a1, . . . , a|A1| ∈ A1

Equals is based on apply operation and checks equivalence (≡D) of decisions for
all attribute vectors a ∈ A:

≡ : DF[A,D] ×DF[A′,D]→ Boolean

≡ (d f1, d f2) := apply(≡D, d f1, d f2) ≡ d fTrue
6

Merge is also based on apply; it applies a merge function �D on two decision
functions:

merge : DF[A,D] ×DF[A,D]→ DF[A,D]

merge(d f1, . . . , d fk) := apply(�D, d f1, . . . , d fk)

6 base case defined in DF∅
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Approx (defined in [Section 3.4.1]) approximates the decision function by ignor-
ing one (or more) attribute(s) Ai. It is based on merge and restrict operations:

approx(i) : DF[A,D]→ DF[A′,D] A′ = A1 × · · · × Ai−1 × Ai+1 × · · · × An

i ∈ [1 . . .n]

approx(i, d f ) :=merge(restrict(i, d f , a1), . . . , restrict(i, d f , a|Ai|))

3.6.2 Constant Decision Function

Constant decision function serves as a base case scenario for DA operations.
Basically it refers to a 0-ary decision functions df0 :→ D, df0 ∈ DF∅[{0},D] with
zero-dimensional attribute vector space has the following constructor:

cons∅ : D→ DF∅[{0},D]

All other operations of DA have the same signatures as described above. Im-
plementation of these operations in the base case scenario is straightforward:

eval(df) := df

decide(cons(d), ) := class(d)

restrict(0, df, ) := df

evert(0, df) := df

≡ (df1, df2) := eval(df1) ≡D eval(df2)

apply(gD, df1, . . . , dfk) := cons(gD(eval(df1), . . . , eval(dfk)))

where ” ” corresponds to an empty value.
In order to create a specific decision model implementing DA interface one

has to implement its core operations. In [Section 5] we show implementation of
restrict, apply, and special form of approximation k-approx for tree-based models,
i.e., decision trees and graphs. Additionally, we discuss further instantiation of
DA towards Naı̈ve Bayes classifier.

4 Accuracy versus Scalability

In [Section 3.4.1], we discussed, among other operations, the merge operation
� of decision functions which could be used in simple learning and in different
approximation approaches. In this section, we discuss consequences of merging
decision functions on their accuracy.

Intuitively, a decision function df 1 is more accurate than a decision function
df 2 iff it more often gives the “right” classification, i.e., we define it based on
some ground truth. However, this ground truth is, in general, not known to us
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usually due to the fact that the formal context A does not model all properties
that have an inpact on a decision. For one and the same actual context a ∈ A
different decisions c ∈ C are possible following a probability distribution. This
probalility distribution is usually not known to us either (just samples thereof
with the training data sets). Still we can define a “more accurate” relation based
on the idea of “right” classification from a theoretical “oracle”.

Definition 9. Let us define oraclea : C → R as the accurate classification proba-
bility distribution of a decision given a concrete context a ∈ A, and oracle : A→
D(C) as the corresponding accurate decision function with ∀a ∈ A : oracle(a) =
oraclea.

Given the oracle we can express the classification error in a concrete context a
and a general error of df .

Definition 10. Let df : A → D(C) be any decision function, and errordf (a) of a
distribution of decisions da = df (a) in a concrete context a ∈ A is defined as

errordf (a) =
1
|C|

∑
c∈C

(oraclea(c) − da(c))2

and a general errordf of df is defined as

errordf =
1
|A|

∑
a∈A

errordf (a).

Finally,

Definition 11. The decision function df 1 : A → D(C) is more accurate than
another decision function df 2 : A→ D(C) iff df 1 is closer to the oracle : A→ D(C)
accurate decision function than df 2:

errordf 1
≤ errordf 2

4.1 Accuracy of Learning by Merging Decision Functions

What we wish to establish now is that merging decision functions gives a new
decision function that is tendentially more accurate, i.e., reduces the error. As a
consequence, we could define a simple and general learning approach based on
merging decision functions. This merge-based learning approach would work
as an online algorithm, as a new decision function can be learned howsoever
(any learning algorithm would do) from new training data and merged with
an existing decision function which thereby gets more accurate. Moreover, as
merging is linear in the size of the decision functions involved, merge-based
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learning (dividing training data and learning individual decision functions that
get merged) is faster than any hyper-linear learning (learning on the whole
training data set). This way, we can save learning time and guarantee scalability
even for large training data sets.

Unfortunately, we cannot guarantee that the merger of two decision func-
tions gives a more accurate one in general. This is intuitively clear if we think of
merging a very accurate decision function with another one that makes random
decisions, which clearly cannot improve the already accurate decision function.
We need to assume somewhat accurate input decision functions in order to
expect an even more accurate output. We formalize the notion of “somewhat
accurate” as probably accurate:

Definition 12. A decision functions df : A → D(C) is probably accurate with
respect to an accurate decision function oracle iff ∀a ∈ A : df (a) is a random
sample of oraclea.

The merger of probably accurate decision functions leads to a more accurate
one.

Theorem 13. Let df 1, . . . , df n be a series of independently learned decision functions
df : A→ D(C) that are probably accurate with respect to an accurate decision function
oracle : A→ D(C). For large n, the merged decision function df 1 � . . .� df n converges
in probability to the oracle.

Proof. Let da,1 = df 1(a), . . . , da,n = df n(a) be a series of distributions of decision
functions df 1, . . . , df n in a concrete context a, each a random sample of oraclea. As
we prove the theorem independently for each concrete conext a ∈ A, we drop
the index a from now on and assume an arbitrary but fixed actual context. For
the merger � of the series of distributions it holds

∀c ∈ C : (d1 � . . . � dn)(c)=d1(c) + . . . + dn(c) and

|d1 � . . . � dn|=|d1| + . . . + |dn|
with |di| = ∑

c∈C di(c) the size of a distribution, i.e., the sum of all frequencies
di(c) of all possible classes C. As each di is a random sample of oracle, it can be
understood as a result of a series of |di| random decisions:

di(c)=[D1 = c] + . . . + [D|di| = c] or
di(c)
|di| =

[D1 = c] + . . . + [D|di| = c]
|di|

which is the unweighted average of a series of random decisions for which
Corollary 16 applies, cf. Appendix A. Understanding Xi =

di(c)
|di | as random vari-

ables, it therefore holds that E(Xi) = pc and Var(Xi) ≤ pc(1 − pc).
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Moreover, for the merged distribution it holds:

(d1 � . . . � dn)(c)=d1(c) + . . . + dn(c)

=
d1(c)
|d1| |d1| + . . . + dn(c)

|dn| |dn|
=X1|d1| + . . . + Xn|dn|.

Instead of the merged distribution (d1 � . . .� dn), we consider its corresponding
probability distribution (d1 � . . .� dn)N which is normalized with N =

∑n
i=1 |di|.7

(d1 � . . . � dn)N(c)=
∑n

i=1 Xi × |di|∑n
i=1 |di|

This is the weighted average of a series of random variables Xi with weights
Ni = |di| for which Lemma 15 applies. Hence

∀c ∈ C : lim
n→∞P(|(d1 � . . . � dn)N(c) − pc| ≥ ε)=0 for any ε > 0.

This holds for any actual context a ∈ A which concludes the proof. �

Recall that decide(df ) = apply(mode, df), i.e., applying mode to the underlying
distributions. The result of mode is uneffected by normalization with any positive
constant N, especially N = |d|, the size of the distribution:

mode(d) = c⇔d(c) = max
c′∈C

d(c′)

⇔dN(c) =
d(c)
N
= max

c′∈C
d(c′)
N
,N > 0.

4.2 Accuracy of Approximation by Merging Decision Functions

The simple approximation operations approx and k− approx are based on merge
(�) like the simple learning approach discussed in [Section 3.4.1]. However, it
should be intuitively clear that, although based on merge, these approximations
do not converge (in probability) to an accurate decision function. This is not a
contradiction to Theorem 13 as, in general, the theorem’s prerequisites are not
fulfilled by the merge operations used in approximations. It is sufficient to
observe this for approx since k − approx is just a repeated application of approx.

Recall the definition of approx(i, df) =
⊔

a∈Ai
df |i:idxi(a). This means that we

merge distributions da = df (a) and da′ = df (a′) of different actual contexts a, a′ ∈
A. The actual context vectors a, a′ differ in position i and take different values
a, a′ ∈ Ai.

7 Normalization: d(c) = N × pc ⇔ dN(c) = pc
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In general, the formal context attribute Ai has an impact on the decision.
Then, however, oraclea and oraclea′ are different classification probability distri-
butions. Still da and da′ could be random samples of—hence probably accurate
with respect to—the same accurate distribution, either oraclea or oraclea′ . But,
this could only happen by chance and must not be assumed in general. There-
fore, we expect to loose accuracy by merge based approximation operations like
approx and k − approx. In general, these operations trade accuracy for memory
space.

4.3 Scalability of Merging Decision Functions

Decision functions df : A → C require memory Ω(|A| × |C|), i.e., they need to
capture, for each actual context a ∈ A and each class c ∈ C, the corresponding
frequency da(c). Hence, this is obviously a lower bound for the time complexity
of any learning algorithm creating such decision functions.

Assuming that accessing the distribution of a decision function in an actual
context da = df (a) takes constant time, the time complexity of merged based
learning is exactly this lower bound. Hence, other learning algorithms are at
least as complex as merged based learning. Therefore, we can save learning
time of more complex learning algorithms and guarantee scalability even for
large training data sets by learning on smaller data sets and merge the resulting
decision functions.

Moreover, learning on the smaller data sets can trivially be parallelized;
using p processors it takes time O(l(n/p)) to learn p decision functions given a
data set of size n and a complexity of O(l(n)) of the learning algorithm. Using a
parallel sum technique, the merge operation of the resulting decision functions
can be parallelized as well, requiring O(log(p)) sequential merge operations
of decision functions on p processors. Merging distributions takes time O(|C|)
on one processor or O(1) on |C| processors. Merging decision functions takes
O(|A| × |C|) one processor or O(1) on |A| × |C| processors. Altogether simple
learning can be done in time O(l(n/p) + log(p × |A| × |C|)) on p processors or
O(l(n/p)+ log(p)) on p × |A| × |C| processors.

5 Implementation

In this section we introduce an instantiation of DA towards tree-based decision
models, referred to as Decision Graph Algbera (DGA). Decision functions of
DGA is, thus, defined as decision graph functions (DFG). The implementation
of DGA, referred to as decision graph (DG), avoids redundancies in the represen-
tation of a decision function. It serves as a concrete example of an instance of our
DA framework and will be compared to decision trees, another implementation
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of DGA, in our experiments in [Section 6]. DGs combine Ordered Binary Deci-
sion Diagrams (OBDDs) [Bryant 1992, Bryant 1986] used to represent boolean
functions, and χ-terms used to handle context-sensitive information in static
program analysis [Trapp 1999].

As stated in [Section 3], every decision term representation of df can be seen
as a tree G = (N,E, r). The root node r ∈ N corresponds to the selection operator
x1 of attribute A1, returning the child idx1(a) for a given argument a ∈ A1. The
child is a sub-term representing the (n − 1)-ary decision function df (a). 0-ary
decision functions df 0 are leaves labeled with elements of Y. Thus, the only one
core operation for DGA is an operation of getting a child of the node:

child : DFG[A,Y] × A→ DFG[A′,Y] A′ = A2 × · · · × An

While the rest of discussed operations are derived:

restrict(i, dfg, a) := cons(a1, restrict(i, child(dfg, a1), a), . . .

. . . , a|A1 |, restrict(i, child(dfg, a|A1 |), a))

a ∈ Ai, a1, · · · , a|A1 | ∈ A1, i ∈ [2 . . .n]

restrict(1, dfg, a) := child(dfg, a) a ∈ A1

We introduce DGs in [Section 5.1]; we discuss the restrict operation in [Sec-
tion 5.1.1], apply in [Section 5.1.2] and the k-approx operation in [Section 5.1.3].
Moreover, in the last [Section 5.2] we discuss how our DA can be instantiated
towards probability-based decision model such as Naı̈ve Bayes classifier. No-
tice, that instantiations towards further decision models are possible too but are
not in the scope of this paper.

5.1 Decision Graphs

The co-domain in DGs is represented as a class distribution D(C) discussed in
Section 3.3. Our implementation uses a repository that captures decision term
representation of df. However, the repository guarantees that each term cor-
responding to a unique decision (sub-)function, reduced by redundancy elim-
ination, cf. Section 3.2.1, is captured only once and gets a unique identifier.
The children in the decision tree of df only refer to the unique identifier of the
corresponding sub-terms. As a consequence, we never store two equivalent, cf.
Section 3.2.1, decision (sub-) functions in the repository and we never make use
of two equivalent sub-terms in the same decision function. Since two selection
operators x and x′ may point to the same children, our terms are represented
by rooted directed acyclic graphs (instead of trees). Figure 7 shows the tree and
graph representations of the simple decision function introduced in Section 3.

To help recognizing equivalent sub-terms we maintain a ”normal” order
of all nodes: If attribute Ai is chosen for splitting by a classification algorithm
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Figure 7: Left: A non-redundant decision tree representation of df 3 =

x1(x2(x3(1, 2), x3(1, 2)), x2(x3(1, 2), x3(2, 2))). Right: a non-redundant decision
graph of the same decision function.

before attribute Aj, then i < j and xi < xj, and operator xi occurs before operator
xj on all paths from root to the leaves in the corresponding decision graph.

All DA operations discussed in [Section 3] are implemented on DGs; DGs
inherit all decision function properties, e.g., those discussed in [Section 4]. We
discuss the implementation of restric, apply and k-approx in the next sections;
other operations are implemented in a straightforward way.

5.1.1 Implementation of Restrict

In the previous [Section 3.6] we showed that many DA operations can be de-
fined using core operation restrict. For DGA, restrict becomes a derived oper-
ation based on core operation child. Our implementation of restrict on DGs is
presented in [Algorithm 2]. Basically, it recursively applies restrict operation
over the children of the given graph node and returns a new decision term
constructed from the results of the operation applied. Lines 1–6 handle the base
cases where the decision terms are leaves (lines 1–3), or the attribute, which
we restrict to, corresponds to the given decision term (lines 4–6). In the former
case the algorithm returns the leaf. In the latter case the restriction is applied by
getting a-th child child(xk, a) of the current decision term xk, and then restrict is
pushed further towards the leaves (since there can exist more then one decision
term with the same corresponding attribute in the path due to the properties of
the learning algorithm).

Lines 7–9 recursively apply restrict to the children of the decision term xk.
Note that children(xk) refer to the sub-terms of xk, and |children(xk)| to the number
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Algorithm 2 restrict(i ∈ Integer, xk ∈ DG(D), a ∈ AttributeValue)→ DG(D)

1: if xk ∈ D then
2: return xk

3: end if
4: if k == i then
5: return restrict(i, child(xk, a), a)
6: end if
7: for all xj ∈ children(xk) do
8: x∗ = restrict(i, xj, a)
9: end for

10: return xk(x∗1, . . . , x∗|children(xk)|)

of sub-terms of xk. Finally, in line 10, a new decision term is created if and only
if it has not been created before.

5.1.2 Implementation of Apply

In [Section 3] we showed that many DA operations can be defined as special
cases of the higher order function apply. Our implementation of apply on DGs is
outlined in [Algorithm 3]. It pushes an operation to the leaves and applies it on
them. Hence, the operations must be defined on the leaf values D(C). The result
is a new decision term recursively constructed from the results of the operation
applied to the leaves.

Lines 1–3 handle the base case where decision terms are leaves and the
operation is applicable directly. Lines 4–17 handle the case where one of the
decision terms is a leaf. Lines 18–23 handle the case where the root selection
operators, i.e., the first selection attributes, are identical. In all three cases (lines
9, 15, 22), a new decision term is created if and only if it has not been created
before. Line 24 handles the case when the selection operators differ and both
decision terms are not leaves. In this case we evert the second term xj to k. An
apply of op to the result leads to the case where the root selection operators are
identical.

5.1.3 Implementation of Approximate

To save space or to avoid overfitting in a decision functions, pruning is applied
and different pruning variants can easily be implemented using the approx op-
eration. It was defined in [Section 3.4.1] and allows to ignore any attribute of a
decision function. A simple pruning method, the k-approximation (a special im-
plementation of approximation), is efficiently implemented with Algorithm 4.

1203Danylenko A., Lundberg J., Lowe W.: Decisions: Algebra, Implementation ...



Algorithm 3 apply(op ∈ D ×D→ D, xk, xj ∈ DG(D))→ DG(D)

1: if xk, xj ∈ D then
2: return op(xk, xj)
3: end if
4: if xk ∈ D || xj ∈ D then
5: if xk ∈ D then
6: for all x′ ∈ children(xj) do
7: x∗ = apply(op, xk, x′)
8: end for
9: return xj(x∗1, . . . , x∗|children(xj)|)

10: end if
11: if xj ∈ D then
12: for all x′ ∈ children(xk) do
13: x∗ = apply(op, x j, x′)
14: end for
15: return xk(x∗1, . . . , x∗|children(xk)|)
16: end if
17: end if
18: if k == j then
19: for all i ∈ [1 . . . |children(xk)|] do
20: x∗ = apply(op, children(xk)i, children(xj)i)
21: end for
22: return xj(x∗1, . . . , x∗|children(xk)|)
23: end if
24: return apply(op, xk, evert(xj, k))

The k-approximation of decision functions is easy to understand based on
the tree representation: all subtrees of depth ≥ k from the root are replaced with
the merger � of their leaves. In particular it means that the distributions of the
same classes is summarized. Recall from the standard tree representation that
every leaf keeps the distribution for each class. Therefore, the result is a new
decision function with depth ≤ k. [Algorithm 4] finds the subtrees at depth k,
[Algorithm. 5] then merges their respective leaves.

5.2 Naı̈ve Bayes Classifier

As an example of how DA can be instantiated with decision models other than
trees and graphs, we discuss Naı̈ve Bayes classifiers. Naı̈ve Bayes is a simple
probabilistic classifier based on Bayesian statistics [Keogh and Pazzani 1999]. It
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Algorithm 4 k-approx(k ∈ N, x ∈ DG(D))→ DG(D)
1: if k = 0 then
2: return new collapse(x)
3: end if
4: for all xi ∈ children(x) do
5: x∗i = k-approx(k − 1, xi)
6: end for
7: return new x(x∗1, . . . , x

∗
|children(x)|)

Algorithm 5 collapse(x ∈ DG(D))→ D
1: if x ∈ D then
2: return x
3: end if
4: v← ⊥
5: for all x′ ∈ children(x) do
6: v← add(v, collapse(x′))
7: end for
8: return new v

calculates conditional probabilities

∀a ∈ A, c ∈ C : P(C = c|A = a),

the probability of an actual class c given actual attribute values a ∈ A = (A1×· · ·×
An). Thereby, it naively assumes a conditional independence of the attributes
from each other. Then class c is most probable for actual attribute values a =
(a1, . . . , an) if

P(C = c) × P(A1 = a1|C = c) × · · · × P(An = an|C = c)

is maximum among all classes in C [Mitchell 1997, Keogh and Pazzani 1999].
Therefore, a decision model representing Naı̈ve Bayes obviously needs to cap-
ture (or compute) the absolute probability distribution of each actual class D(C),
and the conditional probabilities of each actual attribute given each actual class:

∀c ∈ C,∀Ai∈[1,n],∀a ∈ Ai : P(Ai = a|C = c).

The constructor for decision function over Naı̈ve Bayes classifier (DFNB), takes
a D(C) that represents the absolute probability over classes C and probability
distribution functions (PDFi=̂PDF(Ai)) for each attribute Ai ∈ A, that represents
the conditional class probability for each class value c ∈ C:

cons : (D(C) × PDF1 × · · · × PDFn × . . . × PDF1 × · · · × PDFn︸������������������������������������������������������︷︷������������������������������������������������������︸
k times

)
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where k = |C|. The constructor of such a probability distribution for each at-
tribute Ai takes a y = |Ai| number of pairs of a probability value p ∈ P and a
corresponding attribute value a ∈ Ai, and returns a PDF:

consPDF : (Ai × P)y → PDFi

where ∑
pi∈P

pi = 1 and p ∈ [0 . . .1]

Alternatively, PDFi can be constructed from a parametric distribution, e.g., Nor-
mal distribution, with the respective parameters, e.g., μ and σ. The operations
over PDF are following:

f req : PDF × Ai → P

f req(consPDFi ((a1, p1), . . . , (ai, pi), . . . (ay, py)), ai) ≡ pi

The core operations of DFNB are: getting the class distribution D(C), and
getting the PDF for a certain class value c ∈ C of ith attribute, respectively:

dfc : DFNB→ D(C)

pdf(i) : DFNB × C→ PDFi

The restrict operation multiplies the class frequencies with the conditional
probabilities of an attribute value a ∈ Ai of ith attribute of a respective class
c ∈ C . It returns a new Naı̈ve Bayes:

restrict(i) : DF[A,D] × Ai → DF[A′,D],

A′ = A1 × · · · × Ai−1 × Ai+1 × · · · × An

restrict(i, dfnb, a) := cons(consd(c1, f req(dfc(dfnb), c1) ∗ f req(pdf(i, dfnb, c1), a), . . .

ck, f req(dfc(dfnb), ck) ∗ f req(pdf(i, dfnb, ck), a)),

pdf(1, dfnb, c1), . . . , pdf(i − 1, dfnb, c1), pdf(i + 1, dfnb, c1), . . .

pdf(n, dfnb, c1),

. . .

pdf(1, dfnb, ck), . . . , pdf(i − 1, dfnb, ck), pdf(i + 1, dfnb, ck), . . . ,

pdf(n, dfnb, ck))

a ∈ Ai

The evert operation simply changes the order of the PDFs of attribute values

1206 Danylenko A., Lundberg J., Lowe W.: Decisions: Algebra, Implementation ...



while putting the set of the i-th attribute first in the constructor:

evert(i) : DF[A,D]→ DF[A′,D] A′ = Ai × A1 × · · · × Ai−1 × Ai+1 × · · · × An

evert(i, dfnb) := cons(dfc(dfnb), pdf(i, dfnb, c1), pdf(1, dfnb, c1) . . . , pdf(i − 1, dfnb, c1),

pdf(i + 1, dfnb, c1), . . . , pdf(n, dfnb, c1)

. . .

pdf(i, dfnb, ck), pdf(1, dfnb, ck), . . . , pdf(i − 1, dfnb, ck),

pdf(i + 1, dfnb, ck), . . . , pdf(n, dfnb, ck))

The approx operation constructs a decision function that ignores attribute Ai by
simply ”forgetting” the PDFs of this attribute:

approx(i) : DF[A,D]→ DF[A′,D] A′ = A1 × · · · × Ai−1 × Ai+1 × · · · × An

i ∈ [1 . . .n]

approx(i, dfnb) := cons(dfc(dfnb), pdf(1, dfnb, c1), . . . , pdf(i − 1, dfnb, c1),

pdf(i + 1, dfnb, c1), . . . , pdf(n, dfnb, c1),

. . .

pdf(1, dfnb, ck), . . . , pdf(i − 1, dfnb, ck),

pdf(i + 1, dfnb, ck), . . . , pdf(n, dfnb, ck))

In order to apply a function g on a set of k DFNBs, this function has to be
defined over D(C). The default definition of apply as a derived operation was
shown in [Section 3.6.1]. However, the merge operation, which is a special case
of apply, can be defined directly as a special core operation. The prerequisite
of this operations is that both DFNBs are defined over the same domain and
co-domain:

dfnb1, dfnb2 : A→ D(C)

and a special operation �PDF : PDF(A) × PDF(A) → PDF(Ai) is implemented
over PDF(A) domain, i.e., over the PDFs of each attribute Ai given a class
c ∈ C. The �PDF can be implemented as a sum of discrete random variables,
convolutions, etc. [Bertsekas and Tsitsiklis 2002] (the particular implementation
of this operation is outside the scope of this paper). The merge operation applies
an operator �D over two Naı̈ve Bayes’:

merge : DF[A,D] ×DF[A,D]→ DF[A,D]

merge(dfnb1, dfnb2) := apply(�D, dfnb1, dfnb2)

The merge operator�D is defined over D(C) and is applied on dfc(dfnb1), dfc(dfnb2).
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Finally, a merger of two decision functions is defined as:

apply : (D ×D→ D) ×DF[A,D] ×DF[A,D]→ DF[A,D]

apply(�D, dfnb1, dfnb2) := cons(�D(dfc(dfnb1), dfc(dfnb2)),

�PDF(pdf(1, dfnb1, c1), pdf(1, dfnb2, c1)), . . . ,

�PDF(pdf(n, dfnb1, c1), pdf(n, dfnb2, c1)),

. . .

�PDF(pdf(1, dfnb1, ck), pdf(1, dfnb2, ck)), . . . ,

�PDF(pdf(n, dfnb1, ck), pdf(n, dfnb2, ck)))

The decide operation can be implemented based on the implementation of a
class operation in D(C) or in a more straightforward way:

decide : DF[A,D] ×A→ C

decide(dfnb, a) := arg max
c∈C

P(C = c) × P(A1 = a1|C = c) × · · · × P(An = an|C = c)

In addition to the general DA operations, certain operations can be common to
some but not all decision models. This can be modeled with common subtypes
of DA. For instance, decision trees and graphs share operations of a Decision
Graph Algebra, Naı̈ve Bayes classifiers and other probability-based models
share operations of a Naı̈ve Bayes Algebra, etc.

6 Experiments

In [Section 6.1], we compare our decision graph representation with decision
trees. It shows that different DA implementations are comparable. In [Sec-
tion 6.2], we assess the accuracy of learning by merging decision functions.
It experimentally validates [Theorem 13].

6.1 Comparison of Decision Trees and Decision Graphs

In the previous section, we presented decision graphs as an DA implementation
alternative to decision trees. Here we compare decision graphs generated by the
C4.5 learning algorithm with the corresponding decision tree implementation
C4.5.

6.1.1 Data Selection

Our experiments are performed on 16 different benchmark datasets from the
UCI Machine Learning Repository [Frank and Asuncion 2010]. We were inter-
ested in a classification problems and, therefore, selected the 14 largest with both
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Table 1: Dataset Characteristics

Id Dataset Training Instances Test Instances Tree Size/Depth
1 ionosphere 309 42 21/7
2 cancer-wisconsin 500 199 125/4
3 australian 552 138 143/9
4 crx 600 119 174/9
5 dibetes 688 100 27/7
6 anneal 798 133 151/14
7 german 800 200 416/11
8 hypothyroid 2527 636 19/8
9 ad 3057 420 153/55

10 waveform 4000 1000 515/18
11 nursery 11664 1294 905/7
12 chess 28042 4886 10001/5
13 adult 32561 16281 8124/20
14 connect-4 67557 13994 15940/22
15 census-income 159617 39906 46363/26
16 covtype 409985 171027 28389/63

categorical and continuous attributes. We also added two large datasets with
only continuous attributes to show the applicability of our theory framework
even in these cases.

The used datasets are presented in [Tab. 1] in ascending order of the number
of training instances. In addition to the dataset names, the table also reports on
the number of training and test instances, and the number of nodes/the depths of
the generated decision trees. The final column (Attributes) describes what type
of attributes each dataset is using. In all bar charts we present our experimental
results for these datasets in the same order as in this table.

6.1.2 Implementation Details

We used the decision trees generated by the FC4.5 learning algorithm
[Ping He and Xu 2007, Ruggieri 2002] as a baseline to which we compare our
graph-based implementation. FC4.5 is a fast implementation of the C4.5 learning
algorithm outlined in [Section 3.3.2]. We adopted the FC4.5 algorithm to directly
learn both decision trees and decision graphs. As a result, both representations
have exactly the same classification accuracy when no additional pruning is
applied8. In order to make a fair comparison between the two representations,
we had to make a few minor adjustments though:

8 This is confirmed experimentally as well.
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1. Each internal node of the decision tree constructed by FC4.5 keeps a training
weight, a distribution, and a possible classification, information that is later
used for decision making. In our decision graph implementation, the inter-
nal nodes do not contain any such information. They just contain informa-
tion about the attribute they represent. Only the leaves keep a classification
distribution d(C). Both representations use the same type of distributions,
the frequency based distribution presented in [Section 3]. Additionally, we
take into account unknown attribute values by using counts less than one
in the distributions [Ruggieri 2002]. Due to these simplifications, the repos-
itory is able to identify (and reuse) equivalent sub-graphs without loosing
any information.

2. As a consequence of (1), the decide operation used for both decision graphs
and decision trees is a simplified version of decide as implemented in the
FC4.5 algorithm. For example, when a test attribute value is missing, the
test data is passed to all the children of the current node without taking
into account the partitioned weight of the children. Because of this sim-
plification, we expected to lose in classification accuracy when comparing
the results with the pure unmodified FC4.5 implementation. However, the
accuracy remained the same in all experiments. This observation justifies
the simplifications presented in (1) where we neglect additional information
kept in the internal nodes.

3. A continuous attribute Ai can be partitioned into different intervals in dif-
ferent branches of the tree. In these cases, we consider each new partitioning
as a new categorical attribute and also coming with a new selection oper-
ator. Having the same partitions for the same continuous attributes yields
to the same categorical attributes. Therefore, the merge of two continuous
attributes is reduced to the merge of two categorical attributes (recall to the
[Section 3.4]). As we will see when we discuss our experimental results, this
drastically reduces the chance for the repository to identify redundancy due
to equivalent sub-graphs in datasets where many continuous attributes are
used.

6.1.3 Assessment Sizes and Times of Decision Trees and Graphs

In this section, we present the result of the first experiment. Our decision graph
implementation recognizes identical subtrees and makes sure that we only keep
one such instance. Thus, we expect our graphs to contain fewer nodes than the
corresponding decision trees.

[Fig. 8] displays two bars for each dataset for comparing the number of nodes
in the decision graph (right) with the tree size (left, always scaled to 100%). For
example, Bars 1 (ionosphere) show that our decision graph has the same size as
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Figure 8: The percentage of reduced nodes and leaves compared to the total tree
size (100%)

a corresponding decision tree whereas Bars 2 (cancer-wisconsin) show that our
decision graph contains only 36% of the nodes of the corresponding decision
tree, indicating a 64% node reduction when using graphs rather than trees. The
overall result, an average node reduction of 44%, indicates that much memory
can be saved by using our decision graph representation.

Each bar in the chart is also divided into two parts separating internal nodes
from leaves. When comparing the number of internal nodes in the tree bars
with the corresponding graph bars, we see that, in most cases, the numbers
are almost the same, indicating that a majority (98%) of the reduced nodes are
leaves. The result has two reasons:

1. A large part of the removed leaf nodes are bottom leaves representing attribute
value combinations not covered by any instances in the dataset. Although
associated with different weights, a majority of these leaves could be re-
moved. The remaining part of the removed leaves are due to non-empty,
but identical, distributions.

2. The internal node reduction is quite small (4%). The major reason is that we
treat different interval partitions of continuous attributes as entirely different
attributes. Hence, the possibility of identifying identical subtrees in these
cases is very low. This explanation is supported by the observation that in
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Figure 9: Times of learning and deciding based on a decision graph as % of
decision tree (100%)

datasets where we are using mainly categorical attributes (2,11,12,14) , we
have a larger internal node reduction. For example, case 11 (nursery) has a
reduction of 37%.

Additionally, we measured the time for construction the decision trees (DT)
and decision graphs (DG) and also the time used for classifying (decide) a fixed
number of instances for each dataset. The time was measured in milliseconds
but, we have used a relative measure (DG.Time/DT.Time) in order to simplify
the comparison. The result presented in [Fig. 9] shows that the decision graph
implementation is faster in almost all cases. The only exception is the graph
construction in the case 13. The average construction and classification time for
decision graphs is about 19 and 20% less than for decision trees, respectively. The
reduced classification time for decision graphs is at first glance a bit surprising
given that the number of selections in both cases are the same. However, this
is likely due to a reduced strain on disk cashes and the hierarchy of memory
cashes due to the reduced memory usage in the smaller graphs.
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Figure 10: Pruning of the decision function d f 3

6.1.4 Assessment of Accuracy and Times of Approximated Decision Trees
and Graphs

In a second experiment, we compare the accuracy of k-approximated decision
graphs with post-pruned decision trees. We also compare the time required for
learning followed by pruning of decision trees with the time required to learn
directly to k-approximated decision graphs.

The post-pruning in the FC4.5 implementation uses a so-called reduced
error pruning strategy [Quinlan 1987b], a rather complicated process where in-
ternal nodes of a fully grown tree are removed one at a time as long as the
error is decreasing. In fact, the algorithm selects particular subtrees and re-
places them with single leaves assigned the most common classification value
corresponding to the highest class distribution on the roots of these subtrees
[Witten and Frank 2005]. [Fig. 10] shows an example of the reduced error prun-
ing of the previously introduced decision function d f 3. The right subtree rooted
in x2 is pruned and replaced by the most common classification value 2.

Our k-approximation is, in contrast, a very simple process, where we merge
the leaves of all subtrees below a certain depth k, cf. [Section 5.1.3]. Notice
that although the approximation takes place during the learning process, it is
some kind of post-pruning approach since we merge the leaves of fully grown
branches, unlike pre-pruning which can suffer from premature termination of a
tree-growing process. In fact, by carefully observing k-approximation and a re-
duced error pruning strategy the pruning basically performs a k-approximation
over particular subtrees chosen by the pruning algorithm. In our experiments,
we used the depth of the pruned decision trees to decide k used in the k-
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Figure 11: The accuracy gained by pruning decision tree and using k-
approximation

approximations. After the pruning over the 16 decision trees was performed
by FC4.5 algorithms, we measured the depths of the pruned decision trees and
took them as an input k1, . . . k16 parameters to our k-approximation procedure
over 16 decision graphs. [Fig. 11] shows the results of the accuracy comparison.

For each dataset (1–16) we have four bars. The first three show: 1) the accu-
racy (%) of the decision tree before pruning (denoted DT), 2) the accuracy of the
pruned decision trees (denoted PDT), and 3) the accuracy of the k-approximated
decision graphs (denoted KDG). On top of each PDT bar, we show the depth k
of the pruned decision tree; this is also the depth of the corresponding KDG. Fi-
nally, the fourth bar shows the results of an improved k-approximation referred
to as KDG2. Here we decrease the depth k step-by-step as long as the accuracy
increases (the classification error decreases). The fourth bar shows the KDG2
accuracy along with the final depth as the number on top of that bar.

Firstly, the results for the two approaches (PDT and KDG) are quite similar.
On average, the pruned decision trees outperform the k-approximated graphs
by only 0.04%. This is a bit surprising given the difference in complexity of the
two approaches.

Secondly, in a number of datasets (1,10,11,12) the depth of the pruned trees
remains unchanged. Consequently, no k-approximation is applied and the re-
sults for DT and KDG are the same. At least for datasets 10 (waveform), the
second approximation strategy leads then to improvements: it reduces the size
of the decision graph considerably and reaches the accuracy of pruned decision
tree, cf. PDT vs. KDG2.

Thirdly, there are case where KDG and KDG2 are more accurate that PDT
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Figure 12: Learning and approximation times of decision graphs as % of decision
tree (100%)

(3, 12, 14). For example, dataset 14 (connect-4) indicates that the accuracy of
the decision tree before pruning was 92%, after pruning - 88%, k-approximated
accuracy - 92% with k=19, and k-approximated accuracy - 91% with k= 16. There
are also other cases where pruning is not improving accuracy at all and cases
where PDT is more accurate than KDG and KDG2.

Regarding the learning and pruning/approximation times, the results are
non-ambiguous again. In the time measurements, we have used the same
relative metric as in [Section 6.1.3]. [Fig. 12] shows that the learning of k-
approximated decision graphs clearly outperforms the joint procedure of learn-
ing and pruning the decision trees by up to 50%. On average, the k-approximated
approach requires about 21% less time than the tree pruning approach.

6.2 Accuracy of Learning by Merging Decision Functions

In [Section 4.1] we showed that merging of a series of probably accurate decision
functions gives a new decision function that is tendentiously more accurate. In
this section we present an experiment of merging a series of decision graphs
which confirms our theoretical observations.

1215Danylenko A., Lundberg J., Lowe W.: Decisions: Algebra, Implementation ...



Table 2: Dataset Characteristics

Id Dataset Training Instances Attributes Accuracy(%)
1 audiology 200 69 81
2 monks 415 6 61
3 balance-scale 438 4 71
4 tic-tac 749 9 83
5 car 1728 6 95
6 mushroom 6494 22 100
7 nursery 11164 8 95
8 chess 28042 6 74

6.2.1 Data Selection

This experiment is performed on 8 different benchmark datasets from the
UCI Machine Learning Repository [Frank and Asuncion 2010]. Notice, that the
datasets chosen for this experiment differ from those we selected before. This is
because we were only interested in datasets with categorical attributes. There-
fore, we took two datasets from previous experiments (nursery and chess) and
added six new datasets. We only selected datasets with a number of learning
instances ≥ 200.

The selected datasets are presented in [Tab. 2] sorted in ascending order of
the number of training instances. In addition to the dataset names, the table also
gives the number of training instances and the number of attributes. The last
column (Accuracy %) shows the accuracy gained by learning over a complete
dataset using FC4.5 algorithm for decision graphs.

6.2.2 Assessment of Accuracy of Merged Decision Graphs

For this experiment, each training set was divided into eight smaller sets. For
each small set (1/8 of a complete dataset), a decision graph was learned, refer
to as regular decision graph. The accuracy of all regular decision graphs was
measured with regard to the same common test set.

For each training set, we merged the regular decision graphs step by step
using the apply algorithm discussed in [Section 5.1.2] which, in turn, uses
the merge operator � over the distributions on the leaves explained in [Sec-
tion 3.4.1].

The accuracy of the merged decision function depends on the order in which
the regular decision graphs are merged. For each training set, we computed all
permutations of its 8 regular decision graphs (40 320 permutations for each
training set) and regular decision graphs in the order of their occurance in the
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Figure 13: Average accuracy (%) of the merged decision graph, decision graph
learned over 1/8 of a dataset (Regular dec. graph) and a line of 100% accuracy

permutations. Measured the accuracy for each step and computed an average
accuracy after each merging step.

[Fig. 13] displays for each dataset the average accuracy growth of the merged
decision graphs (blue plot) after each step and the average accuracy of the reg-
ular decision graph (green line) with regard to the accuracy gained by learning
over the complete dataset. That is the merged accuracy and regular accuracy
calculated at each step is divided by the complete set accuracy. As predicted
by [Theorem 13], all charts show that on each step the accuracy of the merged
decision graph tendentiously grows. For example, the accuracy growth for ”au-
diology” is 5.5% (from 62.5% till 68%), while the accuracy of the regular deci-
sion graph is around 62.5%. The highest accuracy growth is 16% for the ”chess”
dataset, and the lowest is 2.5% for ”nursery” dataset. Moreover, for all datasets
we can see that the merged accuracy slowly growth towards 1̈(̈red line), i.e.
towards the result that a decision model gives when learned over a complete
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Figure 14: Positive permutations and the number of positive results per permu-
tation.

dataset.
For each dataset, we calculated the average number of accuracy growth steps

per permutation (the number of steps per permutation when the accuracy of the
merged decision function grows by merging) and the permutations with accuracy
growth (percent of permutations with more than halv of the steps are accuracy
growth steps).9

[Fig. 14] shows the results for each dataset, cf. dataset identifiers in [Table 2].
Numbers above each bar give the permutations with accuracy growth and the
accuracy growth steps (in phases). For instance, Bar 8 (”chess”) show that 100%
of the permutations have at least 4 merging steps leading to accuracy growth;
on avarage about 5 merging steps per permutation lead to accuracy growth.

The overall result indicates that merging decision functions gives a new
decision function that is tendentiously more accurate and, therefore, we could
define a general online learning approach based on merging decision functions.

6.3 Complexity Bound of the Decision Models

Depending on the strategy and the problem to solve, resulting decision mod-
els differ in speed of learning and deciding, their memory consumption, and
their decision accuracy. Therefore, the decision models to be applied are usu-
ally chosen based on the problem domain, sometimes even on the sample
data [P.-N. Tan and Kumar 2005, Nilsson 1996]. Our previous work practically
compared the memory and decision overheads of different decision models

9 Notice, that the total amount of merging steps is seven, since on the first step we do
not merge the decision graph.
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along with the decision accuracy in a specific problem taken from the context-
aware composition domain [Danylenko et al. 2011] .

However, upper bounds on memory and decision overheads of the decision
model can be determined regardless of the specific problem domain. Below we
present such bounds for the decision models discussed in this paper: dispatch
tables, decision trees, decision graphs, and Naı̈ve Bayes classifier.

6.3.1 Decision Tables

Decision tables are implemented as n-dimensional arrays, n the number of con-
text attributes. Each dimension i contains entries corresponding to the sample
values of the context attribute Ai. Thus, the memory consumption M of the
Dispatch Table can be approximated from below by

M = size ×mn

where size bytes are necessary to encode all variants in C, and m is the minimum
number of samples of any of the context attributes.

Each access to an n-dimension array is basically an access to a 1-dimensional
array requiring some offset calculations:

offset = base address + (((d1 × |A1| + d2) × . . . |An−1| + dn−1) × |An| + dn) × size,

where di is the index and |Ai| the sample size of the context attribute Ai. Therefore,
a decision time for an n-dimensional Dispatch Table can be estimated as

T(n) = (log × k + n) × T f lop + (n − k + 1) × Taa + c,

where k is the number of continuous attributes, log is the number of floating
point operations for calculating the logarithm10, Tf lop is the time for a flop, Taa

is the array access time, and c is a constant time used for small operations.

6.3.2 Decision Trees

Decision trees encode context attributes in the inner nodes. Each outgoing edge
of such a node corresponds to a value (or value range) of the context attribute.
Each path from the root node to a leaf in the Decision Tree represents actual
context values leading to a classification result.

In the worst case, the memory required for capturing the Decision Tree is
even larger than for the corresponding table: k leaves if the table has k entries, and
(almost) k inner nodes. This size reduces when the decisions are approximated.

10 Many processors provide the integer log2 in a single instruction in hardware; in our
Java implementation we need 21 flops.
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It can also be reduced if all paths from an inner node lead to the same decision
(making this whole subtree redundant). Hence, the memory consumption is

M = size × edges,

where edges is number of edges in the tree (assuming that size bytes are even
sufficient to encode all different nodes).

The number of tests necessary to reach a leaf is equal to the depth of the
Decision Tree. This depth varies around the number n of context attributes: for
discrete context attributes it is at most n; continuous attributes can even occur
several times on the path due to data partitioning. So, generally, the decision
time is depth × Taa and we approximate

T(n) ≈ n × Taa + c.

6.3.3 Decision Graphs

Decision graphs represent decision trees in a compact way by eliminating re-
dundant subtrees. In particular, graphs are a generalization of Ordered Binary
Decision Diagrams (OBDDs) [Bryant 1992, Bryant 1986], known as a compact
representation of Boolean functions. In practice, they reduce the exponential
memory consumption of table representations of these functions to acceptable
sizes. Generally, decision time and worst case memory size of graphs are the
same as for Decision Trees. Thus, the worst case memory and look-up overhead
for decision trees and decision graphs are equal, but, due to the elimination of
redundancies, the size is expected to be considerably smaller in practice. This
assumption is evaluated in our experiments in the next section.

6.3.4 A Naı̈ve Bayes Classifier

Naı̈ve Bayes naively assumes conditional independence of the context attributes
from each other using a simple classification method which classifies an item by
determining a probability of its belonging to a certain class c ∈ C [Mitchell 1997].

Naı̈ve Bayes can be specified as set of probabilities that are accessed during
classification for computing the most probable variant. For a discrete attribute
Ai, the probability is stored in an array with |C| × |Ai| elements; for a continuous
attribute, a mean and a variance are computed and stored in two arrays of size
|C|. So the memory consumption with k continuous attributes is

M = |C| × size × (2k + 1 + (n − k)
(n−k)∑
i=1

|Ai|).

A decision using a Naı̈ve Bayes classifier takes quite some time: it requires 4 flops
for each discrete attribute and 88 flops for each continuous attribute (including
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mathematical operations computing Gaussian) for each possible class. Thus, the
decision time is estimated as

T(n) = (4n + 84k) × T f lops + (2n + k) × Taa + c.

Based on these theoretical bounds, we cannot decide which decision model
to prefer. It depends on the bias between acceptable decision time and memory
overhead, and on the concrete problem, i.e., the number of attributes, sample
points etc. However, once the number of attributes and the sample data points
are decided, the above approximations can be used to (pre-)select a preferred
decision model using a common DA interface.

7 Related Work

Best to our knowledge, there is no common unifying theory that specifies the
common abstract decision model that allow knowledge combination and reuse
between different application domains. Although there exists a variety of sys-
tems that provide the analysis engines for capturing and processing large vol-
umes of decision information. They are usually available as stand-alone appli-
cations for data analysis and as data mining or machine learning engines which
can be integrated to the third-party applications. The examples of such tools are
Weka Toolbox [Hall et al. 2009] and Rapid Miner [Rapid Miner 2007]. Weka is a
widespread collection of machine learning algorithms for data mining analysis.
Rapid Miner is the open-source system for data and text mining that contains
methods for web mining, opinion mining, sentiment analysis, etc. The main
scientific benefit of such systems is the clean, object-oriented class hierarchy
that provides the common general interface from which different decision mod-
els can be instantiated. Such interface specifies operations for data processing
including routines generating a decision model from decision information and
testing it on an unseen dataset. Even thought each tool introduces a general
implementation interface, it still varies on the set of operations which is usually
limited to construction and evaluation of decision model. This limitation does
not allow to combine or modify decision models.

At the same time, there exists a great variety of algorithms and data structures
(most commonly modifications of decision trees and decision tables) for learning
and capturing classification information. Generally, a modification of these data
structures comes with a modifications of a corresponding learning algorithm.

Several variants approach the so-called fragmentation problem, a result of
replications as discussed in [Nilsson 1996]. One suggested approach uses deci-
sion tree nodes switching on combinations of attributes. For instance, Lam and
Lee [Lam and Lee 2004] present a method for building classification models by
using correlation analysis of attributes (identifying so-called functionally de-
pendent attributes). Similar ideas are presented in [Pagallo and Haussler 1990,
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John 1994]. Vilalta et al. [Vilalta et al. 1997] investigate top-down decision tree
construction and prove theoretically and empirically the significance of the
fragmentation problem in the learning process. To overcome this problem they
choose the best out of a number of possible attribute orderings by assessing their
results against all training examples, and thereby avoiding a misclassification
of examples for which only little support is found.

Friedman et al. [Friedman et al. 1996] present lazy learning, an algorithm
which tries to construct the best decision tree for a given decision domain by
basically keeping the information of each training instance. However, this algo-
rithm requires a lot of memory when using the classical decision tree structure.
Keeping the information in our decision graphs might be more memory effi-
cient.

Oliver presents decision graphs similar to ours as a modification of decision
trees [Oliver 1993]. However, Oliver had to invent a completely new learning
algorithm. In contrast to Oliver’s approach, our graphs are learning algorithm
independent and can substitute decision trees as used by any tree construction
algorithm.

Quinlan [Quinlan 1987a] merges different decision trees and extracts propo-
sition rules from an already generated decision model in order to eliminate
unused conditions replicated in different paths of the tree. Sets of decision rules
for the same data domain are merged in order to increase accuracy of a classifier.
However, the rules have to be extracted from decision trees and their merger
has to be implemented somehow, e.g., in a decision tree again. In contrast, our
merge operator can be applied directly to decision trees or graphs. On the other
hand, it is not guaranteeing improved accuracy.

Perner [Perner 2011] addresses the issue of comparison of decision trees
that represent the classification models of the same problem domain. It arises
when two different data sets for one problem are available or when the data
set is collected in temporal sequence. In order to compare different decision
trees the author proposes an approach of decision rules extraction followed by
computing the similarity measure between several sets of rules. In fact, decision
function properties such as equivalence and redundancy complemented by
evert operation discussed in our paper can allow us to identify similarity in
different classification models. In contrast to our work focusing on unification
of operations , Perner puts more effort to identifying the specific steps for
classifiers having a concrete tree representation.

Bonatec et al. [Bohanec and Bratko 1994] addressed the problem of simpli-
fying decision trees, possibly at the expense of accuracy, so that the simplified
decision tree still represents the problem domain ”sufficiently” well. The chosen
simplification method is tree pruning, where the approach is to find the smallest
pruned tree with some specified accuracy rate. This was achieved by generat-
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ing a dense sequence of the pruned trees, decreasing in size, where each tree
had the highest accuracy among the pruned trees with the same size. Similar
to our k − approx Bonatec et al. have traded the accuracy for the simplicity of a
classification model (represented in their case as decision tree). However, they
have to develop a new algorithm, which had to be an add-on to the current
pruning algorithm, and specify a certain accuracy threshold. In contrast, our
k − approx approach does not require any adopted pruning algorithm since it
is executed during the learning process and the only parameter it needs is the
required depth of the resulting tree.

A theoretical framework for system model checking non-finite aspects of a
system is presented by Mokhtari et al. [Mokhtari et al. 2008]. Similar to ours,
it is based on higher order functions for defining Multiway Decision Graphs
(MDG). The goal is to overcome the OBDD binary representation limitations for
a certain class of many-sorted first-order logic formulae. Essentially, it is a BDD
generalization with signatures for MDG construction, evert, merge, and pruning
operations, however, tailored to applications in system model checking.

In addition, there are many approaches suggesting different modifications
of decision trees and tables data structures ([Kargupta and Dutta 2004, ]).

Finally, our decision graphs are a generalization of χ-terms [Trapp 1999],
capturing context-sensitive program analysis results, and Ordered Binary Deci-
sion Diagrams (OBDDs) [Bryant 1992, Bryant 1986] representing propositional
logics formula in a compact way. χ-terms define merge and approx but not ev-
ert, while OBDDs (and their generalizations to multi-valued and multi-target
decision diagrams) lack a natural definition of merge and approx.

7.1 R3 Rational for Choosing Decision Model

In [Section 2] we presented the rationales for applying specific decision mod-
els in particular problem domains. Among four different rationales, we par-
ticularly mentioned rational of non-functional properties of a decision model
(performance or representation properties), which, unfortunately, is the least
frequently used. In this section, we present a short overview over the papers
which use this particular rational to choose a decision model for solving Com-
puter Science research problems.

In [Bonnel et al. 2011] the authors proposed an Information Retrieval (IR)
Interface (IRI) evaluation framework aimed at evaluating the suitability of any
IRI to different IR scenarios. In this work the authors used decision trees as a
decision model to identifying scenarios in which the particular IRI is effective.
The decision trees model was chosen based on its simplicity in representation,
interpretation, and rules extraction.

In [Zulkernain et al. 2010] the authors propose an architecture to the system
that automatically administrates personal unavailability with regard to the cell
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phones in order to manage cell phone disruptions. Decision making process
is based on the decision trees model in order to process a data from phone’s
sensors and activate a corresponding correct action. The rational for choosing a
decision tree is its cheap computational complexity at runtime, and its suitability
to a discrete set of a small number of outcomes.

[Chamlertwat et al. 2012] propose a system which automatically analyze
customer opinions from Twitter micro-blog service based on sentiment analysis.
As a decision model that classifies each tweet into ”opinion” or ”non-opinion”
the authors used Support Vector Machines (SVM). The reason is the results
gained in their previous study that showed that SVM give the best performance
in terms of accuracy for filtering opinion tweets.

In [Min Lee et al. 2011] a span detection model which enables parameter
optimization and optimal feature selection in order to improve an accuracy
of detection has been proposed. In order to maximaze the detection rates the
authors used Random Forests decision model. This algorithm is chosen based
on its characteristics in terms of execution speed for high-dimension data.

[Garcia Rosa and Adan-Coello 2010] propose a symbolic-connectionist hy-
brid system that predicts the thematic roles assigned to the word in a sentence
context. The authors use a symbolic connection hybrid decision model that is
constructed based on Neural Networks. The main reasons are a short training
time and a possibility of simple extraction of symbolic knowledge.

Finally, [Dvořśk and Mikušek 2010] present a computer-aided technique for
design of digital systems that can produce representations of arbiters and allo-
cators in a form of a Multi-Terminal Binary Decision Diagram (MTBDD). The
representation in terms of MTBDD has been chosen based on its compact and
non-redundant representation characteristics for Boolean functions.

Its interesting that only 11% of studies refer to the non-functional require-
ments of decision models. As we discussed before, this may be caused by the
fact that benchmarking and adopting decision models for a specific problem
domain is a non-trivial task. Therefore, such solution as a generalized DA can
benefit the way of choosing a specific decision model.

8 Conclusions and Future Work

In this paper, we define Decision Algebra, a theoretical framework for learning
and capturing decision information, which is applicable in different fields of
Computer Science including (but not limited to) Data Mining and Program
Analysis. This unification allows comparing results from different domains and
benefiting from the improvements across domain boundaries.

It shows that DA can be used to formalize classical approaches in Data Min-
ing addressing the typical classification problems of fragmentation, replication,
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and model overfitting. In fact, classical data structures used in classification (e.g.,
decision trees and tables) and variants thereof as exploited in special learning
and classification algorithms can be understood as DA instances by varying the
implementations of the DA operations.

To demonstrate this, the paper presents DA generalization specification
along with two DA implementations: decision trees and decision graphs. The latter
was inspired by similar data structures from other fields of Computer Science
(compiler optimization) demonstrating the possibility of inheriting improve-
ments from other domains due to our unifying theory.

We could map DA operations to decision graphs and decision trees in a
straight-forward way. As most DA operations could be defined on a general de-
cision function level (regardless of their implementations in trees and graphs),
the comparison of the two variants is rather fair showing advantages and dis-
advantages of the data structures instead of advantages and disadvantages in
different implementations thereof.

On the practical side, our experiments show benefits of decision graphs
compared to decision trees regarding memory resource and time utilization as
detailed below.

First, we show that, without losing accuracy, decision graphs reduce the
memory consumptions of decision trees by 44% (on average over a number of
standard datasets). The reduction is largely caused by the elimination of redun-
dant leaves, but also replicated and redundant decision (sub-)trees contribute to
the memory reduction. Redundancy increases (and with it the potential saving
of our redundancy elimination) as decision graphs avoid keeping additional
information in internal nodes. Such internal information can be different for
different (otherwise identical) subtrees. The absence of such information does
not influence the classification accuracy as proved by our experiments. Also
worth mentioning is that the reduction appears to grow with the number of
categorical attributes and with the size of (number of instances in) the dataset.

Second, k-approximated decision graphs and pruned decision trees have
almost equivalent accuracy. As opposed to, e.g., error based pruning, the k-
approximated decision graphs do not apply any complex statistics calculations
in the leaves and simply merge classes in a fully grown tree branch. This means
that using k-approximated decision graphs allows avoiding additional costly
post-pruning.

Third, the time for decision graph construction shows a decrease by 19%
compared to the time for decision tree construction. Furthermore, the time
measured for classification using decision graphs was 20% less than in the
corresponding decision trees. This is the result of less strain on cashes due to
the memory reduction in decision graphs. The time for learning followed by
pruning the decision tree compared to learning directly to the k-approximated

1225Danylenko A., Lundberg J., Lowe W.: Decisions: Algebra, Implementation ...



decision graph decreased by around 21%. This result supports our statement
about avoiding post-pruning operations mentioned above.

Moreover, theoretically and experimentally we show that merging of a series
of probably accurate decision functions gives a new decision function that is
tendentiously more accurate. The experiment result of merging decision graphs
showed lowest accuracy growth of 2.5% and highest of 16%.

DA is only a first attempt towards a unifying theory in classification and our
decision graph based implementation is still a prototype. Quite a few theoretical
and implementation aspects should be considered in future work. This includes
theoretical and practical modifications of the learning process to enable efficient
online learning with high accuracy. More specifically, we seek improving the
implementation of the add operator of DA, which, in turn, allows joining differ-
ent classification models from the same data domain and thereby performing
an iterative learning. Also, we will investigate how the reordering of attributes
(using the evert operation) performs and influences the size of the graph. More-
over, future work should specify other than tree-based and probability-based
decision models as instances of decision functions including support vector
machines, neural networks, etc.
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A Generalized Weak Law of Large Numbers

For our main result, the convergence of mergers of decision functions towards
the accurate one, we need to establish the following

Lemma 14. Let X1, . . . ,Xn be a series of independent, identically distributed random
variables with E(X1) = μ and finite variance Var(X1) ≤ σ2. Define the weighted average
of the Xi:

An =

∑n
i=1 Xi ×Ni∑n

i=1 Ni
,Ni > 0.

It holds for the expected value and the variance, resp., of these weighted averages:

E(An)=μ (1)

Var(An)≤σ2 (2)

lim
n→∞Var(An)=0. (3)

Proof.

E(An)=E
(∑n

i=1 Xi ×Ni∑n
i=1 Ni

)

=
1∑n

i=1 Ni
E

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

Xi ×Ni

⎞⎟⎟⎟⎟⎟⎠
=

1∑n
i=1 Ni

n∑
i=1

E(Xi) ×Ni

=
1∑n

i=1 Ni

n∑
i=1

μ ×Ni

=
μ∑n

i=1 Ni

n∑
i=1

Ni

=μ
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which proves [Equation 1]. Further

Var(An)=Var
(∑n

i=1 Xi ×Ni∑n
i=1 Ni

)

=
1(∑n

i=1 Ni
)2 Var

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

Xi ×Ni

⎞⎟⎟⎟⎟⎟⎠
=

1(∑n
i=1 Ni

)2

n∑
i=1

Var(Xi) ×N2
i

≤ 1(∑n
i=1 Ni

)2

n∑
i=1

σ2 ×N2
i

≤
∑n

i=1 N2
i(∑n

i=1 Ni
)2 σ

2

To see that this term is less or equal σ2 [see Equation 2], and approaches zero
for large n, [see Equation 3], we rewrite its first factor:∑n

i=1 N2
i(∑n

i=1 Ni
)2 =

n∑
k=1

N2
k(

Nk +
∑n

i=1,i�k Ni

)2 =

n∑
k=1

N2
k

N2
k + 2Nk

∑n
i=1,i�k Ni +

(∑n
i=1,i�k Ni

)2

and note that for each k, it holds
∑n

i=1,i�k Ni > 0 for Ni > 0, proving [Equation 2],
and

∑n
i=1,i�k Ni approaches infinity for large n, proving [Equation 3]. �

From Lemma 14, it immediately follows that the weighted averages An con-
verge in probability to their expected values μ:

Lemma 15. Let An be weighted average of a series X1, . . . ,Xn of independent, identi-
cally distributed random variables with E(X1) = μ and finite variance Var(X1) ≤ σ2.
Then for any ε > 0

lim
n→∞P(|An − μ| ≥ ε) = 0.

Proof. Due to Chebyshev’s inequality, P(|X − μ| ≥ kσ) ≤ 1/k2, or P(|X − μ| ≥ ε) ≤
1/ε2σ2 (when choosing ε = kσ), we have:

lim
n→∞P(|An,c − μ| ≥ ε) ≤ lim

n→∞
1
ε2 Var(An),

when choosing X = An, σ2 = Var(An). This converges to zero for large n as
Var(An) does according to Lemma 14. �

Lemmata 14, 15 and their proofs are similar to the weak law of large numbers
stating that under the same conditions the unweighted sample average of real
valued random variables converges in probability towards the expected value.
In fact, it is a special case with weights Ni = 1, which we use in the following
(obvious, hence unproved) corollary.
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Corollary 16. Let D1, . . . ,Dn be a series of independent decisions, identically dis-
tributed from a classification distribution d : C → R with expected values E[D1 =

c] = pc and variances Var[D1 = c] = pc(1 − pc) for any decision c ∈ C.11 Let An,c be
the (un-)weighted average of D1, . . . ,Dn of these decisions with equal weights N1 = 1.
Then it holds:

E(An,c)=pc

Var(An)≤pc(1 − pc)

lim
n→∞Var(An,c)=0

lim
n→∞P(|An,c − pc| ≥ ε)=0 for any ε > 0.

Overall, this Generalized Week Law of Large Numbers can be used as a supple-
mentary material to the text presented in [Section 4] regarding the accuracy of
learning by merging decision functions.

11 Expectation and variance of standard classification distributions; [·] the Iverson bracket

with [cond] =
{
1 if cond
0 otherwise
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