
Generating an Excerpt of a Service Level Agreement from

a Formal Definition of Non-Functional Aspects Using

OWL

Mariam Rady

(Johannes Kepler University Linz, Austria

m.rady@cdcc.faw.jku.at)

Abstract: If we take a look at current cloud computing services, the only quality guar-
antee they provide are vague Service Level Agreements(SLA). In this paper we modelled
some non-functional aspects in an ontology and used this ontology as a knowledge base
to generate an excerpt from a service contract. We concentrate in this excerpt on avail-
ability as it is one of the most discussed attributes in current Service Level Agreements.

Key Words: QoS, SLA, Contracting, Non-Functional Aspects, OWL, Ontology

Category: C.4, H.3.5, K.6.4, K.5.m

1 Introduction

Service Level Agreements (SLAs) define assertions of a service provider, that the

service he is offering meets a certain guaranteed IT-Level and business-process

level service parameters. In addition, the service provider should guarantee mea-

sures to be taken in the case these assertions were violated[Ludwig et al., 2003].

Current SLAs are vague and do not offer solid guarantees for customers, on

which they can rely. If we take a look at how availability is promised in SLAs,

it is usually presented as a percentage or rate value describing the total Uptime

to the total service agreement time. In general, this is how the percentage is

calculated:
TotalT ime−DownT ime

TotalT ime

For storage services the error rate in a reference interval i is calculated as follows:

errorRatei =
#FailedRequestsi

#TotalRequestsi
, i >= 0

MonthlyUptimeRate = 100%−

∑
n

i=1 errorRatei

n

It is the customer’s responsibility to send claims of the downtime incidents,

and the service provider checks if the claims are true. If the promised uptime

percentage or rate is not met, then the customer gets a compensation in form of

service credit[Amazon, 2008].

This is however, not a reliable guarantee for Quality of Service (QoS). In order

for the customer to be able to rely on the Quality of the Service, quality attributes

Journal of Universal Computer Science, vol. 20, no. 3 (2014), 366-384
submitted: 24/3/13, accepted: 4/2/14, appeared: 1/3/14  J.UCS



need to be well-described in SLAs. Their descriptions should be semantically

complete and have a logical structure, in order to allow reasoning about and

processing the information in the agreements. In this work, we define some non-

functional aspects formally using the Web Ontology Language OWL. Our focus

is on the automatic or semi-automatic generation of the cloud service agreements

using ontologies. We start in section 2 with the background information about

Description Logic and OWL, the formal language used to define this model. In

section 4 we present the actual model, the different concepts and the relationships

between them. Section 5 describes how we used different probability distribution

functions to express service availability in the contract. Then in section 6 we

present how we query our model to generate the excerpt of the contract. And

finally in section 7 we conclude our work.

2 Background Information

2.1 Description Logic and OWL

Description logics(DLs) are a family of formal knowledge representation lan-

guages and it is of particular importance in providing a logical formalism for

ontologies and the Semantic Web. A DL models concepts, roles and individuals

and their relationships. There are varieties of DL families. We are concerned

with SHOIN (D) and SROIQ(D) on which OWL 1.0 and OWL 2.0 are based,

respectively[Krötzsch et al., 2012][Baader, 2003]. For the different constructs in

both languages there are equivalent constructs in OWL.

The goal of the Semantic Web is to have machines understand Web con-

tent possibly without human interaction, by facilitating automated processing

of descriptions on the Web. Annotations on the Semantic Web express links be-

tween information resources on the Web and connect information resources to

formal terminologies, these connective structures are called ontologies. An ontol-

ogy is a formal explicit specification of a shared conceptualization[Gruber, 1993].

It allows machine understanding of information through the links between the

information resources and the terms in the ontology[Fensel et al., 2007].

Resource Description Framework (RDF), RDF-Schema and DAML+OIL were

the first DL inspired languages to be integrated into the Semantic Web. W3C

later updated the RDF recommendation and provided a formal semantic for

RDF. W3C then defined the Web Ontology Language OWL to be compatible

with RDF. W3C defined a family of three languages ranging from level of ex-

pressiveness (correspondence to DL) to degree of compatibility with RDF, these

are OWL DL, OWL Full and OWL Lite[Baader, 2003].

In general, DL models concepts (classes), roles (properties), individuals and

their relationships. We created an ontology to define various non-functional as-

pects, these are presented in section 4.

367Rady M.: Generating an Excerpt ...



2.2 Literature Review

In this section we investigate existing models for SLAs. These are trying to find a

general way to express all the quality aspects. Our efforts lie in trying to model

the different quality aspects into depth, taking into account their individual

meanings as well as putting in mind that the representation of the quality aspect

should be monitorable, validatable and verifiable. The first model that we look

at was developed by the SLA@SOI project. The SLA model in this project is

concerned with modelling the physical structure of the document leaving out

the intentional aspects of an agreement. The QoS term monitoring is in a later

stage. The SLAs are then translated into operational monitoring specifications.

Only on this level are the intentional aspects of the contract tackled through

special engines for this purpose[Wieder, 2011].

Another way to model SLAs is using the SLA Language SLAng proposed by

[Lamanna et al., 2003]. The model presented in [Lamanna et al., 2003] defines

two abstraction levels for compiling SLA agreements. It differentiates between

vertical and horizontal SLAs. Vertical SLAs are concerned with governing the

service level of the underlying infrastructure, while the horizontal SLAs are be-

tween parties providing services on the same level. SLAng is an XML language

for capturing SLAs. The SLA structure includes three main concepts; namely an

end-point description of the contractors, contractual statements and Quality of

Service (QoS) descriptions and associated measures. However, in their definition

they do not go into depth in the definition of QoS aspects.

WSLA is a framework for SLA establishment and monitoring of SLAs. The

contract has three sections Parties, Service Description and Obligations. The

WSLA Language is XML-based. SLA parameters are specified with their mea-

sures. However, exact measures for different quality aspects are not the main

focus of this work[Keller and Ludwig, 2003]. The SLA models reviewed in this

section do not thoroughly describe individual QoS aspects, they either mention

some of their attributes or adopt the notion that each quality aspect should have

measures, but do not further discuss these measures. Our work is not only con-

cerned with the physical structure of the document, or only stating QoS aspects

and their different measures, however, it is also concerned with the intentions

of the SLAs. We used the basic physical structure that was defined in previous

work, namely stating the parties that are included in the contract, the different

promises or commitments that the service is offering as well as some general in-

formation about the service itself. As we think these are the basic cornerstones

that should be there in an SLA, according to previous research done. And we ex-

tended that to formally define intentional aspects of some non-functional terms

in the SLA. Meaning that we do not only state non-functional aspects with their

measures in the SLAs, but we also define what service availability means in the

context of cloud computing.

368 Rady M.: Generating an Excerpt ...



3 Cloud Service Interaction Model

The first step in our approach was to figure out an abstract way to represent

the interaction between the user and the cloud service, that would allow us to

model service availability in the SLA in a way that it can be monitored. The

idea is to model the cloud service as a set of requests submitted to the cloud

by the user. And the user receives to each of these requests a certain response.

Each request/response should be monitored and compared to a probability dis-

tribution function as described in section 5. Figure 1 shows the Cloud Service

Interaction Model.

Service ServiceClient

Host, CloudDevice Network

Figure 1: Cloud Interaction Model

Each Client can interact with a cloud service via a network. Each cloud

service can be composed of a set of services. And the functionalities of the various

services can be described using the different requests. The availability of these

services can be monitored by observing the different requests and modelling its

availability using probability distribution functions.

4 Representation of SLA using an ontology

In this section we will describe the basic structure and the main concepts that

define the SLA. We used protégé (an open source ontology editor and knowledge-

base framework) to construct the ontology. In protégé classes are equivalent to

concepts. When defining an ontology, every class is a subclass of the class Thing.

For the different concepts and roles we have drawn parts of the ontology, to facil-

itate the understanding of the reader. Concepts are represented using rectangles,

datatypes are represented using ellipses, dashed lines show the relationship be-

tween the concepts and their subconcepts and the thick lines are representing

datatype properties and object properties.

4.1 Structure of the SLA Document

The concepts that form the SLA document are Parties, Commitments and

Information . These are defined in sections 4.3, 4.4 and 4.5, respectively. The

structure of the SLA Document is shown in Figure 2.

369Rady M.: Generating an Excerpt ...



SLA

Parties

Provider

User

Thirdparty

Information

Name

Location

Description

Request

Failure

Commitments

AvailabilityCommitment

RefundCommitment

BillingCommitment

Figure 2: Basic Structure of the SLA Document

Parties define everyone who is involved in the SLA. Information describes

the functionalities of the service, it lists all the possible requests to the service

and the different failures. And Commitments are the non-functional aspects that

are guaranteed by the SLAs.

4.2 Helpers-TemporalInformation

When thinking about contracts, one of the first things that comes to mind is

the need to express temporal information. Using temporal information, we can

express the start date and time of the contract and the end date and time,

as well as when maintenance of the system takes place. OWL 2.0 has a built-

in datatype called datetime, that specifies a certain instance of time. But we

needed to extend the temporal information to cover also relative time. This is

why we defined the following two concepts Duration and Repetition. This part

of the ontology is shown in Figure 3.

4.2.1 Duration

This concept is used to describe a certain time duration or time interval. We

define it in equation (1) using DL.

Duration⊑ TemporalInformation

⊓∃hasDuration.Datatype(double)

Duration≡ {Minutes}⊔ {Hours} ⊔ {Days}⊔

{Weeks} ⊔ {Months} ⊔ {Years}

(1)

370 Rady M.: Generating an Excerpt ...



Helpers

TemporalInformation

Duration Repetition

#double #integer

hasDuration hasRepetition

Figure 3: Temporal Information

4.2.2 Repetition

This concept has an integer that is representing multiples for expressing repeti-

tion (e.g. biweekly). It has the following individuals and is used to express if any

event is repeated, e.g. Maintenance will take place on a certain date and will be

repeated every two weeks.

Repetition⊑ TemporalInformation

⊓∃hasRepetition.Datatype(integer)

Repetition≡ {Daily} ⊔ {Weekly} ⊔ {Monthly}⊔{Yearly}

(2)

4.3 Parties

In this section we represent all the parties that are part of the service contract.

This part of the ontology is shown in Figure 4. Each party has a name and a

URI. Each SLA should have at least 2 parties involved. Parties can be either

a Provider, a User or a ThirdParty.

Parties ⊑∃hasName.Datatype(string)

⊓∃hasURI.Datatype(anyURI)
(3)

371Rady M.: Generating an Excerpt ...



Parties

Provider User ThirdParty

#string #anyURI

hasName hasURI

Figure 4: Parties

4.4 Commitments

In this section we define the different concepts for Commitments that are offered

in the SLA. As we are discussing in this work availability as one of the main SLA

commitments, the first concept that is defined is AvailabilityCommitment. We

also define RefundCommitments and BillingCommitments of the SLA. The on-

tology can be then extended to cover other commitments, by adding an attribute

X as a concept XCommitments.

Commitments

AvailabilityCommitment BillingCommitment RefundCommitment

Figure 5: SLA Commitments

4.4.1 AvailabilityCommitment

It is the set of all commitments related to the attribute availability and is a

subclass of Commitments. This part of the ontology is shown in Figures 6, 7 and

8.

372 Rady M.: Generating an Excerpt ...



AvailabilityCommitment⊑ Commitments (4)

The subconcepts of AvailabilityCommitment are: CommitmentValidity,

MaintenanceTime, ProbabilityDistribution and MonitoringWindow.

SLA

Commitments

AvailabilityCommitment

CommitmentValidity

#datetime

#datetime

MaintenanceTime

Duration #datetime

#datetime

Repetition

h
as
R
ep
et
it
io
n

h
asS

tart

h
asS

tart

ha
sE
nd

hasEnd

ha
sD
ur
at
io
nhasD

uration

Figure 6: AvailabilityCommitment-CommitmentValidity and MaintenanceTime

CommitmentValidity is one of the subconcepts of AvailabilityCommitment

and is defined to have a datatype property hasStart and hasEnd to the datatype

datetime.

CommitmentValidity⊑AvailabilityCommitment

⊓((∃hasStart.Datatype(datetime) ⊓

∃hasEnd.Datatype(datetime))

⊔ (∃ hasStart.Datatype(datetime) ⊓

∃hasDuration.Duration))

(5)

MaintenanceTime is another commitment that needs to be agreed on. It de-

cides when maintenance will take place, because when maintenance takes place,

373Rady M.: Generating an Excerpt ...



the service might be unavailable for some time. MaintenanceTime is a subcon-

cept of AvailabilityCommitment. MaintenanceTime is defining a start time

and an end time for the maintenance. It has a role hasStart and hasEnd to the

datatype datetime. In addition it has a relationship to the concept Repetition

using the role hasRepetition defining how maintenance is scheduled. For rela-

tive time we define a start date and time and the duration of the maintenance.

MaintenanceTime⊑AvailabilityCommitment

MaintenanceTime⊑(∃hasStart.Datatype(datetime)⊓

∃hasEnd.Datatype(datetime)

⊓∃hasRepetition.Repetition)

⊔(∃hasStart.Datatype(datetime)⊓

∃hasDuration.Duration

⊓∃hasRepetition.Repetition)

(6)

ProbabilityDistribution is a subconcept of AvailabilityCommitment

and is defined as follows:

ProbabilityDistribution⊑AvailabilityCommitment

ProbabilityDistribution⊑∃hasFormula.Datatype(string)

ProbabilityDistribution⊑∃hasParameter.Datatype(string)

ProbabilityDistribution≡{ChiSquare} ⊔ {Gamma}⊔

{Exponential} ⊔ {HyperExponential}⊔

{Lognormal} ⊔ {Pareto}⊔

{Normal} ⊔ {Weibull}

(7)

374 Rady M.: Generating an Excerpt ...



SLA

Commitments

AvailabilityCommitment

ProbabilityDistribution

#string #string

hasFormula

hasParameter

Figure 7: AvailabilityCommitment-ProbabilityDistribution

MonitoringWindow is the duration of time to which the availability commit-

ment applies. MonitoringWindow is defined as

MonitoringWindow⊑AvailabilityCommitment

⊓∃hasDuration.Duration
(8)

SLA

Commitments

AvailabilityCommitment

MonitoringWindow

Duration

hasDuration

Figure 8: AvailabilityCommitment-MonitoringWindow

375Rady M.: Generating an Excerpt ...



4.4.2 RefundCommitment

RefundCommitment are the terms for getting a compensation in case the SLA is

not met. The RefundCondition is the condition for the customer to receive a re-

fund. If the service provides less availability than promised, the customer is enti-

tled to receive a RefundPercentage. RefundCondition and RefundPercentage

are both defined to have a value of type double. This part of the ontology is

shown in Figure 9.

RefundCommitment⊑Commitments

RefundCondition⊑RefundCommitment

⊓∃hasCondition.Datatype(string)

⊓ = 1 hasRefundPercentage.RefundPercentage

RefundPercentage⊑RefundCommitment

⊓∃hasRefund.Datatype(double)

(9)

RefundCommitment

Commitments

SLA

RefundCondition RefundPercentage

#string #double

hasCondition hasRefund
hasRefundPercentage

Figure 9: RefundCommitment

4.4.3 BillingCommitment

This concept represents the billing information. It has two subconcepts Payment

and Price. Payment is a concept that defines where the payment is going to

be made using a relation hasURI to the datatype anyURI. In addition it has a

start date and time as well as a Repetition defining when the payment has

376 Rady M.: Generating an Excerpt ...



to be made. The concept Price defines the price that has to be paid for the

service. And the concept Currency defines the currency that is used to pay for

the service. This part of the ontology is shown in Figure 10.

BillingCommitment⊑Commitments

Payment ⊑BillingCommitment

Payment ⊑ ∃hasURI.Datatype(anyURI)

⊓∃hasStart.Datatype(datetime)

⊓ ∃hasRepetition.Repetition

Price ⊑BillingCommitment

⊓ ∃hasPrice.Datatype(double)

⊓∃hasCurrency.Currency

Currency ⊑BillingCommitment

Currency ≡{Dollar} ⊔ {Euro} ⊔ {...}

(10)

Commitments

SLA

BillingCommitment

Payment Price

#datetime Repetition

#anyURI

Currency #double

ha
sS
ta
rt

h
a
sR

ep
etitio

n

hasU
RI

hasP
rice

h
a
sC

u
rr
e
n
c
y

Figure 10: BillingCommitment

4.5 Information

Information is representing general information about the service and is a sub-

type of SLA. It includes different subconcepts. This part of the ontology is shown

in Figure 11.

Information ⊑ SLA (11)

377Rady M.: Generating an Excerpt ...



SLA

Information

Name

Description

Request

Failure

#string

#string

#string

#string

ProbabilityDistribution

MonitoringWindow

Location

#string

#string

#anyURI

hasIP hasAddress

hasURI

hasName

hasDescription

hasRequest

hasFailMsg

hasFailure

h
a
sD

istrib
u
tio

n

ha
sM
on
ito
rW

in
do
w

Figure 11: Information

3
7
8

R
a
d
y M

.: G
en

era
tin

g
 a

n
 E

xcerp
t ...



4.5.1 Description

This is a string defining what the service is used for.

Description ⊑Information

⊓∃hasDescription.Datatype(string)
(12)

4.5.2 Location

Any offered service should have a location. Not only the physical location to

get information about jurisdiction but also the URL or IPAddress under which

the service is available and accessible. Using local information we can have the

information where the service can be requested from.

Location⊑ ∃hasAddress.Datatype(string)

⊓ ∃hasIP.Datatype(string)

⊓ ∃hasURI.Datatype(anyURI)

(13)

4.5.3 Failure

This concept describes the different failures or errors the service can show.

Failure ⊑Information

⊓∃hasFailMsg.Datatype(string)
(14)

4.5.4 Request

It describes the different requests that the service can make to different resources.

The availability of a resource, can be modelled by a probability distribution

function representing whether the resource was able to respond to the request

made by the service user. This is how we used the cloud service interaction

model, that was mentioned in section 3, in the ontology.

Request ⊑Information

⊓∃hasRequest.Datatype(string)

⊓∃hasFailure.Failure

⊓∃hasDistribution.ProbabilityDistribution

⊓∃hasMonitoringWindow.MonitoringWindow

(15)

379Rady M.: Generating an Excerpt ...



4.5.5 Name

The Name is a concept that has a string which is the name of the service. We

assume here that the service name is a unique identifier, but if the name will not

be unique we can use another identifier, such as the service URL or a specific

ID. This concept relates the service to the different concepts in the ontology:

MaintenanceTime , Request, Description, Parties, Payment, Refund,

Location, Description, Price, MonitoringWindow

and CommitmentValidity. This part of the ontology is shown in Figure 12.

Name ⊑Information

⊓ = 1hasValidity.CommitmentValidity

⊓ ∃hasMaintenance.MaintenanceTime

⊓ ∃hasRequest.Request

⊓ ∃hasDescription.Description

⊓ ∃hasLocation.Location

⊓ = 1hasPayment.Payment

⊓ = 1hasPrice.Price

⊓ ∃hasRefundCond.RefundCondition

⊓ ∃hasName.Datatype(string)

⊓ = 2 hasParty.Parties

⊓ ∃isOfferedBy.Provider

⊓ ∃isOfferedTo.User

⊓ ∃hasEnvolved.ThirdParty

(16)

5 Using Probability Distribution for Service Availability
Description

Current SLAs present a probability or an error rate as a measure for availability.

Different availability models have been developed as in [Wang and Trivedi, 2005]

and [Xie et al., 2002], however, none of them managed to get through to the mar-

ket SLAs. Our idea is to have a more concrete representation for availability of

a cloud system in the service contracts. This representation is done using prob-

ability distributions. This will also allow the development of monitoring tools

to check if what is promised in the contracts is being fulfilled. The represen-

tation of availability using probability distribution is done by gathering data

sets for long periods of time for requests to different resources of the service

using either graphical analysis or Goodness-of-fit tests[Nurmi et al., 2005]. It is

380 Rady M.: Generating an Excerpt ...



Name

MaintenanceTime

Request

Description

Thirdparty

Location

Payment #string

Price

CommitmentValidity

Provider

User

RefundCondition

h
a
sM

a
in
te
n
a
n
ce
T
im

e

ha
sR
eq
ue
st

hasDescription

hasThirdparty
hasLocation

h
a
sP

ay
m
en
t

hasN
am
e

has
Pric

e

ha
sV
ali
dit
y

hasProvider

hasUser

hasR
efundC

ond

Figure 12: Name - Linking the different concepts together

observable that in different networks, to have a best-fit, different distribution

functions are needed. The most common probability distributions that fit to

availability data sets are Weibull, Hyperexponential, Gamma and Log-Normal

[Javadi et al., 2011] [Wingstrom and Casanova, 2007] [Nurmi et al., 2005]. In our

ontology however we included more distributions for different networks.

The concept ProbabilityDistribution is defined in equation (7). We chose

to represent 7 different probability distribution functions as 7 different individ-

uals under this concept. Each of these distributions has different parameters to

it. The idea is to find out these parameters through graphical or goodness-of-

fit test analysis and state them in the contract. That way availability becomes

monitorable for service providers and for customers. For each of the in equation

(7) stated probability distributions we have different parameters that shape the

distribution and different formulas. These are stored in the ontology as a string.

Table 5 shows each of the distributions and the different parameters needed to

calculate it. After deciding which distribution is the best fit and the values of the

different parameters, the distribution name and the parameters are stated “as-

is” in the contract. And upon agreement these parameters should be checked

every MonitoringWindow and if there are violations the customer will get a

RefundPercentage back.

381Rady M.: Generating an Excerpt ...



Distribution Parameters

ChiSquare (v) Degree of Freedom (v>0)

Gamma (α,β) shape(α >0) and rate(β >0)

Exponential (λ) scale inversly proportional to (λ >0)

HyperExponential ({α1, ..., αm} m-phase hyperexponential distribution

,{λ1, ..., λm}) with phase probabilities αi

and ratesλi.

Lognormal (µ, σ) shape(σ2 > 0) and log-scale(µ ∈ R)

Pareto (k,α) minimum value(k>0) and shape(α >0)

Weibull (α,β) shape (α > 0) and scale (β > 0)

Table 1: Probability Distribution Functions and their Parameters

6 Generating an Excerpt of a Contract

In this section we will describe how from the previously described Service Con-

tract Model we will generate an excerpt from the service contract. We used

Protégé to create the ontology to represent non-functional aspects of a service.

And then we used the Jena framework[Jena, 2011] to process the ontology. We

first created an OntologyModel from the .owl file in the Jena Framework, which

is basically an RDF Graph. We then used SPARQL to query this RDF graph to

get an excerpt from a service contract. We relied on the fact that in OWL/RDF

every statement has a subject, a predicate and an object and queried the ontol-

ogy for the different statements that we think are important for the consumer.

A simple SELECT statement is querying the ontology for various concepts.

It starts by information about the service itself, the name, description, provider,

user and third parties also involved in the contract. The concept third party is

covering the case where the service provider is a cloud user of a service himself

and is using a cloud service to offer a composed service. Using this concept we can

recursively get all the third parties that are involved in the service offer, given

they are also providing their service contract using an ontology. Then there is the

information about the contract, the start- and end- date and time of its validity.

The price and the currency of the service. When the Maintenance will take

place and the pattern of the repetition of maintenance events. Then there is the

information about availability, what is the probability distribution of the service

availability, the formula used and the different parameters. MonitoringWindow

represents the amount of time that is considered to calculate the probability

distribution of availability. And then there is the information about the refund,

382 Rady M.: Generating an Excerpt ...



when the previously mentioned service availability distribution is not met. A list

of the different possible requests to the service as well as the different failure

messages is also displayed. Last but not least the payment information of the

service, when and where should the payment be done.

7 Conclusion and Limitations

In this paper we presented a comprehensive excerpt from a service contract.

We started by formally defining different concepts that are needed in a service

contract and defined one of the most discussed attributes in SLAs, which is

availability along with other non-functional aspects. The formal definition of the

different aspects in the contract was modelled in an ontology using OWL. This

ontology was queried using SPARQL which is an acronym for SPARQL Protocol

and RDF Query Language. The advantages of generating the contract this way

is that we will have a knowledge base of the different concepts needed for a

service contract and information can be added and removed very easily from

this ontology. Another advantage is that every concept is referenced as a URL,

allowing also references to contract terms of other service providers offered by

third parties to be included, which will solve the problem of issuing contracts

for composed services. Having this knowledge base will give the chance for users

to add their own terms and negotiate the different contract conditions as well

as bargain to get an optimal price. In addition it will allow us to have concrete

measures to monitor what is promised by the service provider. These measures

will allow the development of advanced monitoring tools that can help to make

sure that the service is offered as promised.

The data that was used for testing the query is test data, which did not allow

sufficient testing. For future work we are planning to investigate the possibility of

having real data generated by cloud interaction monitors. Another aspect we will

look at is developing a monitoring tool that will check the promised availability

distribution against the actual availability of the service.

This work is describing a work in progress and we are currently working

on extending, improving as well as verifying this model. In the future different

concepts will extend to include more details, such as security considerations

for billing, or security considerations of the service ...etc. There is a monitoring

solution currently being developed to check compliance to the specified SLA and

report any violations of the SLA using the model described in this paper.

References

[Amazon, 2008] Amazon, W. S. (2008). Amazon web services customer agreement.
Online; accessed 29-August-2012.

383Rady M.: Generating an Excerpt ...



[Baader, 2003] Baader, F. (2003). The description logic handbook: theory, implemen-
tation, and applications. Cambridge university press.

[Fensel et al., 2007] Fensel, D., Lausen, H., Bruijn, J., and Polleres, A. (2007). En-
abling semantic web services: the web service modeling ontology. Springer.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199 – 220.

[Javadi et al., 2011] Javadi, B., Kondo, D., Vincent, J.-M., and Anderson, D. P. (2011).
Discovering statistical models of availability in large distributed systems: An empir-
ical study of seti@ home. Parallel and Distributed Systems, IEEE Transactions on,
22(11):1896–1903.

[Jena, 2011] Jena (2011). Apache jena project. Online; accessed 15-September-2012.
[Keller and Ludwig, 2003] Keller, A. and Ludwig, H. (2003). The wsla framework:
Specifying and monitoring service level agreements for web services. Journal of Net-
work and Systems Management, 11:57–81.

[Krötzsch et al., 2012] Krötzsch, M., Simancik, F., and Horrocks, I. (2012). A descrip-
tion logic primer. arXiv preprint arXiv:1201.4089.

[Lamanna et al., 2003] Lamanna, D. D., Skene, J., and Emmerich, W. (2003). Slang:
a language for service level agreements.

[Ludwig et al., 2003] Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R.
(2003). Web service level agreement wsla language specification. IBM Corporation,
pages 815–824.

[Nurmi et al., 2005] Nurmi, D., Brevik, J., and Wolski, R. (2005). Modeling machine
availability in enterprise and wide-area distributed computing environments. In Euro-
Par 2005 Parallel Processing, pages 432–441. Springer.

[Wang and Trivedi, 2005] Wang, D. and Trivedi, K. (2005). Modeling user-perceived
service availability. In Service Availability. Springer Berlin Heidelberg.

[Wieder, 2011] Wieder, P. (2011). Service level agreements for cloud computing.
Springer.

[Wingstrom and Casanova, 2007] Wingstrom, J. and Casanova, H. (2007). Statistical
modeling of resource availability in desktop grids. Technical report, Technical Report
ICS2007-11-01, Dept. of Information and Computer Sciences, University of Hawaii
at Manoa.

[Xie et al., 2002] Xie, W., Sun, H., Cao, Y., and Trivedi, K. S. (2002). Modeling of on-
line service availability perceived by web users. In IEEE Global Telecommunications
Conference (GLOBECOM 2002).

384 Rady M.: Generating an Excerpt ...


