
Extending Policy Languages for Expressing the Self-
Adaptation of Web Services

Haithem Mezni
(University of Jendouba, SOIE, Jendouba, Tunisia

haithem.mezni@gmail.com)

Walid Chainbi
(National School of Engineers, SOIE, Sousse, Tunisia

walid.chainbi@gmail.com)

Khaled Ghedira
(Higher Institute of Management, SOIE, Tunis, Tunisia

khaled.ghedira@isg.rnu.tn)

Abstract: With the growing demand on Web Services, self-adaptation in the highly-dynamic
environment is becoming a key capability of service-based systems. As a solution for Web
services to provide added value and high QoS, combining self-* and policies allows reducing
management complexity and effectively drives adaptation. Also, providers must participate in
the self-adaptation process as they are aware of the capabilities of their offered services and
exceptions that may occur. Despite the important role of service providers, existing approaches
did not address this major issue. Thus, the description of self-adaptive Web services must not
be limited to functional and QoS data. To address these issues, we extend the WS-Policy
framework to represent capabilities and requirements of self-* Web services. We also extend
UDDI in order to store and manage service policies, as the current UDDI model does not offer
these capabilities. Finally, we propose an ECA-based planning mechanism to specify decision
making in the self-adaptation process.

Keywords: Web services, self-adaptation, Autonomic computing, Quality of service, WS-
Policy, UDDI, ECA rules
Categories: C.2.4, H.3, H.3.5

1 Introduction

Modern distributed systems require to dynamically take into account at runtime the
changes in the users’ needs and the execution environment variations in order to
improve QoS [Zouari et al. 2014]. In this context, and with the increasing adoption of
SOA, service-based systems face an unprecedented level of change and dynamism.
Therefore, there is a growing need for efficient mechanisms for service self-
adaptation. Although extensive work has been done in this area, existing approaches
usually use predefined adaptation strategies to deal with abnormal behavior and do
not consider all properties of SOA actors that are subject to change [Kazhamiakin et
al. 2010]. Moreover, abnormal behavior should be seen from the perspective of
service providers as they are aware of the capabilities and requirements of their
published services and the exceptions that may occur. In order for Web services to

Journal of Universal Computer Science, vol. 20, no. 8 (2014), 1130-1151
submitted: 4/4/14, accepted: 23/7/14, appeared: 1/8/14 © J.UCS

provide high QoS, providers must participate in the self-adaptation by implementing
their specific adaptation policies. Thereby, relieving adaptation system from the
situation where no recovery alternative is applicable in a given problem situation.

To tackle these issues, we adopt the autonomic computing paradigm [Kephart and
Chess 2003] and we consider Web services and UDDI registries as autonomic
systems [Chainbi et al. 2012] i.e., systems endowed with self-* capabilities including
self-configuration, self-healing, self-optimization, and self-protection. Additionally, to
effectively drive adaptation, we propose a rich information model to allow describing
autonomic Web services (AWS) based, not only on functional and QoS data, but also
on providers’ recommendations. This new kind of information may be used at runtime
and gives the adaptation system additional alternatives (i.e. adaptation plans) to
manage the executing service and to allow a better precision in driving adaptation.

Since managing Web services requires a structured representation of their
capabilities, we adopt a policy-based approach in order to endow services with self-*
behavior. Policies have proven their popularity and acceptance in research and
academia. They have long been employed in the management of traditional
distributed systems [Boutaba and Aib 2007] and become a key for SOA management.
In our work, policies have a core position. They are used at different levels including
service description, QoS monitoring, service self-adaptation, etc. The adoption of
policy specification languages has been suggested in several approaches as a solution
to describe QoS. Specifications like WS-Policy [Bajaj et al. 2007] are widely
deployed to address SOA issues, as they offer a means to express QoS requirements
and capabilities in Web service systems [Phan et al. 2008]. However, existing
extensions to WS-Policy [Tosic et al. 2007, Chhetri and Kowalczyk 2010, Badidi and
Esmah 2011] did not express information necessary to service self-adaptation. Also,
there is no detail about self-* policies and how policies are specified and processed.

The main objective of this paper is to extend WS-Policy in order to express
requirements for the run time adaptation of Web services. However, knowing that
WS-Policy provides only textual descriptions, this raises a question about how to use
adaptation policies in the self-adaptation process. For this reason, a part of our
proposed work uses the ECA rule-based approach to convert adaptation policies to
executable ECA rules [Bassiliades and Vlahavas 1997]. ECA rules are extracted from
the policy documents and can, then, be executed by autonomic service managers.

The rest of this paper is organized as follows. Section 2 introduces a rich AWS
information model. Section 3 presents our extension called AWS-Policy. Section 4
presents an extension to UDDI information model. In section 5, we show how specific
adaptation policies are used in the self-adaptation process. Section 6 validates the
proposed approach through a set of experimental results. In section 7, we discuss the
relevance of our approach compared to related work. The last section is devoted to the
conclusion and the future work.

2 Autonomic Web Service Information Model

In our previous work, we have shown that an AWS involves two parts: a managed
service and an autonomic manager, which endows the invoked service with self-*
mechanisms (see [Fig. 1]). AWSs collaborate with autonomic registries (autonomic
systems composed of the traditional UDDI registry and a controller named autonomic

1131Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

registry manager, which has the ability to manage the registry content) to ensure self-
adaptation and to allow updating registry content [Chainbi et al. 2012].

Figure 1: An autonomic Web service system architecture

However, to effectively ensure self-adaptation, an AWS must have a rich
description of its capabilities. We believe that functional and non-functional data are
not sufficient to effectively drive self-adaptation, and AWSs need to be specified with
additional information, such as specific adaptation policies. Unlike other approaches
that design their management systems based on predefined management rules, we
propose two types of adaptation policies and we give service providers the possibility
to define and register their recommended adaptation policies into UDDI registry, in
order to effectively drive the autonomic managers in the self-adaptation process. In
our work, a service behavior may be adjusted using what we call default and/or
specific adaptation plans. While default plans are predefined actions included in the
implementation of autonomic managers as internal knowledge and executed to adapt
any failed service, specific plans are priority actions defined by providers at
publication time (e.g. specific mediation solutions, invoking a trusted service).

For this purpose, we characterize self-* Web services by three types of
information: Functional properties, QoS properties, and Specific adaptation plans.
Since managing Web services requires a structured representation of their capabilities,
we adopt the WS-Policy framework to treat them as policies [Bajaj et al. 2007]. WS-
Policy is a specification that allows Web Services to advertise their characteristics in a
flexible and extensible grammar using XML format. A policy is defined as a
collection of alternatives which is, itself, defined as a collection of assertions.
Assertions are the basic building blocks of policies and are used to represent a
requirement, capability or a behavior of a Web service.

However, WS-Policy does not allow defining capabilities and requirements of

1132 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

self-adaptive Web services, and still lacks mechanisms for semantic description and
matching of service properties. We believe that the more Web services are attached
with QoS and adaptation policies, the more important is the automation of the service
execution and adaptation. Indeed, by taking these policies into account, a Web service
behavior is always adjusted based on self-* capabilities (e.g. self-healing policies)
allowing, thus, a constant execution, even in case of QoS constraints’ violation, and a
high availability while meeting QoS constraints (e.g. response time and reliability).

To remedy these restrictions, we propose to extend WS-Policy in order to
represent AWS capabilities and requirements necessary to trigger self-adaptation and
to adjust the behavior of a managed Web service.

3 AWS-Policy: An Extension for Autonomic Web Services’
Description

The AWS-Policy specification allows providers to define the behavior of their offered
services. It makes Web services expose autonomic behaviors in response to changes
detected in the execution environment and predicted by a service provider (e.g. self-
healing and self-configuration behavior, in case of substitution and mediation
actions). Each construct in AWS-Policy is considered as a service behavior (e.g.
unavailability QoS attribute, timeout event, SLA Negotiation action, bandwidth
context). Separation of concern and flexibility of AWS-Policy allows the services’
implementations to focus only on the functional capabilities, whereas policies are
responsible for providing and guaranteeing a certain behavior and a constant service
execution, while taking into account the changing conditions and the required QoS.

AWS-Policy offers an extensible grammar based on XML format. The building
blocks in AWS-Policy are assertions, which allow defining a QoS preference, a QoS
capability, an event or a self-adaptation action. Assertions are grouped using a set of
policy operators which can be recursively nested to express complex policies.

3.1 QoS Policies

This section presents the AWS-Policy document model that may be used by service
providers to describe the QoS capabilities of their offered Web services, or by users to
specify their QoS requirements. The QoS policies XML schema is shown in [Fig. 2].

Figure 2: QoS policies XML schema.

1133Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

As shown in [Fig. 2], an AWS must be described by a set of QoS attributes. Each
one is described in a QoSAssertion element and is characterized by three properties
(name, value, and unit) containing, respectively, the name, the value, and the measure
unit of the QoS attribute. Since providers may describe their services using complex
QoS attributes, we define the QoSAll alternative element to group the QoS attributes
into a composite one. Fig. 3 shows an example of AWS-Policy QoS document.

Figure 3: QoS policies of the FileSendWS Web service.

An overall view shows that the offered FileSendWS service is a free Web service
characterized by a high degree of performance and availability.

3.2 Specific Adaptation Policies

As shown in [Fig. 4], a specific adaptation policy is defined as a set of plan
alternatives. Each one contains two policy alternatives: ExactlyOneEvent and
ExactlyOnePlan. The first element specifies the events that may affect service
execution, whereas the second element describes specific adaptation plans that may
be triggered by the events defined in the ExactlyOneEvent alternative.

AWS-Policy allows specifying execution events in a flexible manner. Indeed,
self-adaptation may be triggered by a primitive or a composite event. For primitive
events, we define the EventAssertion element which may contain a set of attributes
depending on the mentioned event. Composite events are of type “AND” (e1 ∧ e2 ∧ …
en). They require that all of the sub-events must occur during service execution so that
they may trigger some potential adaptation actions. A composite event is expressed
using the AllEvent policy alternative. Since different events may trigger the same
adaptation actions, we also consider the events of type “OR” (e1 ∨ e2 ∨ … en) which
means that at least one of these events must occur during invocation so that it may
trigger adaptation. Such events are expressed using the ExactlyOneEvent alternative.

1134 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

Figure 4: Specific adaptation policies XML schema.

The second part of the self-adaptation policy is an ExactlyOnePlan alternative
defining self-adaptation actions that may be executed when one of the events
described in the ExactlyOneEvent alternative occurs. The ExactlyOnePlan element
indicates that only one specific plan must be executed by the autonomic manager. We
define the ActionAssertion assertion to describe an atomic self-adaptation action.
Since an adaptation plan may be composed by a set of adaptation actions, it is
expressed by grouping ActionAssertion elements in the AllPlan alternative. The
AllPlan alternative requires all primitive actions to be executed in the specified order.

The priority attribute in the XML schema is used by a provider to indicate that a
specific adaptation action has to be firstly executed by the autonomic manager, or
executed when the default adaptation plans fail to resolve a service failure. This
allows a better precision in choosing adaptation actions. Another important attribute is
the planCombiningAlgo which is used by planning agents to select between more than
one suitable plan and to resolve conflicts between self-adaptation plans. Details on
plan combining mechanisms will be presented in [section 5.2].

The AWS-Policy document in [Fig. 5] describes specific adaptation policies of a
published service. An overall view shows that the service provider defines a set of
self-adaptation plans for two possible events. The first set of plans may be triggered
when a “binding fault” (lines 8 to 13) is detected by the autonomic manager or when
the executing service is not available. The second plan may be triggered in case of an
“execution fault” (see “response error” or “timeout” in lines 30 and 31).

1135Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

Figure 5: Specific self- adaptation policies of the FileScan Web service.

Fig. 5 also shows that, in case of a detected binding fault (binding denied may
occur if the authorization component denies the access, that is, either authorization
denied, authentication failed, or accounting problems occur), the autonomic manager
features two possible priority self-adaptation actions: reselect a new composition for
the executing composite service or, in case of restarting failure, substitute the service
with one of two preferred and trusted services (a mediation action may be performed
in case of incompatibility in services’ interfaces). Fig. 5 also shows that the provider
recommends re-executing the service operations in case of a delivered incorrect result.

The next section reveals how AWS policies are published in the service registry.

4 Enhancing UDDI Information Model with Policies

In our previous work, we have shown the way autonomic registries interact with each
other in the execution environment, to allow exchanging and processing different kinds of
management tasks, such as QoS updating and service discovery [Chainbi et al. 2012].

However, representing and storing providers’ policies is a main challenge, as the
current UDDI model does not offer these capabilities and as service metadata are basic
resources in driving the adaptation process. The problems of storing QoS and specific
adaptation policies in UDDI may be resolved using tModel concept. tModels are core
components of UDDI. They represent unique concepts or constructs and they are used to

1136 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

describe compliance with a specification, a concept, a category, or an identifier system.
Each tModel should contain an overviewURL, which references a document that describes
the tModel and its usage in more details [OASIS 2004]. We use tModels as a
categorization solution to facilitate service discovery by the autonomic registry managers
(also called ARMs). Since tModels are considered as containers for references to service
descriptions, they may be used to represent QoS policies and adaptation policies in UDDI.

Fig. 6 shows an extension of the original UDDI information model with two new data
structures for describing AWS related information. Unshaded boxes and solid lines
represent data structures in the original model and the association between them, whereas
shaded boxes and dashed lines illustrate our extension. QoS policies data structure
represents QoS information of a managed Web service, whereas specific adaptation
policies data structure represents actions defined by a service provider that will
eventually be used in priority to manage service deviations.

Figure 6: Extended UDDI information model.

To these ends, when a Web service is published in the UDDI registry, a set of
tModels is created to represent the QoS and specific adaptation policies of this
service. To include Web service policies in UDDI, different ways may be envisioned,
such as defining a tModel that points to an external resource or defining a tModel
containing multiple categories, each reflecting a different policy. The first method has
the disadvantage of requiring navigation to external resources to retrieve information.
In addition, service data are not stored in UDDI in this case, which makes their
management a difficult task. This is the case, for example, when services’ providers
may restrict access to their servers, prohibiting ARMs to update QoS values.

We adopt the first method to store specific adaptation policies, and we integrate
QoS policies using the second method. This choice is justified by the fact that specific
adaptation policies do not interest the user in the discovery process and are only
processed by autonomic managers. Furthermore, they do not require a representation

1137Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

or a classification scheme like QoS policies, which need to be stored in the registry in
order to facilitate service discovery. For this purpose, specific adaptation policies are
considered as external resources and referenced in the overviewURL tag of a tModel.
The UDDI bindingTemplate may, then, contain a reference to these policies, which is
added to its tModelInstanceDetails collection.

Regarding QoS, we make a mapping between QoS policies and UDDI, in order to
give service providers a way to store their QoS descriptions into UDDI registry. The
QoS policies description is referenced in a tModel and each QoS assertion in the
policy document is mapped to a category in the tModel structure (see [Fig. 7]). In
UDDI, categoryBag tag allows to add categorization information into UDDI data
structures to make a given entity a member of one or more categories. Therefore,
ARMs can find the desired entity based on some classification scheme. In our work,
categorization may be ensured on the basis of QoS policies. The categoryBag element
in the QoS policies tModel acts as a collection of keyedReference structures (line 6),
each containing a single QoS attribute-based categorization and characterized by a set
of properties (keyName, keyValue, and keyUnit) describing respectively the name,
value and measure unit of a QoS attribute (lines 11, 12, and 13).

Figure 7: tModel with QoS policies.

To categorize a managed service as being described by a composite QoS attribute,
we propose to add a keyedReferenceGroup element (lines 7 and 8) to the categoryBag.
This element is a collection of keyedReference structures that logically belong

1138 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

together and correspond to the component QoS attributes for the categorization.

5 Self-adaptation Planning: from AWS-Policy to ECA Rules

In this section, we propose a planning technique that allows driving Web service self-
adaptation based on predefined and specific self-adaptation policies. Despite the
importance of this phase in the autonomic cycle, few approaches have been proposed
to deal with the problem of autonomic decision making [Lu 2011].

As we mentioned above, providers can define their specific self-adaptation plans
in the form of policies. This raises a question about how to use these policies by the
autonomic manager to adapt a service. The effective use of adaptation policies in the
autonomic cycle requires that the policies be captured and translated into actions
within the autonomic manager. Since adaptation policies are textual descriptions, we
propose to convert them to executable rules that may be executed by autonomic
managers on their rules’ engines. Rules are increasingly being used to specify a
variety of situations, such as business needs, conventional behavior, and policies
[Sing and Huns 2005]. Rules are also desirable because they are executable, unlike
textual descriptions or even some formal specifications. There is no additional step of
converting specifications into formally executable implementations. We adopt the
classical ECA (Event-Condition-Action) form [Bassiliades and Vlahavas 1997],
where the event is a triggering condition. Such rules can be read as:

on event if condition then (perform) action

As an example of policies’ transformation, the policy elements contained in the
AWS-Policy document in [Fig. 5] will be converted as follows:

If the binding is denied or the authentication fails, then composition should be
reselected instead of substituted whenever possible.

Here, binding fault or authentication failure are the events. The condition is true
(priority=”true”), and the action is re-selection of the composition (line 16) or
substituting the failed service with specific one (lines 19 and 22).

Next, we present a transformation algorithm that allows generating self-
adaptation ECA rules from the AWS-Policy documents.

5.1 Specific Adaptation Policies Transformation

In order to effectively monitor and adapt the executing Web service, the autonomic
service manager starts by interacting with the autonomic registry (see [Fig. 1]) to get
the AWS-Policy documents describing QoS and specific self-adaptation policies. This
step is important as the autonomic manager must be aware of the capabilities of its
managed service. Self-adaptation plans defined by the provider are then extracted and
stored in the form of ECA rules. Connection between possible events (AWS-Policy
constructs) and the corresponding adaptation actions is established when generating
the different parts of each new rule. First, a specific self-adaptation rule is defined as
follows:

1139Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

Definition 1 (Self-adaptation rule set). A self-adaptation rule set for a managed Web
service, SARSWS, is a finite set of ECA rules, R = (E,C,A,P,RCA) such as :
1. E = {e | e = e1;…;en}. Event set E consists of one or more serializations of events,

where the serialization is expressed as e1; . . . ; en.
2. Condition set C consists of the disjunction of zero or more conjunctions of

condition predicates. Each conjunction is expressed as c1∧…∧ cm, and condition
predicate cj is expressed as r1 θ r2, where θ is an operator from the set {=, ≠, <, ≤,
>, ≥}, and ri, i = 1, 2, is a constant, an event variable, or a QoS attribute.

3. Action set A consists of a serialization of primitive self-adaptation actions, where
the serialization is expressed as a1; . . . ;an.

4. Priority P is a Boolean variable indicating whether or not the primitive actions in
A are executed in priority instead of triggering default self-adaptation rules.

5. Rule combing algorithm RCA defines a strategy of combing a set of concurrable
rules in a single decision. RCA indicates if the self-adaptation rule overrides the
other rules in the SARSWS rule set.

The SARSWS rule set contains two self-adaptation sub-sets: the SARSWSspecific rule
set which contains specific self-adaptation rules transformed from an AWS-Policy
document defined by the provider, and the SARSWSdefault rule set containing self-
adaptation actions predefined for each autonomic manager instance.

Definition 2 (Self-adaptation constraints). Self-adaptation constraints SACWS for a
managed Web service is a power set of the self-adaptation actions’ set such that AC =
{a1, …an | a1∧…∧ an are not allowed to be executed simultaneously } ∈ SACWS.

Definition 3 (Rule conflict). Let SARSWStrig be a rule set containing the rules that are
triggered on the occurrence of a primitive event. It is said that SARSWStrig has a rule
conflict if two or more service actions of SARSWStrig are contained in one of the
element of SACWS.

Our algorithm for specific self-adaptation policies transformation (see [Fig. 8])
starts with an event alternative set EASWS and a plan alternative set PASWS, as inputs.
The output of the algorithm is a specific self-adaptation ECA rule set SARSspecific.

The algorithm starts by parsing the set of events that may trigger self-adaptation
plans recommended by the service provider (line 2). For each event, the algorithm
creates the event part of the new ECA rule, by transforming event assertions and
alternatives to simple (line 12) or composite events (lines 4-7). Next, the algorithm
extracts, for each generated event, the condition part, according to the constraints of
the specified events (e.g. “response time” subject for the “timeout” event) (lines 8-9).
Note that the priority attribute in the plan alternatives is considered as a condition
when executing the policies transformation process (line 25). Then, for each plan in
PASWS, the action part of the new rule Rnew is created according to the nature of the plan
alternative, by taking the union of the simple actions specified in each plan in PASWS
(lines 20-23). Finally, the algorithm, based on the set of self-adaptation constraints
(i.e. adaptation actions that are not allowed to occur at the same time such as re-
execute operation and skip operation) checks if the new rule has any conflict and
eventually creates a conflict resolution rule for the detected conflict (line 27).

Performance of the policy transformation algorithm depends on the size of the
events and actions’ sets, and on the self-adaptation constraints’ set. Time complexity

1140 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

of the algorithm is O(nenanc), where ne, na and nc denote the number of events, the
number of adaptation actions and the number of adaptation constraints, respectively.
Function checkConflict (Rnew, SARSWS) requires O(nanc) since for each adaptation
action, the function checks the conflict with each action in the constraint set.

Algorithm 1 Specific_SelfAdaptation_Policies_Transformation (in (EASWS, PASWS), out (SARSWSspecific))

Input: An event alternative set EASWS and a plan alternative set PASWS
Output: A provider defined self-adaptation rule set SARSWSspecific, where SARSWSspecific := { (Evt, Cond, Act, Pr,
RCA) | triggering event Evt, provider constraint Cond, provider actions Act, provider priority Pr and rule
combining algorithm RCA}

1: SARSWSspecific:= {};
2: for each E ∈ EASWS do
3: Cond := {};
4: if E.Type = ALL then
5: Evt := {};
6: for each EA ∈ E do
7: Evt :=Evt∪ EA;
8: C := new Condition (EA.Subject, EA.SubjectValue);
9: Cond := Cond ∪ C;
10: end for
11: else
12: Evt := E;
13: Cond := new Condition (Evt.Subject, Evt.SubjectValue);
14: end if
15: for each P ∈PASWS do
16: Rnew := new ECARule ();
17: Rnew.setEvent(Evt);
18: Rnew.setCondition (Cond);
19: Act := {};
20: for each A∈ P do
21: Action Ac := new Action (A.Name, A.Subject, A.SubjectValue);
22: Act.addAction (Ac);
23: end for
24: Rnew.setAction (Act);
25: Rnew.setPriority (P.Priority());
26: Rnew.setCombiningAlgo (P.CombiningAlgo());
27: checkConflict (Rnew, SARSWS);
28: SARSWSspecific :=SARSWSspecific U Rnew;
29: end for
30: end for
31: return SARSWSspecific;

Figure 8: Algorithm Specific_Adaptation_Policies_Transformation.

5.2 Plan Selection and Conflict Resolution of Self-adaptation ECA Rules

As shown in the previous section, specific self-adaptation policies are transformed to
ECA rules to be used by autonomic managers in the self-adaptation process. As a
result, some rules may have inconsistencies with each other or with the predefined
self-adaptation plans and may cause conflicts when triggered and executed.

To select the suitable self-adaptation plan, we propose a solution that allows
reconciling self-adaptation policies when their evaluation is contradictory. The
proposed AWS-Policy specification supports what we call plan combining algorithms,
which allow resolving self-adaptation rule conflicts by representing a way of
combining multiple adaptation plans into a single plan. The proposed method is based

1141Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

on “event dominance” and “self-adaptation rule (plan) overriding”. Event dominance
is defined to analyze the relationship between the events that occur during service
execution. It is used to identify the rules that can be triggered together by a dominant
event. Rule overriding consists of combining a set of rules that can be triggered by the
same event into a single rule. These basic concepts are defined as follows:

Definition 4 (Event dominance). Let ei and ej be two serializations of events. ei is said
to be dominant over ej(represented as ei→E ej) if the occurrence of ei implies the
occurrence of ej. That is, if ei = ei

1;…;ei
n, and ej = ej

s;…; ej
t (1 ≤ s ≤ t ≤ n).

Definition 5 (Rule overriding). Let SARSWStrig be a self-adaptation rule set such that
SARSWStrig⊂ SARSWS and contains the rules triggered by occurred events, SARSWStrig =
{R | R = R1;…;Rn} and let Ri and Rj be two triggered rules. Ri is said to override Rj
(represented as Ri→

O Rj) if Ri belongs to SARSWStrig, Ri is triggered and each rule Rj(1
≤ j ≤ n and j ≠ i) contained in SARSWStrig is rejected. ∀Ri∈ SARSWStrig, ∀Rj∈
SARSWStrig, ∃a, a ∈ Ai∧ a ∉ Aj. That is, if Aj = aj

s;…; aj
t, Ai = ai

1;…; a; …; ai
n.

To avoid conflict or violation of service constraints, the autonomic manager must
take into account only the rules triggered by the dominant events. If none of the
occurred events dominates each other, a technique called “self-adaptation rule
overriding” is used to process the plans in order to choose a single plan.

We propose a dynamic conflict resolution algorithm which is based on event
dominance and self-adaptation rule overriding. The algorithm is inspired from the
combining algorithms defined for XACML access control policy language [XACML
Technical Committee 2008]. To manage conflicts between access control rules,
XACML supports different combining algorithms, each representing a way of
combining multiple decisions, which are often conflicting, into a single decision.
Possible decisions are: permit, deny, indeterminate and not applicable.

To this purpose, the planning technique uses the Priority and PlanCombiningAlgo
attributes [section 3.2] to indicate an algorithm for combining the possible self-
adaptation plans from the evaluation of a set of rules. Such algorithms can be:

 Retry-overrides: If any rule evaluates to retry, then the final generated plan is
also re-executing the operations of the managed service. For example, When
a detected event triggers three possible plans (e.g. retry, substitute and skip),
and if the planCombiningAlgo attribute is set to “retry-overrides”, then the
autonomic manager decides to re-execute the Web service operation.

 Substitute-overrides: If any rule evaluates to Invoke, then the final decision is
also substitute Web service.

 FirstPlan-applicable: In this case, the self-adaptation rule is picked among
the rules; according to the order given in the AWS-Policy document.

Our proposed algorithm for the selection and conflict resolution of self-adaptation
ECA rules (see [Fig. 9]) starts with an event set EvtWS, a self-adaptation rule set
SARSWS and the plan combining algorithm RCA, as inputs. The output of the algorithm
is a single decision Rselect from the multiple self-adaptation rules.

Knowing that the self-adaptation rules’ set SARSWS is triggered by a set of events
EvtWS, a rule set SARSdom, which is included in SARSWS, is only triggered by the most
dominant events Evtdom (line 1). The rule set SARSdom can be refined to a single self-
adaptation rule Rselect, which is the only rule that meets two criteria: “event

1142 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

dominance” and “plan overriding”. In other words, Rselect is triggered by the most
dominant events and is the result of combining the rules, in SARSdom, based on the
given combining algorithm (lines 15 or 17).

Algorithm 2 SelfAdaptation_RuleSelection_ConflictResolution (in (EvtWS, SARSWStrig, RCA), out (Rselect))

Input: An event set EvtWS; a self-adaptation rule set SARSWStrig and a rule combining algorithm RCA.
Output: a single self-adaptation ECA rule Rselect representing a decision from multiple adaptation rules.

1: Evtdom :=findDominantEvents (EvtWS);
2: ifEvtdom≠ ∅ then
3: SARSdom := {};
4: for each R ∈SARSWStrig do
5: exists := true;
6: for each e ∈Evtdomdo
7: if not Trigger (e, R) then
8: exists := false;
9: break;
10: end if
12: end for
13: if exists then SARSdom :=SARSdom∪ R;
14: end for
15: Rselect :=PlanCombiningAlgo (SARSdom, RCA);
16: else
17: Rselect :=PlanCombiningAlgo (SARSWStrig, “FirstPlan-Applicable”);
18: end if
19: return Rselect;

Function PlanCombiningAlgo(SARS, RCA)

1: for each Rule R ∈ SARSdo
2: Act :=R.Actions();
3: for each A∈ Act do
4: if A.CombiningAlgo = “FirstPlan-Applicable” OR A.CombiningAlgo = RCA then
5: return R;
6: end if
7: end for
8: if R.Priority = true and Rpriority = null then
9: Rpriority := R;
10: else if Rdefault = null then Rdefault := R;
11: end if
12: end for
13: if Rpriority ≠ null then return Rpriority;
14: if Rdefault ≠ null then return Rdefault;
15: return “Indeterminate”;

Figure 9: Algorithm SelfAdaptation_RulesSelection_ConflictResolution

The algorithm starts by calling the function findDominantEvents (EvtWS) in order
to get the most dominant events among the triggering events in the EvtWS event set
(line 1). For instance, let e1, e2 and e3 be the occurred events and suppose that a set of
rules {R1, R2, R3, R4, R5} are trigged as follows: R1 by {e1, e2}, R2 by {e1}, R3 by {e1,
e3}, R4 and R5 by {e1, e2, e3}. The most dominant events in this case are {e1; e2; e3}.
Consequently, SARSdom includes only the self-adaptation rules R4 and R5 (lines 6-13).

The next step of the algorithm is to check the self-adaptation rules in SARSdom.
This is by evaluating each resulting rule against the plan combining algorithm. To do
that, the algorithm calls the planCombiningAlgo function (line 15) in order to
combine the SARSdom rule set (R4 and R5) into a single decision.

Performance of the algorithm depends on the size of the triggered rule set and the

1143Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

occurred event set. Time complexity of the algorithm is O(nrne
2na), where nr, ne and na

denote the number of triggered self-adaptation rules, the number of events and the
number of adaptation actions, respectively. Creating the SARSdom rule set takes the
time O(nrne

2) as the size of Evtdom set is smaller than ne. Function planCombiningAlgo
(SARS, RCA) takes the time O(nrna) as the size of SARSdom is smaller or equal to nr.

6 Implementation and Experimental Results

To validate our goal of making Web services self-*, we have used JADE platform to
implement autonomic managers. The autonomic registry is implemented by extending
Apache jUDDI which is an open source UDDI implementation compliant with
version 2.0 specification. We have used JADE platform and JAX-WS to implement
autonomic registry managers as agent-based Web service clients to the UDDI
registry. To support AWS-Policy descriptions, we have implemented the main policy
management aspects by extending Apache Neethi 2.0, which provides a general
framework for developers to use WS-Policy.

We have evaluated the availability, reliability and response time of a set of Web
services. We started the invocation without injecting any autonomic capability. Then
we performed the same steps by associating an autonomic manager to each service.

Compared with normal execution, self-healing actions (retry or substitute in our
case) have reduced the execution failures and consequently have improved the
availability of the managed Web service. As an example, the EmailValidator Web
service is executed 1000 times and fails to return a result 143 times (see [Fig. 10]).
Using an autonomic manager to invoke Web service functionalities has allowed
resolving 137 detected deviations from the 143 occurring events. However, the
contract violation still happens (6 invocation failures in these experiments). This is
explained by the failure of some generated self-healing plans.

Figure 10: Evaluation of Web service execution with autonomic behavior.

1144 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

Regarding availability and response time (see [Fig. 11]); we can see that, without
autonomic behavior, the response time, in most cases, is higher than the required
response time (increased by 104 milliseconds). In the same way, availability is not
constant when we vary the number of invocations. Self-healing actions have
improved the availability of EmailValidator (between 82% and 97%). As shown in
[Fig. 11 (b)], during the trials, the availability is increased by 14% and more.

We can also see that self-optimization improves the response time as autonomic
manager continuously looks for service opportunities. However, when executing a
self-healing action, the autonomic service can exceed the response time fixed in the
original contract (e.g. case of 50 and 60 queries). This is explained by the cost of
performing such action (i.e. time taken to select and execute self-healing actions).

Figure 11: (a) Web service response time (b) Web service availability.

We have compared our work to the approaches proposed in [Ben Halima et al.
2008, Cardellini and Iannucci. 2010]. In the case of the QOSH middleware [Ben
Halima et al. 2008], the execution time with a “service monitor” is higher than the
response time returned without a service monitor (increase between 7.5% and 37.22%
and in some cases 43.6%). In our work, self-healing actions have increased the
response time by 7.2%, only in few cases. Regarding the MOSES system [Cardellini
and Iannucci 2010], 75% of the time is wasted in analyzing data, unlike our approach,
which transforms self-adaptation policies into executable rules, before starting
invocation, to reduce the processing time during autonomic execution.

We have also evaluated the results of using default and specific adaptation plans
in the autonomic execution (see [Fig. 12]). We have measured the time taken by
autonomic managers to decide about an adaptation and to execute the generated plan
(in these experiments, retry execution, skip execution, and substitute a failed service).

1145Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

Figure 12: Evaluation of default and specific self-adaptation plans.

We can see that a specific plan–driven adaptation requires a time lower than the
time spent by the ASM to adapt a Web service using predefined plans. For example,
in case of a predefined substitution plan, the ASM has to start a new Web service
discovery process that consists of searching in the whole registry. However, using a
specific adaptation plan in which the provider has defined a set of trusted substituting
services, the ASM can rapidly locate the WSDL file and thus, perform substitution
without starting a new expensive discovery process. For the five Web services, we
note that the gain in self-adaptation time varies between 14% and 44,22%, except for
the EmailValidator Web service (see [Tab. 1]).

Table 1: Evaluation of Default and Specific Self-adaptation plans

Tab. 1 gives an idea about the nature of plans that caused adaptation failure and
shows the importance of involving providers in the self-adaptation process. Unlike
specific self-adaptation plans, default plans are frequently prone to failures. This can
be explained by the fact that providers are aware of the capabilities and requirements
of their published services and exceptions that may occur. Consequently, they may
predict the possible deviation and fix the suitable self-adaptation actions. For instance,
the effectiveness of specific adaptation plans for EmailValidator and EmailVerifier
Web services is about 100% and 96,72%, respectively.

However, although our planning technique has significantly improved the
availability of the managed services (see [Fig. 10]) and seems to be effective in terms
of decision and adaptation quality, it presents some limitations regarding the time

1146 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

spent in plan selection (especially for services with short execution time) and requires
a considerable processing time when the decision making complexity increases.

In the future, we plan to improve the planning algorithm in order to optimize the
selection process of the self-adaptation rules and to reduce the adaptation time.

7 Related Work

Several approaches have been proposed to deal with Web service self-adaptation.
These approaches discuss various issues, such as service interactions [Kongdenfha et
al. 2009, Taher et al. 2011], monitoring and prevention of SLA violations [Fugini and
Siadat 2010, Mahbub and Spanoudakis 2010, Schmieders et al. 2011], proactive
adaptation based on online testing [Hielscher et al. 2008, Sammodi et al. 2011], multi-
layered monitoring [Mos et al. 2009, Guinea et al. 2011], etc.

Regarding policy-based management, WS-Policy has been extended in several
works to describe QoS [Tosic et al. 2007, Chhetri and Kowalczyk 2010, Badidi and
Esmah 2011]. However, WS-Policy is not used to specify adaptation policies and
existing approaches lack mechanisms for using and managing the specified policies
during the execution.

A recent trend is to complement approaches for reactive adaptation with proactive
capabilities [Baresi et al. 2012]. Different solutions have been proposed such as
equipping particular execution points in a composition with a set of alternative
behaviors [Leitner et al. 2010, Aschoff and Zisman 2011], the use of testing to
anticipate problems in service compositions and trigger adaptation requests [Hielscher
et al. 2008, Tosi et al. 2009, Metzger et al. 2010], the combination of reactive and
proactive adaptation to support self-protection and self-healing [Na et al. 2010], the
use of semi-Markov models for performance predictions [Dai et al. 2009], the use of a
composition tree to determine the impact of each service in a composition on its
overall performance [Bodenstaff et al. 2009], risk-driven management [Ma et al.
2014]. However, these approaches lack reactive behavior and do not support changes
that may occur in any part of the composition. In addition, they lack dynamism
regarding test cases and adaptation strategies, when a composition is modified, in
order to take into account changes and new requirements for the prediction process.

Recently, some approaches have been proposed to allow a monitoring and
adaptation across multiple layers [Gjørven et al. 2008, Mos et al. 2009, Guinea et al.
2011, Zengin et al. 2011]. Their aim is to combine and correlate monitoring data from
different sources and to avoid potential conflicts that may arise due to uncoordinated
adaptations in different layers. These approaches use different techniques such as
event monitoring and logging (e.g. [Zeginis et al. 2011]), detection of event patterns,
use of dependency graphs, correlation and mapping between events and adaptation
strategies (e.g. [Popescu et al. 2012]), etc. The major limitation of these approaches is
that the control of execution is performed at each layer in isolation, and the events are
processed independently of each others. Consequently, the monitored data are not
correctly analyzed, which may lead to the wrong identification of the source of
problem. Also, monitoring is often based on static event correlation rules. Finally,
cross-layer approaches do not take into account properties and needs of other layers.
This leads, in most cases, to incompatibility and conflict problems.

1147Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

Our approach is different as it encompasses the main requirements for adaptive
service-oriented systems [Metzger and Marquezan 2011], in particular autonomic
decision making, the way Web service capabilities and adaptation requirements are
specified, the involvement of different actors (autonomic registries, service providers
and autonomic services themselves) in the self-adaptation process, self-adjustment of
the adaptation system through the dynamic integration of providers’ policies.

8 Conclusion

In this paper, we have proposed an approach for policy-based self-adaptation of Web
services. As a main contribution, we have proposed AWS-Policy, an extension for the
description of autonomic Web services. The extension, based on a rich Web service
information model, allows not only specifying QoS capabilities, but also provider’s
recommendations. Indeed, as part of our work, service providers have the ability to
participate in the self-adaptation process by publishing their specific adaptation
policies, which will be used by autonomic managers during service execution.

To allow representing and storing AWS policies as well as achieving their self-
management, we have extended the original UDDI information model with new data
structures. We have also proposed a planning technique, which allows transforming
specific adaptation policies to executable ECA rules, in order to enable the autonomic
managers to determine an order of the actions that achieve the specified goal.

In the future, we intend to eliminate the limitations of this work through the
introduction of semantics in all self-management steps. Indeed, semantics play an
important role in the autonomic service behavior, and self-adaptation requires a
semantic understanding of QoS and autonomic capabilities. AWS-Policy allows only
for a syntactic description which may lead to inefficient matching of service policies.
For this reason, we will integrate our AWS-Ont ontology [Mezni 2014], which is a
complete ontology that covers all the behavioral aspects of self-* Web services. Using
this ontology brings autonomic managers to a common conceptual space and helps to
apply reasoning mechanisms to find a better match. AWS-Ont allows to reason about
Web services’ policies and to carry out more intelligent tasks on behalf of service
providers. We suggest adding semantics to AWS-Policy, using extensibility in policy
assertions and alternatives. Also, a well-defined semantic matching algorithm is being
implemented to check the compatibility between QoS policies. In this case,
comparison between AWS-Policy constructs is performed based on assertions’
QNames and semantic extensions, i.e. domain concepts of our AWS-Ont ontology.

We also look for enhancing the process of creating specific self-adaptation
policies by giving providers the possibility to define their recommended plans based
on existing plans published by other providers. The idea of discovering autonomic
Web services based on their self-* capabilities is underway.

Finally, for the future Internet, cross-layer self-adaptation is an emerging research
issue in service-based systems. We intend to inject self-* properties in multiple layers,
in order to support autonomic execution across the whole service technology stack.

1148 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

References

[Aschoff and Zisman 2011] Aschoff, R. R., Zisman, A.: “QoS-driven Proactive Adaptation of
Service Composition”; Proc. Int. Conference on Service Oriented Computing, (2011), 421-435.

[Badidi and Esmah 2011] Badidi, E., Esmah, L.: “A Scalable Framework for Policy-based QoS
Management in SOA Environments”; J.S (Journal of Software), 6, 4 (2011), 544-553.

[Bajaj et al. 2007] Bajaj, S., et al.: “Web Services Policy 1.5 – Framework”; W3C Candidate
Recommendation 04 September 2007. http://www.w3.org/TR/ws-policy/.

[Baresi et al. 2012] Baresi, L., Georgantas, N., Hamann, K., Issarny, V., Lamersdorf, W.,
Metzger, A., Pernici, B.: “Emerging Research Themes in Services-oriented Systems”; Proc.
2012 Annual SRII Global Conference, (2012), 333-342.

[Bassiliades and Vlahavas 1997] Bassiliades, N., Vlahavas, I.: “DEVICE: Compiling
Production Rules into Event-driven Rules Using Complex Events”; J.IST (Journal of
Information and Software Technology), 39, 5 (1997), 331–342.

[Ben Halima et al. 2008] Ben Halima, R., Drira, K., Jmaiel, M.: “A QoS-oriented
Reconfigurable Middleware for Self-Healing Web Services”; Proc. IEEE International
Conference on Web Services, (2008), 104-111.

[Bodenstaff et al. 2009] Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M. C.:
“Analyzing Impact Factors on Composite Services”; Proc. IEEE International Conference on
Services Computing, (2009), 218-226.

[Boutaba and Aib 2007] Boutaba, R. Aib, I.: “Policy-based Management: A Historical
Perspective”; J.NSM (Journal of Network and Systems Management), 15, 4 (2007), 447-480.

[Chainbi et al. 2012] Chainbi, W., Mezni, H., Ghedira, K.: “AFAWS: An Agent-based
Framework for Autonomic Web Services”; J. MAGS (Journal of Multiagent and Grid
Systems), IOS Press, 8, 1 (2012), 45-68.

[Cardellini and Iannucci. 2010] Cardellini, V., Iannucci, S.: “Designing a Broker for QoS-
driven Runtime Adaptation of SOA Applications”; Proc. IEEE International Conference on
Web Services, (2010), 504-511.

[Chhetri and Kowalczyk 2010] Chhetri, M. B., Vo, B. Q., Kowalczyk, R.: “Policy-based
Management of QoS in Service Aggregations”; Proc. 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, (2010), 593-595.

[Dai et al. 2009] Dai, Y., Yang, L., Zhang, B.: “QoS-driven Self-healing Web Service
Composition Based on Performance Prediction”; J.CST (Journal of Computer Science and
Technology), 24, 2 (2009), 250-261.

[Fugini and Siadat 2010] Fugini, M., and Siadat, H.: “SLA contract for Cross-layer Monitoring
and Adaptation”. In S. Rinderle-Ma, S. Sadiq, and F. Leymann, editors, Business Process
Management Workshops, Springer Berlin/Heidelberg, 43, (2010), 412-423.

[Gjørven et al. 2008] Gjørven, E., Rouvoy, R., Eliassen, F.: “Cross-layer Self-adaptation of
Service-oriented Architectures”; Proc. 3rd workshop on Middleware for service oriented
computing, Leuven, Belgium, (2008), 37-42.

[Guinea et al. 2011] Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: “Multi-layered
Monitoring and Adaptation”; Proc. 9th International Conference on Service-Oriented
Computing, Paphos, Cyprus, (2011), 359-373.

1149Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

[Hielscher et al. 2008] Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: “A Framework
for Proactive Self-adaptation of Service-based Applications Based on Online Testing”; Proc.
1st European Conference on Towards a Service-Based Internet, (2008), 122-133.

[Kazhamiakin et al. 2010] Kazhamiakin, R., et al.: “Adaptation of Service-based Systems”;
Service Research Challenges and Solutions for the Future Internet. Springer Berlin Heidelberg,
(2010), 117-156.

[Kephart and Chess 2003] Kephart, J. O., Chess, D. M.: “The Vision of Autonomic
Computing”; IEEE Computer, 36, 1 (2003), 41-50.

[Kongdenfha et al. 2009] Kongdenfha, W., Motahari-Nezhad, H. R., Benatallah, B., Casati, F.,
Saint-Paul, R.: “Mismatch Patterns and Adaptation Aspects: A Foundation for Rapid
Development of Web Service Adapters”; Trans. on Services Computing, 2, 2, (2009), 94-107.

[Leitner et al. 2010] Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: “Monitoring,
Prediction and Prevention of SLA Violations in Composite Services”; Proc. IEEE International
Conference on Web Services, (2010), 369-376.

[Lu 2011] Lu, Q.: “Autonomic Business-driven Decision Making for Adaptation of Web
Service Compositions”; Proc. 7th IEEE World Congress on Services, USA, (2011), 73-76.

[Ma et al. 2014] Ma, S. P., Yeh, C., Chen, P. C.: “Service Composition Management: A Risk-
Driven Approach”; J. UCS (Journal of Universal Computer Science), 20, 3, (2014), 302-328.

[Mahbub and Spanoudakis 2010] Mahbub, K., Spanoudakis, G.: “Proactive SLA Negotiation
for Service-based Systems”; Proc. IEEE 6th World Congress on Services, (2010), 519-526.

[Metzger et al. 2010] Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: “Towards Proactive
Adaptation with Confidence: Augmenting Service Monitoring with online Testing”; Proc. ICSE
Workshop on Software Engineering for Adaptive and Self-managing Systems, (2010), 20-28.

[Metzger and Marquezan 2011] Metzger, A., Marquezan, C. C.: “Future Internet Apps: The
next wave of adaptive service-oriented systems?”; Proc. Towards a Service-Based Internet,
Springer Berlin Heidelberg, (2011), 230-241.

[Mezni 2014] Mezni, H.: “Towards Trustworthy Service Adaptation: An Ontology-based
Cross-layer Approach”; Proc. 5th IEEE International Conference on Software Engineering and
Service Science, Beijing, China, (2014), To appear.

[Mos et al. 2009] Mos, A., Pedrinaci, C., Rey, G. A., Gomez, J. M., Liu, D., Vaudaux-Ruth, G.,
Quaireau, S.: “Multi-level Monitoring and Analysis of Web-scale Service-based Applications”;
Proc. Int. Conf. on Service-Oriented Computing, Stockholm, Sweden, (2009), 269-282.

[Na et al. 2010] Na, J., Zhang, B., Zhang, X., Zhu, Z., Li, D.: “Two-stage Adaptation for
Dependable Service-oriented System”; Proc. Int. Conf. on Service Sciences, (2010), 143-147.

[OASIS 2004] OASIS: “UDDI Version 3.0.2”; UDDI Spec Technical Committee, (2004).
http://uddi.org/pubs/uddi_v3.htm

[Phan et al. 2008] Phan, T., Han, J., Schneider, J. G., Ebringer, T., Rogers, T.: “A Survey of
Policy-based Management Approaches for Service-oriented Systems”; Proc. 19th Australian
Conference on Software Engineering, (2008), 392-401.

[Popescu et al. 2012] Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: “A
Formalised Taxonomy-driven Approach to Cross-Layer Application Adaptation”; ACM
Transactions on Autonomous and Adaptive Systems, 7, 1 (2012), 7-36.

1150 Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

[Schmieders et al. 2011] Schmieders, E., Micsik, A., Oriol, M., Mahbub, K., Kazhamiakin, R.:
“Combining SLA Prediction and Cross-layer Adaptation for Preventing SLA Violations”. Proc.
2nd Workshop on Software Services: Cloud Computing and Applications based on Software
Services, Timisoara, Romania, (2011), 1-8.

[Sammodi et al. 2011] Sammodi, O., Metzger, A., Franch, X., Oriol, M., Marco, J., Pohl, K.:
‘Usage-based Online Testing for Proactive Adaptation of Service-based Applications”; Proc.
IEEE 35th Annual Computer Software and Applications Conference, (2011), 582-587.

[Sing and Huns 2005] Singh, M.P., Huns, M.N.: “Service-oriented Computing: Semantics,
Processes and Agents”; Wiley, Chichester (2005).

[Taher et al. 2011] Taher, Y., Parkin, M., Papazoglou, M. P., Van den Heuvel, W. J.:
“Adaptation of Web Service Interactions Using Complex Event Processing Patterns”; Proc.
Service-Oriented Computing, Springer Berlin Heidelberg, (2011), 601-609.

[Tosi et al. 2009] Tosi, D., Denaro, G., Pezze, M.: “Towards Autonomic Service-oriented
Applications”; J. AC (Journal of Autonomic Computing), 1, 1 (2009), 58-80.

[Tosic et al. 2007] Tosic, V., Erradi, A., Maheshwari, P.: “WS-Policy4MASC - A WS-Policy
Extension Used in the MASC Middleware”; Proc. IEEE International Conference on Services
Computing, (2007), 458-465.

[XACML Technical Committee 2008] XACML Technical Committee: “eXtensible Access
Control Markup Language (XACML) Version 2.0”; Specification Errata 29, OASIS, (2008).

[Zeginis et al. 2011] Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: “ECMAF: An
Event-based Cross-layer Service Monitoring and Adaptation Framework”; Proc. Service-
Oriented Computing - ICSOC’11 Workshops, Springer, (2011), 147-161.

[Zeginis et al. 2012] Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: “Towards
Proactive Cross-layer Service Adaptation”; Proc. WISE, Lecture notes in computer science,
Springer, Paphos, Cyprus, 7651, (2012), 704–711.

[Zengin et al. 2011] Zengin, A., Kazhamiakin, R., Pistore, M.: “CLAM: Cross-Layer
Management of Adaptation Decisions for Service-Based Applications”; Proc. IEEE
International Conference on Web Services, (2011), 698-699.

[Zouari et al. 2014] Zouari, M., Diop, C., Exposito, E.: “Multilevel and Coordinated Self-
management in Autonomic Systems based on Service Bus”. J. UCS (Journal of Universal
Computer Science), 20, 3, (2014), 431-460.

1151Mezni H., Chainbi W., Ghedira K.: Extending Policy Languages ...

