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Abstract: Business processes can use Internet of Things (IoT) information to monitor
context data in real-time and to respond to changes in their values in a timely fashion.
For this matter, business process definition and execution languages should foresee an
easy way for process modelers to define which values to monitor, and which automatic
behaviors to adopt when these values change. In this paper, we propose the use of
context variables to monitor sensor values, as well as a when-then language construct
to detect and handle changes in these values within business processes. We define a Web
Services Business Process Execution Language (WS-BPEL) extension to convey these
constructs, and implement then using a “BPEL language transformation” approach.
With these contributions, process modelers can define IoT-aware business processes
avoiding the increase of process complexity and keeping their focus on modeling the
processes’ main logic. In addition, the language transformation approach assures the
portability of processes using our constructs amongst WS-BPEL execution engines.
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1 Introduction

The Internet of Things (IoT) provides information about what is actually hap-

pening in the real world, in real time. Business processes can gain a competitive

advantage by using this information during their execution. For instance, in

[Jedermann and Lang, 2008], the authors present a case study that uses tem-

perature information to determine the final destination of strawberry pallets,

considering their remaining shelf life.

Following a more reactive paradigm, business processes can monitor real

world information and get notified about context (e.g., environment) changes

[Predic and Stojanovic, 2012]. With context information, business processes can

even automatically change their execution to react to new conditions, as soon as

they happen [Zhang et al., 2012]. In the strawberry example mentioned above, it
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would be possible to define a logistics business process to automatically change

the delivery route or the destination if the strawberry temperature rises above

a threshold during delivery.

To facilitate the access to IoT information and functionalities, recent works

expose them as web services that can be implemented directly in the sensor de-

vices or in a middleware layer [Zeng et al., 2011]. The service-oriented approach

has the advantage of enhancing interoperability and of encapsulating hetero-

geneity and specificities of sensor devices, such as communication protocols.

The web services business process execution language [OASIS, 2007] (WS-

BPEL) is the de facto standard language for defining processes through orches-

tration of web services. Using web services, sensor information can be easily

integrated into processes via a synchronous request/reply paradigm.

However, if processes need updated information about environment changes,

modelers have to include ad hoc operations to the process definition to handle

such requirements. For instance, to obtain sensor information periodically, mod-

elers need to explicitly program this (often cumbersome) behavior, deviating

their modeling focus from the main process logic. Moreover, WS-BPEL lacks a

native mechanism to monitor variable changes, so it makes it difficult to define

processes that react to environment changes. Current approaches extend WS-

BPEL with context variables that are automatically aware of changes to sensor-

reported values. They also accommodate new language constructs to handle ex-

pected exceptions. However, these approaches implement WS-BPEL extensions

by changing the WS-BPEL engine behavior, preventing process portability.

The work we present in this paper simplify the use of updated sensor context

information in business processes and enhance process reactivity. We define a

WS-BPEL extension with context variables that can be updated automatically.

We achieve this either through the synchronous request/reply paradigm using the

WS-ResourceProperties standard [OASIS, 2006b], or via the asynchronous pub-

lish/subscribe paradigm using the WS-Notifications standard [OASIS, 2006a].

Our extension also proposes a when-then new construct to handle expected ex-

ceptions. We realize this extension following a language transformation approach,

fully compliant with any WS-BPEL engine.

The paper is organized as follows: the next section presents an overview of

WS-BPEL and Section 3 describes a motivating scenario. Section 4 discusses

related work. In Sections 5 and 6 we define our WS-BPEL extension and its im-

plementation, respectively. To evaluate our approach we developed a prototype

and use business process metrics as described in Section 7. Finally, Section 8

concludes the paper and presents future work.
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2 Overview of WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) is the OA-

SIS standard executable language for defining business processes through web

service orchestrations [OASIS, 2007]. A business process definition includes two

elements: a WSDL file that describes the business process functionalities (web

services) with their message data structures, service addresses, among others,

and a WS-BPEL file that defines the business process logic.

WS-BPEL includes different types of activities, such as flow control activities

(If, While, Pick, Flow), communication activities (Receive, Reply, Invoke), as-

sign value activities (Assign), fault handlers (Throw, Rethrow), to name a few.

We can declare process variables of any primitive or complex types (a composi-

tion of primitive or complex types), and of message types. Message variables are

used almost exclusively in communication activities. Variables can be global or

local, if declared within a Scope.

Processes in WS-BPEL export and import functionalities by using web ser-

vices. Web services are modeled as partnerLinks, characterized by a partnerLink-

Type, which is defined in the WSDL definition. A partnerLinkType specifies the

role and the type of a partner. An input communication activity is associated

with the process’s MyRole and an output communication activity is associated

with the partner’s PartnerRole.

In order to distinguish process instances, WS-BPEL provides the correlation

mechanism. A correlationSet is defined by (1) the rule set (one per message

type) that determines the message fields used to identify an instance; and (2)

the primitive data type that will be used. The correlationSet is associated with

communication activities. Each correlationSet can be initialized once and, if we

use it in an Invoke activity, we have to define when the Correlation is estab-

lished: on the sending operation, upon response, or on both. The CorrelationSets

property defines, through XPATH, the message elements that identify uniquely

each conversation (i.e., each process instance).

The WS-BPEL standard foresees native extension mechanisms by allowing

namespace qualified attributes to appear in any WS-BPEL element, and by

allowing elements from other namespaces to appear within WS-BPEL defined

elements. In addition, WS-BPEL provides two explicit extension constructs: ex-

tensionAssignOperation and extensionActivity. All extensions used in a process

must be declared; this is made by inserting the namespaces associated with the

extensions into the Extensions construct language, along with the MustUnder-

stand attribute (values yes or no), which states whether the process execution

engine has to support the extension.

There are two different options to realize an extension [Kopp et al., 2011]

within WS-BPEL. The first one addresses a “WS-BPEL Language Transfor-

mation”, where extension constructs are translated into standard WS-BPEL
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Figure 1: Use case scenario with repeated sensor values checking

constructs. The generated standard WS-BPEL code can be deployed on a pro-

cess execution engine that ignores the extension. This option is only feasible if

new constructs are expressible with a set of standard constructs. The second

extension option goes for the “WS-BPEL runtime engine”, where the extension

is realized by changing the process execution engine in order to support the

additional functionalities.

3 Use case scenario

As a motivating scenario, we present a typical use case of perishable goods trans-

portation, such as strawberries. A distribution company receives client orders

and performs the transportation of goods. During transportation, the company

monitors the temperature and the humidity of the goods with sensors. If these

values change in such a way that it represents a threat to the good’s quality,

the company can, for instance, change the route to a faster one or change the

delivery destination to a closer client. To achieve this behavior using WS-BPEL,

process instances have to repeatedly get and check sensor values, as sketched in

Figure 1. In this example, process instances interact with both sensors using the

synchronous request/reply paradigm.
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Figure 2: Use case scenario with publish/subscribe sensor interaction

However, this interaction can be improved in case sensors make available

an asynchronous publish/subscribe interface that notifies process instances only

when a value change occurs. To receive sensor notifications, processes have to

previously subscribe them. If, in our use case scenario, we replace the request/re-

ply paradigm by the publish/subscribe paradigm, when process instances receive,

for example, a notification from the temperature sensor, they need to keep track

of previous humidity values in order to evaluate expressions that depend on

both readings (e.g., an if guard). In summary, the modeler needs to include

additional operations to subscribe temperature and humidity values, to receive

sensors notifications, and to keep an history of their previous values, as illus-

trated in Figure 2. Indeed, this additional behavior scatters process definitions

with new operations, increases process size and complexity, and diverts the at-

tention of the process engineer from the main business process logic.

4 Related Work

Current IoT technology exposes physical objects information and functionalities

as web services [Zeng et al., 2011]. Web services encapsulate heterogeneity and

specificities of physical objects and are well suited to the modeling languages
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that define business processes as service orchestrations, such as Business Process

Model and Notation (BPMN) [OMG, 2011] and WS-BPEL.

Traditionally, context information is obtained according to a synchronous

request/response paradigm, and business processes use it in predefined points.

They use context information to: (1) determine the services that compose pro-

cesses [Yu and Su, 2009]; (2) choose between multiple implementations for a

specific service [Ranganathan and McFaddin, 2004]; or (3) determine whether

a service should participate in future compositions [Karastoyanova et al., 2005].

Following a domain-specific language approach, some authors propose the ex-

plicit integration of IoT concepts into business process models. In [George, 2008,

George and Ward, 2008, Domingos et al., 2013], the authors extend WS-BPEL

with context variables. George and Ward define context as an environment

state, external to the process, whose value can change independently of the

process lifecycle, and can influence process execution. In [Meyer et al., 2013,

Meyer et al., 2012], the authors extend BPMN with seven new modeling con-

cepts (IoT Activity, Sensing Activity, Process Resources, Physical Entity, Real

World Data Object/Store, Mobility Aspect, and IoT Process Ratios). In partic-

ular, a Real World Data Object represents a temporarily stored data object of a

running process instance, which was generated by an IoT Device, while a Real

World Data Store represents persistent data.

In addition, we can find in the literature some works that automatically

synchronize context variable values with sensor information. They differ in the

interaction paradigm they use to communicate with sensors (synchronous re-

quest/reply or asynchronous publish/subscribe) and in the way they realize the

WS-BPEL extension: by using a “WS-BPEL Language Transformation” or a

“WS-BPEL runtime extension” [Kopp et al., 2011].

In [George, 2008, George and Ward, 2008], the authors propose the first IoT

domain specific WS-BPEL extension with context variables. They use WS-BPEL

language extension mechanisms by adding extension attributes to the standard

variable construct. These variables are updated using the publish/subscribe

paradigm following the WS-Notification standard. The authors realize their ex-

tension by changing the ActiveBPEL 4.1 engine [Informatica, 2014]. When a

process uses a context variable with an invoke activity, the engine performs the

subscribe operation and becomes responsible for updating the variable when it

receives notifications. They also use the Apache Muse tool [Apache Muse, 2014]

to handle subscription and notification operations and to distinguish process in-

stances. Despite this approach reduces the modeling effort, process definitions

must explicitly contain the invoke operation with the variable to trigger the sub-

scription operation. In addition, the portability of the extension is limited both

because it is a runtime extension and it depends on the Apache Muse tool.

To explicitly model context influence on workflows, in [Wieland et al., 2007],
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the authors propose Context4BPEL, a domain generic WS-BPEL extension de-

fined according to the WS-BPEL extension mechanisms. This extension includes

features to: (1) manage context events to allow the asynchronous reception of

events; (2) query context data; and (3) evaluate transition conditions based on

context data. Context4BPEL is also implemented as a runtime extension and

consequently needs adaptations to the process execution engine. Moreover, the

context information management depends on the Nexus platform.

In [Wieland et al., 2009], the authors propose a WS-BPEL extension that

includes reference variables, a concept similar to context variables. With this

kind of variables, services can exchange pointers to variables instead of their

values. Pointers are represented with EndPoint References (EPR). According

to the value of an attribute of the extension, references are evaluated (1) upon

activation of a WS-BPEL’s scope element; (2) before variables are used; (3)

periodically; or (4) through an event sent from an external service. This extension

is realized as a language transformation approach, replacing references with WS-

BPEL variables, inserting links to partners and interaction activities. Reference

evaluation depends on the Reference Resolution Service (RRS), a specific service

of the platform the authors propose.

Krizevnik and Juric [Krizevnik and Juric, 2012] extendWS-BPEL with data-

bound variables, which are automatically synchronized. They use Data Access

Services as data providers and implement their prototype as an extension of the

ActiveBPEL engine.

In [Domingos et al., 2013], we present our first approach to an IoT-aware

WS-BPEL extension with context variables. We realize it using a language trans-

formation approach and a publish/subscribe paradigm to interact with sensors.

Mateo, Valero, Dı́az [Mateo et al., 2012] formalize a fragment of WS-BPEL

together with Web Services Resource Framework (WSRF) to incorporate dis-

tributed resources into WS-BPEL. They provide an operational semantics (by

means of a label transition system) for their proposed language, which consti-

tutes an alternative approach to extend WS-BPEL in a formal way.

Business processes also need to handle exceptions to react to new conditions,

as soon as they happen. Unexpected exceptions require user intervention in order

to change a process instance, or even to change the process definition and, in some

situations, its running instances. Reichert and Rinderle address the problem of

how these changes can be realized in a correct and consistent manner in WS-

BPEL [Reichert and Rinderle, 2006].

Expected exceptions refer to predictable deviations from normal behavior of

the process. These deviations can be addressed directly by adding alternative

flow paths. WS-BPEL has some constructs with this purpose: Throw, Catch, and

Rethrow. As in the Java language, within its normal flow, processes can launch

exceptions using the Throw constructor. With the Catch construct, modelers
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define alternative flows to handle them. As the Throw construct is synchronous,

if the modeler wants to monitor the value of a variable, she has to add process

operations to periodically check it.

In the workflow domain, Event-Condition-Action (ECA) statements are used

to define the conditions to be monitored and the activities to be performed to

handle them [Casati et al., 1999]. For WS-BPEL, these statements are provided

by following two distinct approaches. The first one includes additional constructs

to the language. George and Ward add the conditionWithTimeout construct

to the WS-BPEL [George and Ward, 2008], while Domingos et al. propose the

when construct [Domingos et al., 2013]. George and Ward realize a runtime ex-

tension, while Domingos et al. propose their first step to realize a WS-BPEL

language transformation, still using however, the listeners of the Apache ODE

[Apache ODE, 2014] to detect variable values modifications. The other approach

specifies exceptional behavior with rule-based languages. Liu et al. support ECA

rules in WS-BPEL [Liu et al., 2007]. Zeng et al. propose a similar approach to

separate normal behavior from exceptional behavior [Zeng et al., 2005].

In this work we define a WS-BPEL extension with context variables that can

be automatically updated by using the synchronous request/reply paradigm or

the asynchronous publish/subscribe paradigm. This extension also includes the

when-then construct to handle expected exceptions. Unlike previous approaches,

we realize this extension following a WS-BPEL language transformation process.

This way, this extension is fully compliant with any WS-BPEL engine.

5 IoT WS-BPEL extension definition

Business processes can gain competitive advantage by using updated information

about real-world context that, for instance, can be provided by sensors. However,

with current business process modeling languages, to get, maintain, and monitor

this information, process modelers have to include several additional activities

to interact with sensors and to monitor their values.

The extension we propose includes two additional language constructs to

facilitate the use of context information within business processes: (1) context

variables to capture and to maintain sensor values automatically; and (2) a when-

then construct that monitors sensor data changes and specifies how processes

react to exceptional conditions.

Our extension builds on top of standard WS-BPEL extension mechanisms.

Its alias is iotx and we declare the mustUnderstand element set to no, as exe-

cution engines do not need to understand this extension, since it is a language

transformation extension as illustrated in Listing 1 (see details in Section 6).
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xmlns:iotx=”http://bpel.iot.extensions”
<bpel:extensions>

<bpel:extension namespace=”http://bpel.iot.extensions” mustUnderstand=”no”/>
</bpel:extensions>

Listing 1: Declaration of the extension and its namespace

<variable name=”BPELVariableName”
iotx:comunicationType=”request/response”
iotx:sourceEPR=”URL”
iotx:resourceProperty=”ResourceName”
iotx:refreshTime=”Time”

</variable>

Listing 2: Context Variable extension syntax for request/reply interaction

5.1 Context variable definition

Context variables simplify the access to context information within WS-BPEL

processes. We use the existent WS-BPEL variable construct to keep sensor val-

ues, and extend it with new attributes to automatically update their values. This

way, process modelers use the same language construct when declaring context

variables, and only have to complement the information regarding the original

variable construct.

We support two interaction mechanisms to automatically update variable’s

values. The first one updates the variable periodically using a synchronous re-

quest/reply interaction and following the WS-ResourceProperties standard. The

second uses an asynchronous publish/subscribe interaction according to the

WS-Notifications standard. Attribute communicationType stores this interac-

tion type used to update the variable, namely request/response or publish/sub-

scribe. For the sake of simplicity, we present additional attributes for each type

of interaction in two different Listings (Listing 2 and Listing 3).

The synchronous request/reply type of interaction needs additional attributes

to establish the communication according to the WS-ResourceProperties stan-

dard: the web service that provides the sensor information, the resource property

element, and the refreshTime that defines the update frequency of the variable.

For the asynchronous publish/subscribe interaction, the new attributes rep-

resent the information needed to establish the subscribe operation according

to the WS-Notifications standard: the web service that provides the subscribe

operation and the subscription topic.

Listing 4 illustrates the definition of the two context variables of our use case

scenario. The humidityVar variable is updated synchronously each five minutes,

while the temperatureVar variable is updated when the temperature changes are

triggered by sensor notifications.
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<variable name=”BPELVariableName”
cc iotx:comunicationType=”publish/subscribe”

iotx:publisherEPR=”URL”
iotx:topic=”Topic” ?

</variable>

Listing 3: Context Variable extension syntax for publish/subscribe

interaction

<bpel:variables>
<bpel:variable name=”humidityVar” type=”xsd:int”

iotx:comunicationType=”request/response”
iotx:sourceEPR=”http://192.168.1.52:8081/axis2/services/SensorService”
iotx:ResourceProperty=”Humidity”
iotx:refreshTime=”PT5M0S”/>

<bpel:variable name=”temperatureVar” type=”xsd:int”
iotx:comunicationType=”publish/subscribe”
iotx:publisherEPR=”http://192.168.1.52:8081/axis2/services/SensorService”
iotx:topic=”Temperature”/>

</bpel:variables>

Listing 4: Definition of context variables

5.2 The when-then language construct

We define the when-then language construct as a new WS-BPEL section, sim-

ilar to fault and event handlers. This construct implements a guarded activity.

It contains a condition and an activity, as shown is Listing 5. The activity is

executed when the condition becomes true.

Listing 6 exemplifies the definition of an expected exception with the when-

then construct. We use the temperatureVar context variable to define the when-

then condition. When its value is above 35, the sequence activity is executed.

The next section describes the realization of this extension using a language

transformation approach.

6 IoT WS-BPEL extension realisation

WS-BPEL extensions can be realized by following a language transformation ap-

proach or by changing the runtime engine, as previously mentioned. As we are

able to represent the new language constructs using existing WS-BPEL stan-

dard constructs, we follow the first approach. It has the advantage of being in-

dependent of the runtime engine, keeping processes more reusable and portable

<iotx: when standard−attributes>
<bpel:condition expressionLanguage=”anyURI”?>

bool−expr
</bpel:condition>

activity
</iotx:when>

Listing 5: When-then language construct syntax
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<iotx:when name=”temperatureCondition”>
<bpel:condition>$temperatureVar > 35</bpel:condition>
<sequence name=”test”>

<empty name=”empty1”> </empty>
<empty name=”empty2”> </empty>

</sequence>
</iotx:when>

Listing 6: Example of the when-then construct

Figure 3: Language transformation - request/reply interaction

between different WS-BPEL engines. The transformation includes changing the

WS-BPEL process definition. As it adds the invocation of external services to

obtain sensor data, we also have to create WSDL files to describe these services.

6.1 Context variables

Within the WS-BPEL file, our transformation replaces context variables by stan-

dard variables, removing the extension attributes. Furthermore, we add the part-

nerLinks we use to interact with sensors and the imports of the WSDL files.

In the following we detail the transformations we realize for context variables

considering each type of interaction.

6.1.1 Context variables with request/reply interaction

For context variables that use the request/reply interaction, our language trans-

formation adds, to the WS-BPEL process definition, the operations we need to

periodically request the sensor value and update the context variable. These

operations need to run in parallel with the activities of the original process defi-

nition. This way, we add them inside an eventHandlers section with an onAlarm,

which repeats according to the refreshTime attribute, as illustrated in Figure 3.

The sequence we define within the onAlarm includes an Assign activity to

initialize the message we use to send to the sensor. This message uses the infor-

mation of the ResourceProperty attribute of the context variable.
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Figure 4: Language transformation - publish/subscribe interaction

The invoke activity is used to get the sensor value by invoking the Ge-

tResourceProperty operation according to the WS-ResourceProperties standard.

This invoke activity uses two messages. The previous assign activity initializes

the first message, which is used as the request message. The other message is

used to keep the response.

Finally, the copyValueHumidityVar assign activity gets the value from the ge-

tResourceResponseHumidityVar message and updates the variable value. Taking

into account that the service we use follows the WS-ResourceProperties stan-

dard, we only need to import its WSDL file.

6.1.2 Context variables with publish/subscribe interaction

For context variables that use the publish/subscribe interaction, our language

transformation adds, to the WS-BPEL process definition, the operations we

need to perform the subscribe operations and to receive notifications in order to

update the process variable value.

We invoke the subscribe operation before the first activity of the process/s-

cope and we perform the reception of notifications in parallel with the activities

of the original process definition. We add the activities to handle the reception

of notifications inside an eventHandlers section with an onEvent (see Figure 4).

The subscribe operation is done with an Invoke activity. This activity calls

the publisherEPR defined in the context variable. As the subscribe operation is

a two-way operation, we define two variables: the inputVariable and the output-

Variable. Before the Invoke activity, we use an Assign activity to initialize the

message that the Invoke activity sends to the publisher. We format this message

according to the WS-Notification standard. The message is initialized with the

topic declared in the context variable and the EndPoint Reference (EPR) to

where the publisher sends notifications (the NotificationConsumer). The EPR

is generated by concatenating the process name with the name of the context
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Figure 5: Language transformation for the when-then construct

variable. The output variable is initialized in the Invoke response. As we start

the Correlation between calls to web services and the process instance within

the Invoke response, we declare its initialization here.

Processes receive notifications through an onEvent event handler. This event

handler uses a variable to store the notifications and the Correlation.

When the notification message arrives, the scope activity specified in the

corresponding event handler is executed. It includes an Assign activity to copy

the value of the notification message to the context variable.

Each context variable is related with two services: the subscribe service and

the service to where notifications are sent (the consumer service). We define

these services in an additional WSDL file, which the transformed WS-BPEL

process imports. This way, we avoid modifying the original WSDL files from

these services. We get the address of the subscribe service directly from the

definition of the context variable, and we generate the address of the consumer

service by concatenating the process name with the name of the context variable.

This WSDL file also includes the Correlation properties we use in the WS-

BPEL transformation. Considering that all process instances use the same port

to receive notifications, we use the Correlation properties to distinguish them.

We define a correlationSet for each context variable, since each one maps to

a different subscription. We use the Correlation with two messages (Subscribe

Response and Notify). Thus we define two rules and we use them in all the

correlationSets. The rules state that, for each message, the correlations use the

field ReferenceParameters of the element SubscriptionReference. The data type

has to be the same as the field ReferenceParameters, i.e., anyURI (any type).

6.2 When-then construct

We also implement the when-then construct with a language transformation

approach. However, we use an auxiliary web service to evaluate the when-then

conditions, when changes to a variable value occurs.
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In the following we detail our when-then construct realisation, which includes

replacing the when-then by a set of standard constructs, detecting variable value

modifications, creating the WSDL file, and calling the auxiliary web service.

When editing the WS-BPEL process file, we remove the when-then construct

and add the definitions we need: operations for when-then construct; two message

variables; partnerLink ; CorrelationSet ; and the WSDL file imports.

To execute the when-then process logic in parallel with the main process

logic, we use an onEvent event handler. As we can see in Figure 5, before that,

we add the Assign operation to initialize the message we use to invoke the

register operation in the auxiliary web service. This message has the when-then

condition, the EPR used in the onEvent to receive the message notifying that the

when-then condition becomes true, and the identification of the process instance.

The identification of the process instance depends on a variable provided by the

WS-BPEL engine (Apache ODE, in our case), $ode:pid. However, other process
engines also provide this type of variable.

After the Assign operation, we add an Invoke activity to call the Regis-

terWhen operation of the auxiliary web service. This activity also uses a Cor-

relationSet, which distinguishes processes instances through their identification

(InstanceId).

The onEvent receives the messages sent by the auxiliary web service, when

the when-then condition becomes true. It uses a CorrelationSet with the process

instance identification. When the onEvent receives a message, it executes the

original when-then activities, which define the scope activity of the event handler.

To detect variable value modifications, we follow two different approaches. In

the first one, we use the event listeners of the Apache ODE WS-BPEL engine.

ODE generates events, such as VariableModificationEvent events, that can be

used to monitor what is happening in the engine, and supports the registration

of event listeners to analyze produced events and to do whatever operations we

want. The event listener we developed informs the auxiliary web service about

VariableModificationEvent events. Against this information, the auxiliary web

service evaluates registered when-then conditions.

As this approach depends on the event listeners of Apache ODE, we realize

a second and more process engine-independent approach. Following a language

transformation, we add, to the WS-BPEL process definition, a set of two activ-

ities (assign and invoke), to each activity that can modify a variable value. The

invoke activity informs the auxiliary web service about a variable value modifi-

cation. Before that, the assign activity creates the message the invoke activity

uses. This message includes the variable name, its new value, and the process

instance identification.

The WSDL file includes two web services interfaces: (1) the auxiliary web

service, which has two operations: the operation to inform about modifications
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of a variable value; and the operation to register when-then conditions; and (2)

the web service that corresponds to the onEvent event handler used to inform

process instances when a when-then condition becomes true. The EPR of this

web service is generated by concatenating the process name with the name of the

when-then construct. Consequently, the when name attribute is mandatory. The

WSDL file also includes the messages operations the partnerLinkType, and the

correlation rules. Correlation rules only use the process instance identification.

The auxiliary web service evaluates the value of when-then conditions. It

provides the RegisterWhen operation—to register conditions clients want this

service to evaluate—and the UpdateVar operation, which clients use to inform

about a variable value modification. It calls the UnlockWhen operation to notify

the process instance when a when-then condition becomes true.

As stated before, to distinguish process instances we use the process instance

identification the process engine provides.

7 Prototype and evaluation

This section presents the implementation of the prototype of our WS-BPEL

extension. We also present the evaluation of our approach considering the size

and complexity reduction that process definitions achieve when using our WS-

BPEL extension, as well as the results of some performance tests.

7.1 Prototype

As referred above, we implement our WS-BPEL extension following a language

transformation approach. We use the Eclipse IDE and its BPEL Designer plugin

[Eclipse IDE, 2014, BPEL Designer Project, 2014] to define WS-BPEL extended

processes. We perform the model transformation with Extensible Stylesheet Lan-

guage Transformations (XSLT) [Clark et al., 2007] and the Saxon Home Edition

9.4 - XLST Processor [Saxon Home Edition, 2014]. XSLT is a specification that

defines the syntax and semantics of a language to transform and render XML

documents. It is designed for use as part of the Extensible Stylesheet Language

(XSL), which is a style language for XML. XSL includes an XML vocabulary to

specify formatting and uses XSLT to describe the document transformation. We

choose this XLST processor since it supports XSLT 2.0, a XSLT version that

can generate more than one output file, which is an advantage for our prototype

since we have both WS-BPEL files and WSDL files.

Finally, the process execution engine we use is the Apache Orchestration

Director Engine (Apache ODE) [Apache ODE, 2014], a free open-source en-

gine from the Apache Foundation. We install it in the Apache Tomcat web
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Figure 6: Toolchain prototype

server [Apache Tomcat, 2014]. In Figure 6 we illustrate our toolchain proto-

type and how it performs language transformations. These tools are available at

http://gloss.di.fc.ul.pt/pati.

7.2 Complexity evaluation

OurWS-BPEL extension aims at facilitating process definitions by automatically

synchronizing process variables with sensor values, without needing to explicitly

define all interactions. In addition, we also provide the when-then construct to

define expected exceptions, whose conditions can include context variables.

In this section we evaluate our proposal by using WS-BPEL process met-

rics. We can find in the literature several metrics to evaluate business pro-

cess complexity [Muketha et al., 2010]. However, as far as we know, only two

authors propose metrics specifically adapted to WS-BPEL processes. Cardoso

[Cardoso, 2007] proposes the control flow complexity (CFC), an adaptation of

the McCabe’s cyclomatic complexity metric. While this metric assigns the same

semantics to all decisions nodes, CFC distinguishes the various structured ac-

tivities (sequence, switch, while, flow and pick). CFC metric has been validated

with Weyuker’ s properties and with several experiments [Muketha et al., 2010].

Mao adapts cognitive weights for WS-BPEL to measure cognitive complexity

(CC) of WS-BPEL processes [Mao, 2010].

To evaluate our solution we also use two activity complexity metrics. These

metrics only calculate the number of activities a process has. According to Car-
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CFC(P1)=CFC(main sequence)=
=CFC(receiveClientOrder)+CFC(transportGoods)+CFC(OnAlarm)+...=
=1+CFC(transportGoods)+ 2n−1xCFC(Sequence of OnAlarm)+...=
=1+CFC(transportGoods)+1x(1+1+1)+..., where 2n−1 is the CFC of an event

handler with n events.

CC(P1)=CC(receiveClientOrder)+CC(transportGoods)+CC(OnAlarm)+...=
=1+CC(transportGoods)+3+CC(getTempValue)+CC(getHumidityValue)+CC(if)+...=
=1+CFC(transportGoods)+3+1+1+2+..., where CC(OnAlarm)=3 and CC(if)=2.

Listing 7: P1 process metrics

CFC(P2)=CFC(main sequence)=
=CFC(receiveClientOrder)+{CFC(flow)}+CFC(transportGoods)+CFC(eventHandlers

)+...=
=1+n!x[CFC(S1)+CFC(S2)]+CFC(transportGoods)+ 2m−1x(CFC(S3)+CFC(S4))

+...=
=1+2!x(2+2)+CFC(transportGoods)+2x(1+1+CFC(then)+1+1+CFC(then))+...

where CFC(flow)=n!, CFC(eventHandlers) = 2m−1, n is the number of
flow

activities and m is the number of events.

CC(P2)=CC(receiveClientOrder)+CC(flow)+CC(transportGoods)+CC(eventHandlers)+...=
=1+(4+1+1+1+1+4)+CC(tranportGoods)+(3+1+2+CC(then)+1+2+CC(then))

+...
where CC(flow)=4 and CC(eventHandlers)=3.

Listing 8: P2 process metrics

doso, while these metrics are very simple, they are important to complement oth-

ers [Cardoso, 2008]. The number of activities in a process metric (NOA) counts

the number of basic activities while the number of activities and control-flow

elements in a process metric (NOAC) also counts structured activities.

In this evaluation we use two variants of our use case scenario. In the first

one, the when-then construct has a condition with two context variables updated

through the request/reply interaction, as we can see in Figure 6. We compare

it with the standard WS-BPEL activities that we can use to obtain the same

behavior: an onAlarm event handler with a if activity to evaluate a condition

similar to the when-then condition, as illustrated in Figure 1. This WS-BPEL

standard process P1 has the metrics we present in Listing 7.

By using the when-then construct, the CFC and the CC metrics decrease 3

and 4 units, respectively (the bold values). These values are the CFC and the

CC of three initial tasks of the onAlarm sequence. The NOA and NOAC metrics

have a decrease of 2 and 3 units, respectively.

Considering n the number of context variables of this type we use in the

when-then condition, these metrics have a linear decrease as follows: the CFC

and the NOAC metrics decrease n+1, NOA decreases n, and CC decreases n+2.

In the other variant of our use case scenario, the when-then construct has

a condition with two context variables updated through the publish/subscribe

interaction. We compare it with the standard WS-BPEL process (P2) illustrated

in Figure 2. This process P2 has the metrics we present in Listing 8. By using
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the when-then construct, if we consider that the if-then branch only has a basic

activity (with CFC and CC equal to one) CFC decreases 19 units, CC decreases

19 units (the bold values), NOA decreases 7 units, and NOAC decreases 13 units.

Generalizing these values to a when-then construct with a condition with n

context variables we get the following results: CFC decreases n!(2n)+n×n×3−1,

CC decreases 8+2n+3+4(n−1), NOA decreases 2n+2(n−1)+1, and NOAC

decreases 1+ 3n+4(n− 1)+ 2. Even if we use the when-then construct without

context variables, our approach avoids busy waiting.

Highly complex processes are error prone, more difficult to understand and

to maintain [Mao, 2010]. Decreasing WS-BPEL size and complexity increases

readability [Cardoso, 2008].

7.3 Performance evaluation

To make the performance tests, we used computers with the following character-

istics: CPU - Intel QuadCore 2.33 GHz, RAM - 6 GB, and Operating System -

Windows 7. The WS-BPEL process we used in these tests has a context variable

that is updated using the publish/subscribe interaction, as well as a when-then

construct with a temperature > 35 condition. As our implementation has no

impact on the business process execution engine, we focus our performance tests

in the auxiliary web service we used to generate the standard WS-BPEL process

definition. We compared the two approaches referred in section 6.2 to detect

value changes in context variables: the one that uses listeners and the other that

adds new activities to the process definition.

We executed several process instances simultaneously to register severalwhen-

then conditions being processed by our auxiliary web service, so that we could

assess its scalability. To determine the response time of the auxiliary web service

we used logs : we calculate the difference between the time when the process in-

stance changes the variable value, and the time when the when-then construct is

unlocked. Figure 7 presents the average values for the response times in millisec-

onds (ms). As we can see, the response time increases linearly for both approaches

as more instances are executed. The second approach (the one that does not use

listeners) has an higher response time as it exchanges more messages. However,

it also presents a linear growth.

8 Conclusion

IoT information is becoming widely used by organizations in their business pro-

cesses as a competitive advantage. However, to use it, process modelers have

to scatter process definitions with additional operations to interact with IoT-

enabled technologies such as sensors.

1126 Domingos D., Martins F., Candido C., Martinho R.: Internet of Things ...



Figure 7: Performance tests results: response times vs transformation ap-

proaches vs number of process instances

The work we present in this paper aims at simplifying the access to IoT

information within WS-BPEL processes. Through a WS-BPEL extension, pro-

cesses can include context variables, whose values are updated automatically

and synchronously/asynchronously: the extension is responsible for the oper-

ations required to perform the communication between process instances and

sensors. In addition, the WS-BPEL extension we propose also includes a when-

then construct that process modelers can use to define expected exceptions, using

conditions with context variables.

We realize the WS-BPEL extension through a language transformation ap-

proach. As it adds new activities to process definitions, processes that are exe-

cuted do not match exactly the process the modeler defined. Nevertheless, the

resulting process behaves as expected by the modeler and is independent from

the execution engine.

We also show how this extension avoids the increase of WS-BPEL code size

and complexity and the scatter of additional code through the process definition,

letting process modelers to focus on the modeling of main business logic.

Future work includes studying how to support similar functionalities in BPMN,

as well as evaluating the usability of the proposed extension.
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