
Translation of Structural Constraints from Conceptual

Model for XML to Schematron

Jakub Kĺımek

(Czech Technical University in Prague

Faculty of Information Technology, Czech Republic

klimek@fit.cvut.cz)

Soběslav Benda

(Charles University in Prague

Faculty of Mathematics and Physics, Czech Republic

benda@ksi.mff.cuni.cz)

Martin Nečaský

(Charles University in Prague

Faculty of Mathematics and Physics, Czech Republic

necasky@ksi.mff.cuni.cz)

Abstract: Today, XML (eXtensible Markup Language) is a standard for exchange
inside and among IT infrastructures. For the exchange to work an XML format must
be negotiated between the communicating parties. The format is often expressed as
an XML schema. In our previous work, we introduced a conceptual model for XML,
which utilizes modeling, evolution and maintenance of a set of XML schemas and al-
lows schema designers to export modeled formats into grammar-based XML schema
languages like DTD and XML Schema. However, there is another type of XML schema
languages called rule-based languages with Schematron as their main representative. In
our preceding conference paper [Benda et al.(2013)] we briefly introduced the process
of translation from our conceptual model to Schematron. Expressing XML schemas
in Schematron has advantages over grammar-based languages and in this paper, we
describe the previously introduced translation in more detail with focus on structural
constraints and how they are represented in Schematron. Also, we discuss the possibil-
ities and limitations of translation from our grammar-based conceptual model to the
rule-based Schematron.

Key Words: XML schema, conceptual modeling, Schematron, translation

Category: D.2.2, H.2.3

1 Introduction

XML has many applications in various IT infrastructures. When using XML,

communication partners must agree on the used XML formats, i.e., which el-

ements and attributes may be present, in which structure, etc. A specification

of an XML format is an XML schema - a collection of rules which XML docu-

ments must satisfy. Programs that can automatically verify document validity -

Journal of Universal Computer Science, vol. 20, no. 3 (2014), 277-301
submitted: 24/3/13, accepted: 4/2/14, appeared: 1/3/14 J.UCS

adherence to its schema - are called validators. There are a number of declarative

languages called XML schema languages used for description of schemas.

The standardized schema languages are DTD, XML Schema and Relax NG.

These languages have differences in some features (e.g., expressive power, syntax

complexity, object-oriented design, etc). A common feature of these languages

is their formal background where each of these languages represents a certain

subset of Regular Tree Grammar (RTG), see [Murata et al.(2005)]. Commonly,

we call these languages grammar-based schema languages or grammars for short.

However, it is possible to express XML schemas in other languages that are

not based on RTG. An example of such language is Schematron [Jelliffe(2001)].

Briefly, Schematron allows designers to describe schemas using XPath conditions,

that are evaluated over a given XML document during validation. This brings

interesting possibilities for the validation of XML documents. This paper is an

extended version of [Benda et al.(2013)]. The extension is in the level of detail

of description of the translation process and more extensive unified examples.

1.1 Motivation

In our previous work [Nečaský et al.(2012b), Nečaský et al.(2012a)], we devel-

oped a methodology for modeling, evolution and maintenance of XML schemas

using a multilevel conceptual model based on Model Driven Architecture (MDA)

(see [Miller and Mukerji(2003)]). So far, we have only supported grammar–based

XML schema languages, because of their popularity due to understandable decla-

rations and efficient validation. While it is true that for relatively simple schemas

DTD will do and for more complex structures XML Schema will provide the nec-

essary constructs, there are also drawbacks to these widely used languages. For

example, when we validate documents using DTD or XML Schema, we usu-

ally get a simple valid/invalid statement as a result. In the more interesting

case of invalidity, the validators usually return a built-in error message, which is

often incomprehensible, misleading and does not provide means for quality di-

agnostics [Nálevka(2010)]. In addition, it is often not possible (or user-friendly)

to pass them directly to the user interface. Regarding this diagnostic problem,

Schematron schemas can help. Schematron is often described as a language for

description of integrity constraints [Murata et al.(2005)], but it is more than

that. Using Schematron, it is possible to describe most constraints that can be

expressed by grammars. Moreover, it is possible to describe many additional de-

tails and even structural constraints that we can not express using grammar-like

languages like XML Schema. In [Jelliffe(2007)], the authors identify the demand

for Schematron-based solutions for XML schema management, which is another

motivation for adding support for Schematron to our conceptual model. Finally,

when combined with the approach to express integrity constraints in the con-

ceptual model [Malý and Nečaský(2012)], Schematron becomes a unified schema

278 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

language for description of the structure and integrity constraints of XML doc-

uments and a framework for detailed diagnostics and error reporting. These

advantages of using Schematron outweigh its main disadvantage, which is its

verbosity and complexity, because it can be eased by the usage of our concep-

tual model for schema management.

1.2 Contributions

In this paper, we describe our approach to using Schematron as an XML schema

language in conceptual modeling for XML. The main contribution of our ap-

proach is that with Schematron, we are able to provide better and finer grained

diagnostic outputs during validation of XML documents when compared to val-

idation using XML Schema. Also, certain constructs that are not possible to

represent in XML Schema can be represented using Schematron. This paper is

an extended version of our conference paper [Benda et al.(2013)]. The main con-

tribution of this extension is the detailed description of translation of structural

constraints present in XML schemas which we omitted in the conference paper.

1.3 Outline

The paper is organized as follows: In [Section 2], we introduce our concep-

tual model for XML. In [Section 3], we introduce the Schematron language.

[Section 4] contains the translation from the conceptual model to Schematron

schemas with emphasis on details for the translation of structural constraints.

In [Section 5] we discuss related work, [Section 6] contains a brief overview of

the implementation and evaluation and we conclude in [Section 7].

2 Conceptual modeling of XML schemas

In this section, we briefly introduce our conceptual model for XML. For its

full description and comprehensive related work see [Nečaský et al.(2012b)]. It

is based on two levels of abstraction. The Platform-Independent Model (PIM)

models the problem domain independently of any target platform such as XML

or relational databases. The Platform-Specific Model (PSM) then provides de-

scription of how a part of the problem domain is represented in the target plat-

form, in our case XML. A PSM schema is therefore a description of an XML

format. From a PSM schema, we can automatically create a representation of

the format in a chosen XML schema language such as XML Schema, or, in the

case of this paper, Schematron. The main feature of the conceptual model is a

mapping, which specifies for each component in each PSM schema to which com-

ponent in the PIM schema it corresponds. We exploit this mapping for automatic

propagation of changes between the two levels, which simplifies the management

of multiple XML schemas [Nečaský et al.(2012a)].

279Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

Figure 1: Example of a PIM schema

2.1 Platform-Independent Model

A PIM schema S is based on UML class diagrams and models real-world con-

cepts and relationships between them independently of the target platform (im-

plementation). It contains three types of components: classes, attributes and

associations with the usual semantics [OMG(2007a), OMG(2007b)]. A sample

PIM schema is in [Figure 1]. Formally, we define its simplification in [Defini-

tion 1].

Definition 1. A platform-independent (PIM) schema is a triple S = (Sc,Sa,Sr)

of disjoint sets of classes, attributes, and associations, respectively.

– Class C ∈ Sc has a name assigned by function name.

– Attribute A ∈ Sa has a name, data type and cardinality assigned by functions

name, type, and card, respectively. Moreover, A is associated with a class

from Sc by function class.

– Association R ∈ Sr is a set R = {E1, E2}, where E1 and E2 are called

association ends of R. R has a name assigned by function name. Both E1

and E2 have a cardinality assigned by function card and are associated with

a class from Sc by function participant. We will call participant(E1) and

participant(E2) participants of R. name(R) may be undefined, denoted by

name(R) = λ.

For a class C ∈ Sc, we will use attributes (C) to denote the set of all attributes

of C. Similarly, associations (C) will denote the set of all associations with C as

a participant. The yellow circles in Figures 1 and 2 represent association ends.

280 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

2.2 Platform-Specific Model

The platform-specific model (PSM) specifies how a part of the reality modeled

on the PIM level is represented in the target platform, XML in our case, which

makes the PSM schemas views of the PIM schema. The advantage is that the

designer works in a UML-style way which is more comfortable than editing the

XML schema itself and also enables the maintenance of mappings to the PIM

level. The individual constructs on the PSM level are, however, slightly modified

to reflect the structure of XML documents. A PSM schema represents an XML

format and can be automatically translated to the XML Schema language. Very

briefly, classes represent complex types, attributes represent XML attributes or

XML elements that have simple types, associations represent the nesting rela-

tion and are ordered. For full translation description see [Nečaský et al.(2012b)].

Formally, a PSM schema is defined by Definition 2. An example is in Figure 2.

Definition 2. A platform-specific (PSM) schema S ′ = (S ′
c,S

′
a,S

′
r,S

′
m, C′

S′) is

a tuple of disjoint sets of classes, attributes, associations, and content models,

respectively, and one specific class C′
S′ ∈ S ′

c called the schema class. This PSM

schema targets XML.

– Class C ′ ∈ S ′
c has a name assigned by function name

– Attribute A′ ∈ S ′
a has a name, data type, cardinality and XML form assigned

by functions name, type, card and xform, respectively. xform(A′) ∈ {e, a}

(element or attribute). Moreover, it is associated with a class from S ′
c by

function class and has a position assigned by function position within the

attributes associated with class(A′).

– Association R′ ∈ S ′
r is a pair R′ = (E′

1
, E′

2
), where E′

1
and E′

2
are called

association ends of R′. Both E′
1
and E′

2
have a cardinality assigned by func-

tion card and each is associated with a class or content model from S ′
c ∪ S ′

m

assigned by function participant, respectively. We will call participant(E′
1
)

and participant(E′
2
) parent and child and will denote them by parent(R′)

and child(R′), respectively. Moreover, R′ has a name assigned by function

name and has a position assigned by function position within the associ-

ations with the same parent(R′). name(R′) may be undefined, denoted by

name(R′) = λ.

– Content model M ′ ∈ S ′
m has a content model type assigned by function

cmtype. cmtype(M ′) ∈ {sequence, choice, set}. Sequence and set have

their usual semantics, choice means that only one of the modeled variants is

actually present in the document.

The graph (S ′
c ∪ S ′

m,S ′
r) must be a forest of rooted trees with one of its trees

rooted in C′
S′ . For C ′ ∈ S ′

c, attributes (C
′) will denote the sequence of all at-

tributes of C ′ ordered by position, i.e., attributes (C ′) = (A′
i ∈ S ′

a : class(A′
i) =

281Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

Figure 2: Example of a PSM schema

C ′ ∧ i = position(A′
i)). Similarly, content (C ′) will denote the sequence of all

associations with C ′ as a parent ordered by position, i.e., content (C ′) = (R′
i ∈

S ′
r : parent(R′

i) = C ′∧ i = position(R′
i)). We will call content (C ′) content of C ′.

Note that in the full conceptual model we also consider inheritance. One

type of inheritance is content reuse. We use this construct (blue class) in our

examples, but do not define it formally as it would unnecessarily complicate the

formalism. It is sufficient to say that the blue class points at another PSM class

and reuses its content in its own, e.g., ShipAddr and BillAddr reuse Address.

2.3 Interpretation of PSM schema against PIM schema

A PSM schema represents a part of a PIM schema. A class, attribute or asso-

ciation in the PSM schema may be mapped to a class, attribute or association

in the PIM schema. The mapping specifies the semantics of classes, attributes

and associations of the PSM schema in terms of the PIM schema. The mapping

must meet certain conditions to ensure consistency between PIM schemas and

the specified semantics of the PSM schema. This mapping is then utilized in

various use cases for the conceptual model like XML schema evolution and inte-

gration [Nečaský et al.(2012a)]. See [Nečaský et al.(2012b)] for the precise con-

ditions of the mapping. In this paper, we focus on the translation from a PSM

282 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

schema to Schematron and therefore, the precise definition of interpretation is

not necessary here. Note that in [Figure 2] the gray colored classes and attributes

do not have any interpretation in the PIM schema.

2.4 Conceptual model summary

In summary, the usefulness of our conceptual model for XML can be clearly

seen when we, for example, ask questions like ”In which of our hundred XML

schemas used in our system is the concept of a customer represented?” and

”What impact on my XML schemas would this particular change on the concep-

tual level have?”. Even better, with our extensions for evolution of XML schemas

[Kĺımek and Nečaský(2010), Nečaský et al.(2012a)] we can make changes to the

PIM schema (e.g., change the representation of a customer’s name from one string

to firstname and lastname) and those changes can be automatically propagated

to all the affected PSM schemas. The question of the effect of those changes on

the actual data is discussed in [Malý et al.(2011)], where a method for generating

XSLT scripts for data updates is proposed. Thanks to automated translations

from PSM schemas to, e.g., XML Schema and back [Nečaský et al.(2012b)] we

can easily manage a whole system of XML schemas from the conceptual level

all thanks to the interpretations. These extensions are not in the scope of this

paper, for details see our previous work. Also, it would be possible to gener-

ate a clickable HTML documentation of a system modeled using our conceptual

model. With the model, it is also much easier and faster to grasp a system of

multiple XML schemas when, for example, negotiating interfaces between two

information systems. We already have our model implemented in our tool called

eXolutio [Kĺımek et al.(2012)].

3 Schematron

Schematron is a language which represents the rule-based XML schema lan-

guages. These languages are not based on construction of a grammatical infras-

tructure. Instead, they use rules resembling if-then-else statements to describe

constraints. These languages offer the finest granularity of control over the for-

mat of the documents [Vlist(June 2002)]. We can even view constructs of other

schema languages as a syntactical sugar used instead of sets of rule-based con-

ditions. Schematron was designed in 1999 by Rick Jelliffe and standardized in

2005 as ISO Schematron [Jelliffe(2001)]. It is a general framework which allows

schema designers to organize conditions which are evaluated over the given docu-

ments. These conditions are described using an underlying XML query language

such as the default XPath [Clark and DeRose(1999)]. A result of a validation is

a report which contains information about evaluation of these conditions.

283Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

3.1 Core constructs

Now we describe core Schematron constructs. The root element of every schema

is a schema element introducing the required XML namespace1. A pattern ele-

ment is a basic building block for expressing an ordered collection of Schematron

conditions which are ordered in XML document order. A rule is a Schematron

condition which allows a designer to specify a selection of nodes from a given

document and evaluation of predicates in the context of these nodes. The rule

element has a required context attribute used for an expression in the under-

lying query language. The value of the context attribute is commonly called a

path. Predicates are specified using a collection of assertions. An assertion is a

predicate which can be positive or negative. An assertion is represented using

the assert and report elements. Both elements have a required test attribute

for specification of a predicate using the underlying query language. Both ele-

ments also have a text content called natural-assertion. Natural-assertion is a

message in a natural language, which a validator can return in the validation

report. A positive predicate is represented using an assert element and if it is

evaluated as false, we say that the assert is violated and the document is invalid.

A negative predicate is represented using a report element and if it is evaluated

as true, we say that the report is active and a natural-assertion will be reported.

Schematron is not only a validation language. It is a more general XML reporting

language [Ogbuji(2004)] where one type of report is an error message.

<pattern>
<rule context="triangle">
<assert test="count(vertex)=3">
The element ’triangle’ should have 3 ’vertex’ elements.

</assert>
</rule>

</pattern>

Figure 3: Schematron pattern

Example 1. The pattern in [Figure 3] selects all triangle elements from a doc-

ument. If the given triangle has for example four child vertex elements, then

the predicate will be false and the specified message will be reported.

3.2 Additional constructs

In addition to the core Schematron constructs we mention these additional ones

which are relevant for our approach:

1 http://purl.oclc.org/dsdl/schematron

284 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

– A diagnostic is a natural-language message giving details about a failed

assertion, such as found versus expected values and repair hints. It is rep-

resented using a diagnostic element with required id attribute and text

content with a message. Diagnostics are referenced by assertions using a

diagnostics attribute.

– Phases allow organization of patterns into identified parts. Every Schema-

tron schema has one default phase which includes all patterns. Before val-

idation, it can be determined which phase is used and which patterns are

activated. This selected phase is called the active-phase. A phase is repre-

sented using a phase element with an id attribute. One phase can have

multiple active elements which refer to patterns using a pattern attribute.

4 PSM to Schematron translation

A PSM schema models a grammar-based XML format specification and its con-

cepts are interpreted against PIM concepts. There are several problems that

we must consider when we want to describe the translation of a PSM schema

to a Schematron schema. In particular, we need to identify groups of Schema-

tron rules and associated XPath expressions that impose equivalent constraints

on the documents as constructs of grammar-based languages would. Also, we

would like to provide design of Schematron schemas, which allows to specify

quality validation diagnostics.

4.1 Overall view of the translation

The translation algorithm (see [Algorithm 1]) has a PSM schema on the input

and it gradually builds the resulting Schematron schema. The generated schema

is composed of multiple patterns which cover grammatical structural constraints

represented in the PSM schema. This also allows us to distribute various patterns

into phases. The validator then can run through selected phases and validate

various aspects of the XML document, e.g., only attributes, only elements, etc.,

resulting in variable performance and diagnostic properties.

In the first step ([line 2], we generate Schematron patterns for XML ele-

ment names that are allowed inside valid XML documents as roots. Similary, on

[line 3]), we generate Schematron patterns for element and attribute names that

are allowed inside valid documents. On [line 4], we produce patterns for allowed

contexts, i.e., paths where certain names of elements and attributes may occur.

The patterns for validation of required complex element structures are produced

in the steps on [line 5] and [line 6]. These patterns are more complex, because

we must generate an equivalent of regular expressions to obtain the semantics of

regular grammars. In the last step on [line 7], the patterns for text restrictions,

i.e., validation of attribute values and simple element contents, are produced.

285Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

Algorithm 1 Overall view of the translation algorithm

1: <schema xmlns="http://purl.oclc.org/dsdl/schematron">

2: Generate allowed root element names [Section 4.2];

3: Generate allowed names [Section 4.3];

4: Generate allowed contexts [Section 4.4];

5: Generate required structural constraints [Section 4.5];

6: Generate required sibling relationships [Section 4.6];

7: Generate required text restrictions [Section 4.7];
8: </schema>

4.2 Allowed root element names

We need a tool for reporting names of elements which are not allowed in the

schema, but are present in the document.

Definition 3. An absorbing pattern for a set of paths P = {p1, p2, ..., pn :

pi is an XPath query} is a Schematron pattern, where the first rules select XML

nodes specified by pi and the last rule (called global) selects all other nodes in

the XML document.

<pattern>
<rule context="/purchase">
<assert test="true()"/>
</rule>
<rule context="/*">
<assert test="false()">
The element ’<name/>’ is not allowed as root.
</assert>
</rule>
</pattern>

Figure 4: Absorbing Schematron pattern for root elements

Example 2. See the PSM schema in Figure 2 and the corresponding absorbing

Schematron pattern in Figure 4 where P = {/purchase}.

We defined a special kind of a Schematron pattern, which allows a validator

to absorb elements (or attributes) specified by paths P . The pattern resembles

a sieve, because it checks for all the allowed elements (or attributes) specified by

paths and if none of them is found, it matches whatever is found in the path using

a wildcard (absorbs it). If the element or attribute is absorbed by the wildcard,

it is interpreted as a violation of the expected format which is reported.

In comparison to XML Schema validation of root elements, Schematron is

equally powerful but in addition allows better diagnostics. Instead of saying that

an element is missing, Schematron can report a human readable message, which

can be, for example, translated if necessary.

286 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

4.3 Allowed XML element and attribute names

Production of patterns for checking allowed XML element and attribute names

inside validated documents follows a similar algorithm to the one for the root

elements. We produce a set P , where pi are all XML element names specified

by the PSM schema. These are either named associations that have classes as

children (complex XML elements) or names of PSM attributesA′ with XML form

set to xform(A′) = e (simple XML elements). From P , an absorbing pattern is

generated the same way as before.

XML attributes come from PSM attributes with xform(A′) = a and the

pattern is the same except for the @ prefix before the attribute name, e.g.,

@code.

4.4 Allowed contexts

Now we introduce stricter patterns for checking allowed contexts, i.e., paths

inside documents. We also generate absorbing patterns, but we need more so-

phisticated paths, because we absorb only element and attribute names in the

declared contexts, so the other names (contexts) break validity.

4.4.1 Paths overview

A path is described using an XPath expression to select nodes from the validated

XML document. When nodes are selected, we can evaluate assertions, i.e., XPath

predicates in the context of these nodes. In general, we have two approaches to

how we can describe paths, i.e., absolute paths, for example /purchase/shipto

or relative paths for example shipto. If we want to design schemas more pow-

erful than DTD, i.e., local regular tree grammars (see [Murata et al.(2005)]), we

need absolute paths to select nodes from documents. However, relative paths

are also important for example to design recursive declarations. There is also a

possibility to use predicates in paths. We do not deal with predicates for node

selection, because we aim to design as simple a Schematron schema as possible.

Every complex XML element modeled in a PSM schema can be specified as a

regular expression. On these expressions we impose a Single Occurrence Regular

Expression (SORE) precondition in [Definition 4]. Every SORE is deterministic

as required by the XML specification and more than 99% of the regular expres-

sions in practical schemas are SOREs [Bex et al.(2006)], so the assumption is

not very restrictive in practice and at the same time considerably simplifies the

translation.

Definition 4. Let S′ be a PSM schema. A SORE precondition is an assumption

on S′, that every complex element has content described using Single Occurrence

Regular Expression, i.e., every element (or attribute) name can occur at most

once in this regular expression.

287Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

For instance, (a|b) 0..* is a SORE while a(a|b) 0..* is not as a occurs twice.

4.4.2 Paths construction

Here we describe the construction of paths for a PSM schema. For each XML

element and XML attribute declaration present in a PSM schema, we produce

all possible paths (contexts) where they can occur.

Firstly, we need to create all paths for a given XML element or XML attribute

declaration. Consider the PSM component X ′ ∈ (S′
a∪S′

r). We build an ancestor

tree for X ′ which represents all achievable ancestor PSM components of X ′ in

the PSM schema. Then we can translate all its paths from leaf nodes to root

node into Schematron paths, i.e., XPath expressions. For each (X ′, p) ∈ Gp p

must be unique, which corresponds to the SORE precondition in [Definition 4].

Every created path is associated with a PSM component, i.e., a complex

element, a simple element or an attribute declaration, and the pairs are placed

into the global set of paths Gp. In the next step, we perform sorting of Gp

members. The resulting list Gp = {(X ′, p) : X ′ ∈ (S′
r ∪ S′

a) and p is a path} is

used for generation of Schematron rules in the order of this set in the rest of the

translation. We sort members of Gp using the following ordering: (1) Absolute

paths without recursions go first in descending order of length (2) Absolute paths

with recursions follow, in descending order of length (3) Relative paths go last,

again in descending order of length.

Example 3. Gp for PSM schema in [Figure 2]:
1. (R′

purchase, /purchase)

2. (A′

code, /purchase/@code)
3. (A′

date, /purchase/@date)
. . .

20. (A′

tester, /purchase/items/item/@tester)
21. (A′

price, /purchase/items/item/price)

22. (A′

amount, /purchase/items/item/amount)

4.4.3 Pattern for allowed element contexts

Now we can produce patterns for allowed contexts. We iterate through all mem-

bers of the ordered set Gp and produce a set of paths P only for complex el-

ement names and simple element names (PSM attributes with XML form set

to element). In the last step we produce an absorbing pattern for P with *.

Similarly, we produce a pattern for allowed attribute contexts.

288 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

4.5 Required structural constraints

Now we have the absorbing patterns for weak validation of XML documents.

These patterns say what is allowed inside the documents. Now we deal with

structural restrictions that the given document must satisfy.

Definition 5. A conditional pattern is a Schematron pattern for a list of rules,

where each rule is a pair E = {(p,A); where p is a path and A is a set of

predicates}. The rules are then validated one by one and the document passes

validation by this pattern if and only if all the rules of the pattern are satisfied.

For the production of conditional patterns, we need to analyze specifications

of complex element contents. The complex element declared in a PSM schema is

precisely specified using a regular expression, so we need to analyze such regular

expressions and translate them into Schematron predicates. The main idea is

to translate a regular expression and the respective parts of its semantics, into

more conditional patterns. These patterns then cover the same semantics as the

regular expression when they are evaluated together.

4.5.1 Boolean expressions overview

In this section we deal with the part of the regular expression semantics that cov-

ers the required parent-child and parent-attribute relationships. It also contains

choices among attributes and choices among attributes and elements. The main

idea is to translate a given regular expression into a Boolean expression, which

can be evaluated in the context of a selected complex element. The expression

specifies which child elements and attributes the element must have.

Example 4. Consider a regular expression which specifies the complex element

item in [Figure 2]: (@code,(@tester|price),amount). We translate it into an

XPath predicate that we can use in the Schematron assertion (see [Figure 5]).

This representation is quite straightforward and corresponds well with grammar-

based languages like XML Schema.

<rule context="/purchase/items/item">
<assert test="@code and (@tester and count(price)=0) or

(count(@tester)=0 and price) and amount" />
</rule>

Figure 5: Boolean expression

However, it also comes with disadvantages in the form of poor diagnostics, As

with XML Schema validation, when we validate a document using such Schema-

tron rule, we would only get a valid or invalid statement without further details.

For this purpose, it is more advantageous to go into more detail and write the

289Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

same rule as multiple simpler rules. In our case we transform the regular ex-

pression to a logic formula and the logic formula to a conjunctive normal form

as seen in [Figure 6]. The rules have equivalent semantics, because the assert

element in the rule represents one clause, i.e., disjunction of literals, and the rule

is composed of a conjunction of assert elements. We can then insert an error

report for each of the assert elements making the diagnostics finer grained and

therefore more user friendly. Note that this is also an example of choice between

element price and attribute @tester, which is not possible in XML Schema but

can be done using Schematron.

<rule context="/purchase/items/item">
<assert test="@code" />
<assert test="count(price)=0 or count(@tester)=0" />
<assert test="price or @tester" />
<assert test="amount" />

</rule>

Figure 6: Boolean expression in CNF

As seen in [Example 4], we need to provide a solution for translation of regular

expressions into Boolean expressions and then we need to translate our Boolean

expressions into CNF.

4.5.2 From complex content to Boolean expression

In this section we translate a specification of a complex element content in PSM

into a Boolean expression. More generally, we translate a regular expression

modeled by the complex element declaration, i.e., association R′ ∈ S ′
r with a

name and with a class as a child, into a Boolean expression that which can be

placed into Schematron as an XPath expression.

First of all, we define an additional function on the PSM level, descendants.

Definition 6. descendants: R′ → (V ′
c , V

′
s , V

′
a) is a function that has an associa-

tion R′ that corresponds to an XML element on the input. It returns a 3-tuple

(V ′
c , V

′
s , V

′
a) of sets of XML complex element declarations, simple element dec-

larations and attribute declarations, respectively, corresponding to the XML

content model of the XML element modeled by R′.

In the following semantic rewrite rules we also use a version of descendants

where the resulting triple (V ′
c , V

′
s , V

′
a) is used as an argument to the XPath func-

tion count. In this case V ′
c = (R′

1
, ..., R′

m), V ′
s = (X ′

1
, ..., X ′

n), V
′
a = (A′

1
, ..., A′

k)

is translated into name(R′
1
)| ... |name(R′

m)| ... |name(X ′
1
)| ... |name(X ′

n)| ...

|@name(A′
1
)| ... |@name(A′

k), where | is the union operator of XPath.

Example 5. The following examples are valid in [Figure 2]:

290 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

– descendants(R′

cust) = (∅, {A′

name, A
′

phone, A
′

email}, {A
′

login})

– descendants(R′

items) = ({R′

item}, {A
′

price, A
′

amount}, {A
′

code, A
′

tester})

Note that attributes A′ are in V ′
s here, because they model a simple XML ele-

ment, not an XML attribute.

Definition 7. In the following semantic rewrite rules we use the following func-

tions from our conceptual model (see [Nečaský et al.(2012b)] for full definition).

– name(Z ′) = string returns the name of a component Z ′ ∈ S ′
c ∪ S ′

r ∪ S ′
a

– parent(X ′) = R′ returns the parent association R′ ∈ S ′
r of a component

X ′ ∈ S ′
c ∪ S ′

m

– child(R′) = X ′ returns the child component X ′ ∈ S ′
c ∪ S ′

m of an association

R′ ∈ S ′
r. parent(child(R

′)) = R′

– content(X ′) = (R′
1
, ..., R′

n) returns the associations leading from a PSM

component X ′ ∈ S ′
c ∪ S ′

m

– lower(Y ′) ∈ Z≥0 returns the lower cardinality bound of an association or

attribute Y ′ ∈ S ′
r ∪ S ′

a

– card(Y ′) returns cardinality of an association or attribute Y ′ ∈ S ′
r ∪ S ′

a, for

example 0..1 or 1..*

– cmtype(M ′) ∈ {set, choice, sequence} returns the type of a content model

M ′ ∈ S ′
m

– xform(A′) ∈ {e, a} returns the XML form of a PSM attribute - whether it

models an XML simple element or an XML attribute

Now we introduce function be that is used for translation of a PSM schema

into Boolean expressions.It takes a named association R′ ∈ S ′
r with a class as

child child(R′) ∈ S ′
c, on the input and outputs a Boolean expression. Rather than

specify the function procedurally in a form of pseudo-code, we specify its seman-

tics by rewriting rules. In the description of semantics of be we use additional

functions. Functions rw, rwAtt and rwChoice, where be(R′) = rw(child(R′)),

take a general PSM component, PSM attribute and PSM choice content model,

respectively, and rewrite it into a Boolean expression.

When function rw has class C ′ ∈ S ′
c on the input (see [Figure 7(a)]), its

content is rewritten into logical conjunctions.

When function rw has an optional attribute A′ ∈ S ′
a, lower(A

′) = 0 on

the input (see [Figure 7(b)]), it is rewritten into logical disjunction, e.g., (@a

or count(@a)=0). The rule uses function rwAtt for rewriting a PSM attribute

into an XML attribute or XML element representation (see [Figure 8]). When

function rw has a required attribute A′ ∈ S ′
a, lower(A

′) = 1 on the input (see

[Figure 7(c)]), it is rewritten using function rwAtt directly.

291Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

C ′ ∈ S′
c, (A

′
1
, ..., A′

n) = attributes ′(C ′), (R′
1
, ..., R′

m) = content(C ′)

(rw(A′
1
) ∧ ... ∧ rw(A′

n) ∧ rw(R′
1
) ∧ ... ∧ rw(R′

m))
(a) Class rewrite rule of rw(C′)

A′ ∈ S′
a, lower(A

′) = 0

(rwAtt(A′) ∨ count(rwAtt(A′)) = 0)
(b) Optional attribute rewrite rule of rw(A′)

A′ ∈ S′
a, lower(A

′) = 1

(rwAtt(A′))
(c) Required attribute rewrite
rule of rw(A′)

Figure 7: Class and attribute rewrite rules of rw

A′ ∈ S′
a, xform(A′) = a

(@name(A′))
(a) rwAtt(A′): Attribute rewrite

A′ ∈ S′
a, xform(A′) = e

(name(A′))
(b) rwAtt(A′): Simple element rewrite

Figure 8: Semantic rewrite rules of rwAtt

Example 6. Consider C ′
Purchase ∈ S ′

c and C ′
ShipAddr ∈ S ′

c in [Figure 2]. We translate

the first class into (@code and @date and @version and ...) and the second

into (street and city and gps).

When rw has an optional association R′ ∈ S ′
r, lower(R

′) = 0,name(R′) = λ

on the input, which is not named and thus does not form a complex element

declaration (see [Figure 9(a)]), it is rewritten into a logical disjunction. When

function rw has a required association R′ ∈ S ′
r, lower(R

′) ≥ 1,name(R′) = λ on

the input, which does not form a complex element declaration (see [Figure 9(b)]),

a child of the association, which always exists in PSM, is rewritten.

When rw has an optional association R′ ∈ S ′
r, lower(R

′) = 0,name(R′) 6=

λ on the input, which is named and thus is a complex element declaration

(see [Figure 10(a)]), it is rewritten into a logical disjunction of XML element

names. When function rw has a required association R′ ∈ S ′
r, lower(R

′) ≥

1,name(R′) 6= λ on the input, which is a complex element declaration (see

[Figure 10(b)]), it is rewritten into an XML element name.

When function rw has either the sequence or set content model M ′ ∈ S ′
m

on the input (see [Figure 11(a)] and [Figure 11(b)]), its content is rewritten into

logical conjunctions. Sequence and set content models have the same semantics

from the point of view of Boolean expressions, because sequence (a,b) is equiv-

alent to set {a,b}, i.e., (a and b). When rw has the choice content model on

the input (see [Figure 11(c)]), it is rewritten using a special function rwChoice.

rwChoice rewrites a content model M ′ ∈ S ′
m without XML attribute dec-

larations in its context, i.e., descendants(parent(M ′)) = (V ′
c , V

′
s , V

′
a), |V

′
a| = 0.

The content of M ′ is rewritten into disjunctions (see [Figure 12(a)]). We cannot

presume exclusive disjunction between elements in Boolean expressions, because

it is not possible to check choices among elements using Boolean expressions.

292 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

R′ ∈ S′
r, lower(R

′) = 0, (name′(R′) = λ ∨ child(R′) /∈ S′
c)

(rw(child(R′)) ∨ count(descendants(R′)) = 0)
(a) Optional unnamed association rewrite rule of rw(R′)

R′ ∈ S′
r, lower(R

′) ≥ 1, (name(R′) = λ ∨ child(R′) /∈ S′
c)

(rw(child(R′))
(b) Required association rewrite rule of rw(R′)

Figure 9: Unnamed association rewrite rules of rw

R′ ∈ S′
r, lower(R

′) = 0, name′(R′) 6= λ, child(R′) ∈ S′
c

(name(R′) ∨ count(name(R′)) = 0)
(a) Optional named association rewrite rule of rw(R′)

R′ ∈ S′
r, lower(R

′) ≥ 1, name′(R′) 6= λ, child(R′) ∈ S′
c

(name(R′))
(b) Required named association rewrite rule of rw(R′)

Figure 10: Named association rewrite rules of rw

Example 7. Consider a regular expression ((a|b)+). We cannot translate this

expression into a Boolean expression ((a and count(b)=0) or (count(a)=0

and b)), because when we would validate, e.g., aababba, this would be invalid

even though it matches the original regular expression. However, we can translate

it into (a or b), which is a weaker expression, but works even in this case.

We check choices among attributes and choices among attributes and el-

ements using Boolean expressions (see [Figure 12(b)]). We generate exclusive

disjunctions for the choice content model. Note that we used another function

rwChoiceNegation which allow us to translate declarations to the argument of

count.

Example 8. Consider regular expression (a|@b|@c). We translate it using the

rule in [Figure 12(b)] into a Boolean expression ((a and count(@b|@c)=0) or

(@b and count(a|@c)=0) or (@c and count(a|@b)=0)).

[Example 8] and the rule in [Figure 12(b)] are correct when we accept another

precondition for PSM attributes (see [Definition 8]).

Definition 8. Let S ′ = (S ′
c,S

′
a,S

′
r,S

′
m) be a PSM schema. The attribute cardi-

nalities precondition is an assumption on S ′ saying ∀A′ ∈ S ′
a, xform(A′) = a, it

must hold that card(A′) = 0..1 or card(A′) = 1..1. In addition, A′ can only be a

descendant of unnamed associations R′ ∈ S ′
r, (name(R′) = λ ∨ child(R′) /∈ S ′

c),

where card(R′) = 0..1 or card(R′) = 1..1. In another words, we simplify our

approach by presuming that attributes are either optional or required and then

293Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

M ′ ∈ S′
m, cmtype(M ′) = sequence, (R′

1
, ..., R′

n) = content(M ′)

(rw(R′
1
) ∧ ... ∧ rw(R′

n))
(a) Sequence rewrite rule rw(M ′)

M ′ ∈ S′
m, cmtype(M ′) = set, (R′

1
, ..., R′

n) = content(M ′)

(rw(R′
1
) ∧ ... ∧ rw(R′

n))
(b) Set rewrite rule rw(M ′)

M ′ ∈ S′
m, cmtype(M ′) = choice

(rwChoice(M ′))
(c) Choice rewrite rule rw(M ′)

Figure 11: Content model rewrite rules of rw

M ′ ∈ S′
m, (R′

1
, ..., R′

n) = content(M ′), descendants(parent(M ′)), |V ′
a| = 0

(rw(R′
1
) ∨ ... ∨ rw(R′

n))
(a) Choice without attributes rewrite rule of rwChoice(M ′)

M ′ ∈ S′
m, (R′

1
, ..., R′

n) = content(M ′), descendants(parent(M ′)), |V ′
a| ≥ 1

(
∨n

i=1
(rw(R′

i) ∧ count(
⋃n

j 6=i rwChoiceNegation(R
′
j)) = 0))

(b) Choice with attributes rewrite rule of rwChoice(M ′).
⋃

is the union oper-
ator from XPath

R′ ∈ S′
r,name(R′) 6= λ, child(R′) ∈ S′

c

name(R′)
(c) Named association rewrite rule of rwChoiceNegation(M ′)

R′ ∈ S′
r, (name(R′) = λ ∨ child(R′) /∈ S′

c)

descendants(R′)
(d) Association rewrite rule of rwChoiceNegation(M ′)

Figure 12: Content model rewrite rules of rw

we ensure that this condition is not circumvented by cardinalities of unnamed

parent associations.

Example 9. The following are regular expressions which satisfy the attribute car-

dinalities precondition:

– (@a,@b,(@c|(d,e,f)))

– (@a 0..1,@b,(@c 0..1 |(d,e,f)) 0..1)

The following example is a regular expression which does not satisfy the

attribute cardinalities precondition:

– (@a 0..1,@b,(@c|(d,e,f)) 0..3)

294 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

4.5.3 From Boolean expression to CNF

Now we have a Boolean expression derived from a complex element declaration.

This expression is composed only of brackets, conjunctions ∧, disjunctions ∨

and literals (name or count(...) = 0 used as a negation). We can translate

such expressions into their equivalent conjunctive normal forms (CNF) using

the following rule:

– (A ∧B) ∨ C → (A ∨ C) ∧ (B ∨ C)

From CNF we can translate clauses with disjunctions of literals into Schema-

tron predicates. The derived CNF may be optimized by removing tautologies

such as @a or count(@a)=0.

We call the function which translates a Boolean expression into a collection

of clauses with disjunctions of literals cnf, e.g., cnf ((a and b) or c)) = {(a

or c), (b or c)}.

4.5.4 Producing patterns for structural constraints

For the actual production of conditional Schematron patterns from our Boolean

expressions in CNF we use a simple algorithm which creates two conditional pat-

terns. One contains all rules for elements and one for attributes. The exception

is when there is a rule containing elements and attributes at once. Then it goes

into the second pattern. We split the rules into two patterns to support possible

distribution of patterns into phases. For the pseudo-code and description see our

conference paper [Benda et al.(2013)].

In [Figure 13] we show an example of the two resulting conditional patterns

which represent the XML element purchase from [Figure 2].

<rule context="/purchase "> <rule context="/purchase ">
<assert test="shipto" /> <assert test="@code" />
<assert test="billto" /> <assert test="@date" />
<assert test="cust" /> <assert test="@version" />
<assert test="items" /> </rule>
</rule>

Figure 13: Conditional Schematron patterns for the purchase XML element

4.6 Required sibling relationships

In the previous section we generated structural constraints using Boolean expres-

sions, which allow us to validate parent-child relationships. So far we did not deal

295Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

with the order of child elements inside a parent element. Here we describe our

approach based on the theory of regular expressions.

We build a finite state automaton for a given regular expression. We deal only

with SOREs so we can build a deterministic SORE automaton, where every name

of an XML element is assigned to at most one inner state and the automaton has

one initial and one final state. Then we translate information obtained from this

structure into Schematron conditions. We represent the transition function of

the automaton using conditional patterns and we cover for example the order of

XML elements (sequences, choices among elements) and also cardinalities zero

or one (0..1, or ?), just one (1..1), zero or more (0..*, or Kleene star *), one

or more (1..*, or Kleene cross +). We can also provide clear natural-language

assertions and diagnostics.

There are also some problems and exceptions. Firstly, we cannot cover arbi-

trary numeric intervals of regular expressions using this approach (it is possible

to create an automaton with numeric intervals, but it is not possible to represent

it in Schematron). We need another approach for numeric constraints in general,

which is our future work. For example, (a 0..3, b 1..4) is easy to describe

by the count function. However, (a 0..3, b 1..4) 2..8 is more difficult and

we have been unable to devise a universal approach so far. Secondly, the PSM

content model set complicates construction of the algorithm. The restriction

[Definition 9] for the PSM content model set is similar to the restrictions ap-

plied to the XML Schema construct all.

Definition 9. Let S′ be a PSM schema. The SET precondition, which is an

assumption on S′, that for each content model set it must hold that it has

named associations with classes as children in its content and the content model

is a descendant of associations R′ ∈ S′
r, (name(R′) = λ ∨ child(R′) /∈ S′

c) in the

complex content, where card ′(R′) = 0..1 or card ′(R′) = 1..1.

Now we can presume that we can build the automaton for each complex

element declaration, i.e., named association with class as a child. We also need

to translate the obtained information into Schematron rules. For each complex

element and for elements in its content we produce a set of predicates. These

predicates use the following-sibling XPath axis. For each of the obtained

predicates we generate a conditional pattern in the step on [line 6] in [Algo-

rithm 1].

Example 10. We will transform the content of element cust in [Figure 2]. It is

specified by SORE @login, name, phone 1..*, email 0..1. We transform it

to a subexpression without attributes - we do not need them for sibling relations

because XML attributes are not ordered. Then we build a deterministic finite

SORE automaton corresponding to the subexpression and from it, we get the

Schematron rules in [Figure 14]. The first rule says that the first child element

296 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

<rule context="/purchase/cust">
<assert test="*[1][self::name]" />

</rule>
<rule context="/purchase/cust/name">
<assert test="following-sibling::*[1][self::phone]" />

</rule>
<rule context="/purchase/cust/phone">
<assert test="following-sibling::*[1][self::phone or self::email] or

not(following-sibling::*)" />
</rule>
<rule context="/purchase/cust/email">
<assert test="not(following-sibling::*)" />

</rule>

Figure 14: SORE automaton in Schematron

is name. The second rule says that the immediate following sibling is phone. The

third rule says that after phone there is either phone or email or no element.

The last rule says that email has no following sibling.

4.7 Required text restrictions

In the step on [line 7] of [Algorithm 1] we generate patterns for data types val-

idation as extension rules of our predefined data type rules. For details, see

[Benda et al.(2013)].

In comparison to XML schema, our approach is a bit weaker as we did not

manage to create support for some datatypes like xsd:dateTime using just

XPath 1.0. If we used XPath 2.0 in Schematron, we could support all XML

Schema simple datatypes.

4.8 Translation summary

In this section, we introduced the problem of automatic construction of Schema-

tron schemas from PSM schemas. The translation is not simple, because we have

different models - the grammar-based PSM schema (and XML Schema, DTD,

etc.) and the rule-based Schematron. However, we showed that Schematron is

a very powerful language and it can express many grammatical structural con-

straints from the grammar-based languages and more.

We started with production of absorbing patterns, which allows us to validate

allowed occurrences of XML elements and XML attributes inside validated XML

documents. Then we produced conditional patterns for validation of required

grammatical structural constraints. We analyzed the most used parts of regular

expressions which can be represented in Schematron. Then we generated patterns

for validation of data types for simple element contents and attribute values.

297Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

There are some limitations to our approach that, however, do not seem crit-

ical at the moment. The most visible one is the lack of support for arbitrary nu-

meric intervals in cardinalities. We only support the usual 0..*, 0..1, 1..*,

1..1. This is because the support for arbitrary intervals would necessarily lead

to Schematron code explosions which would only complicate and slow down the

validation process.

5 Related work

In parallel to the research of translation of PSM schemas to Schematron, other

PSM schema improvements are also being researched. In particular the sup-

port for Object Constraint Language (OCL) [OMG(2012)] and its translation to

Schematron for the specification of integrity constraints, where Schematron is

used as a complement of grammar-based schemas. These patterns for integrity

constraints generated from OCL may be potentially merged with our Schema-

tron schemas. To our best knowledge, little work has been done in the area of

translations between Schematron and other XML schema languages. There are

sources not based on academic research which provide some basic ideas and tech-

niques for translation of grammar-based schemas to Schematron schemas and

vice versa. Most work in this area has been done by Rick Jelliffe and his company

Topologi2. They have implemented an XSD to Schematron converter3, because

their customers preferred Schematron diagnostics over XSD validation. The gen-

erated schemas are called Schematron-ish grammars. In [Nečaský et al.(2012b)],

we provide formal description of mutual translation between PSM schemas and

regular tree grammars.

Let us take a look at the question of translation of a PSM schema directly

to Schematron versus the translation of a PSM schema to XSD and then using

the approach mentioned above to translate XSD to Schematron. In our pre-

vious work [Nečaský et al.(2012b)] we showed that every PSM of our concep-

tual model can be translated to a regular tree grammar (RTG) and vice versa.

In [Murata et al.(2005)] the author shows that every XSD schema can be trans-

lated to RTG. However, it is not possible to translate every RTG to an XSD

schema, e.g., a choice between two attributes @a xor @b cannot be translated to

XML Schema. Therefore, we cannot translate arbitrary PSM (or RTG) to XSD,

we must accept some constraints on PSM. Also, so far, we cannot translate ar-

bitrary XSD to Schematron. For example, we do not support numeric intervals

for element occurence, e.g., 1..3 because in our experience, these do not occur

very often and pose a non-trivial problem to be solved.

If we accept constraints to ensure that our PSM can be translated to XML

Schema and we do not use constructs that we cannot yet translate to Schematron

2 http://www.topologi.com/
3 http://www.schematron.com/resource/XSD2SCH-2010-03-11.zip

298 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

then the two ways of translation, i.e., PSM → XSD → Schematron and PSM

→ Schematron will produce the same result from the structural point of view.

However, besides the slightly higher expressivity of the resulting schema, one of

the main advantages of using the direct approach is the possibility to provide

better diagnostic output of a schema validator. We have support for custom error

messages in PSM which can only be preserved when translating directly from

PSM to Schematron. This is because XML Schema does not have support for

them and they would be lost in that step of the translation.

6 Evaluation and Implementation

With our proposed method we generated several Schematron schemas in various

data domains using our conceptual model and verified that we can successfully

validate the corresponding XML document instances. The schemas are verbose

and cannot be shown here whole due to space limitations. The Schematron

schema4 and the XSD schema5 (for comparison) generated from our concep-

tual model in [Figure 2] are available online. Their structure is, however, shown

in our examples throughout the paper. During our experiments we found the

Schematron based validation as easy to use from a domain expert’s perspective

as a validation using XML Schema would be given that both can be generated

from our conceptual model for XML. The downside of Schematron mentioned in

our motivation, which is its verbosity, is not a problem in the end because the

user does not need to read the actual generated Schematron. He only needs to

give it as an input to a Schematron validator. From the validation performance

point of view, rule-based validation (e.g., Schematron) is computationally more

expensive than the linear validation using grammar-based languages (such as

XML Schema) [Nálevka(2010)]. This could be a problem in an environment that

requires high performance validations, such as routing of XML messages or that

processes very large schemas. Nevertheless, when performance is not an issue

or when validating against complex XML formats, the benefits in the form of

better diagnostics are more important.

The reward for using our approach is much clearer diagnostics of a possible

problem in the validated XML document because Schematron supports user-

friendly and descriptive error messages. Also, its expressive power is greater

than that of XML Schema [Murata et al.(2005)]. This can be seen in [Figure 2],

where we use a choice between attributes, which is not possible to express in

XML Schema, but more importantly, the Schematron schema can also contain

integrity constraints which cannot be represented in XML Schema. Another

advantage of Schematron is the one we mentioned earlier that the resulting

4 http://xrg.cz/files/purchase.sch
5 http://xrg.cz/files/purchase.xsd

299Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

schema can be split into phases, which can be selectively used for validation

of various aspects of XML documents. In addition, validation of Schematron

can be done solely by using an XSLT transformer, which are wide-spread and

available, for example, in web browsers. This is in contrast to XML Schema

validators which are standalone components. Our experiments were done using

our implementation of the conceptual model for XML, eXolutio.

eXolutio is an application developed in our research group. Its base is the for-

malism for our conceptual model for XML described in [Nečaský et al.(2012b)]

and a complex system of operations and their propagation between the levels

of abstraction described in [Nečaský et al.(2012a)]. In addition, it is a platform

where novel extensions to XML schema modeling and evolution are implemented.

One of them is the approach described in this paper.

7 Conclusions and Future Work

In this paper, we briefly introduced our conceptual model for XML as a ba-

sis for modeling and maintenance of XML schemas independent of the target

schema language. Then we introduced Schematron, a rule-based language that

can be used for XML schema description, and its constructs. Next, we described

in detail how a schema from our conceptual model can be translated to Schema-

tron and described the advantages over grammar-based languages such as XML

Schema. We briefly described the implementation of the presented approach

in our tool, eXolutio. We compared the direct translation from our conceptual

model to Schematron with the indirect translation from our conceptual model

to XML Schema and then to Schematron. We concluded that the major advan-

tage of the direct approach is the possibility of user-friendly validator messages,

whereas XML Schema is limited to a valid or non-valid statement. Schematron

can provide useful, human readable diagnostics. We showed that with the direct

translation, we can cover constructs that are impossible to model using XML

Schema.

We still need to further investigate the possibilities of translating numeric

interval element occurrences, such as 1..3 which we have omitted so far because

they are rarely used in XML schemas. Usually, this would be modeled as 1..*.

Also, we are investigating the possibility of a rule-based PSM in our conceptual

model that could suit Schematron better than the current grammar-based one.

Acknowledgment

This work was supported by the Czech Science Foundation (GAČR), grant num-

ber P202/11/P455.

300 Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

References

[Benda et al.(2013)] Benda, S., Kĺımek, J., Nečaský, M.: “Using Schematron as Schema
Language in Conceptual Modeling for XML”; F. Ferrarotti, G. Grossmann, eds.,
Conceptual Modelling 2013 (APCCM 2013); volume 143 of CRPIT; 31–40; ACS,
Adelaide, Australia, 2013.

[Bex et al.(2006)] Bex, G. J., Neven, F., Schwentick, T., Tuyls, K.: “Inference of con-
cise DTDs from XML data”; Proceedings of the 32nd international conference on
Very large data bases; VLDB ’06; 115–126; VLDB Endowment, 2006.

[Clark and DeRose(1999)] Clark, J., DeRose, S.: XML Path Language (XPath) Version
1.0; W3C, 1999.

[Jelliffe(2001)] Jelliffe, R.: The Schematron – An XML Structure Validation Language
using Patterns in Trees; ISO/IEC 19757, 2001.

[Jelliffe(2007)] Jelliffe, R.: “Converting XML Schemas to Schematron”; (2007).
[Kĺımek and Nečaský(2010)] Kĺımek, J., Nečaský, M.: “Integration and Evolution of

XML Data via Common Data Model”; Proceedings of the 2010 EDBT/ICDT
Workshops, Lausanne, Switzerland, March 22-26, 2010; ACM, New York, NY,
USA, 2010.

[Kĺımek et al.(2012)] Kĺımek, J., Malý, J., Mlýnková, I., Nečaský, M.: “eXolutio –
Tool for XML Schema and Data Management”; Dateso 2012 Annual International
Workshop on DAtabases, TExts, Specifications and Objects; 69–80; CEUR Work-
shop Proceedings, 2012.

[Malý et al.(2011)] Malý, J., Mlýnková, I., Nečaský, M.: “XML Data Transformations
as Schema Evolves”; J. Eder, M. Bielikova, A. Tjoa, eds., Advances in Databases
and Information Systems; volume 6909 of Lecture Notes in Computer Science;
375–388; Springer Berlin Heidelberg, 2011.

[Malý and Nečaský(2012)] Malý, J., Nečaský, M.: “Utilizing new capabilities of XML
languages to verify integrity constraints”; Proceedings of Balisage: The Markup
Conference 2012; volume 8; 2012.

[Miller and Mukerji(2003)] Miller, J., Mukerji, J.: MDA Guide Version 1.0.1; Object
Management Group (2003).

[Murata et al.(2005)] Murata, M., Lee, D., Mani, M., Kawaguchi, K.: “Taxonomy of
XML Schema Languages Using Formal Language Theory”; (2005); http://www.
cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf.

[Nálevka(2010)] Nálevka, P.: “Grammar vs. Rules”; (2010); http://petrnalevka.
blogspot.com/2010/05/grammar-vs-rules.html.

[Nečaský et al.(2012a)] Nečaský, M., Kĺımek, J., Malý, J., Mlýnková, I.: “Evolution
and Change Management of XML-based Systems”; Journal of Systems and Soft-
ware; 85 (2012a), 3, 683 – 707.

[Nečaský et al.(2012b)] Nečaský, M., Mlýnková, I., Kĺımek, J., Malý, J.: “When con-
ceptual model meets grammar: A dual approach to XML data modeling”; Data &
Knowledge Engineering; 72 (2012b), 0, 1 – 30.

[Ogbuji(2004)] Ogbuji, U.: A hands-on introduction to Schematron; IBM, 2004.
[OMG(2007a)] OMG: UML Infrastructure Specification 2.1.2; Object Management

Group (2007a).
[OMG(2007b)] OMG: UML Superstructure Specification 2.1.2; Object Management

Group (2007b).
[OMG(2012)] OMG: “Object constraint language specification, version 2.3.1”; (2012);

http://www.omg.org/spec/OCL/2.3.1/.
[Vlist(June 2002)] Vlist, E.: XML Schema The W3C’s Object-Oriented Descriptions

for XML; O’Reilly Media, June 2002.

301Klimek J., Benda S., Necasky M.: Translation of Structural Constraints ...

