Journal of Universal Computer Science, vol. 20, no. 3 (2014), 329-365
submitted: 24/3/13, accepted: 4/2/14, appeared: 1/3/14 © J.UCS

Evaluation of OCL Expressions over XML Data Model

Jakub Maly
(Charles University, Faculty of Mathematics and Physics
Prague, Czech Republic
maly@ksi.mff.cuni.cz)

Martin Necasky
(Charles University, Faculty of Mathematics and Physics
Prague, Czech Republic
necasky@ksi.mff.cuni.cz)

Abstract: Complex applications can benefit greatly from using conceptual models
and Model Driven Architecture during development, deployment and runtime. XML
applications are not different. In this paper, we examine the possibility of using Object
Constraint Language (OCL) for expressing constraints over a conceptual model for
XML data. We go through the different classes of OCL expression and show how
each class can be translated into XPath constructs. Subsequently we show how the
constraints can be checked using Schematron. We introduce a function library OclX,
which provides constructs necessary to translate those OCL constructs that have no
counterpart in XPath. With our tool, it is possible to check validity of OCL constraints
in XML data.

Key Words: XML, OCL, integrity constraints, Schematron, MDA
Category: D.2.2, D.2.1, H.2.3

1 Introduction

Development of a complex XML application involves tens or even hundreds of
interconnected XML schemas and related queries and documents. In our pre-
vious work [Necasky et al. 2012a], we proposed a conceptual model for XML
schemas based on UML [OMG 2007] class diagrams and Model Driven Archi-
tecture (MDA, [Miller and Mukerji 2003]). It enables to design XML schemas
mapped to a conceptual model of the problem domain. This approach improves
efficiency of XML schema designers and is also less predisposed to errors in
comparison to creating the XML schemas manually.

Authors of UML models often find a need to add additional information to
their diagrams to describe some properties of the system. Simple natural lan-
guage comments can be ambiguous, thus a formal language OCL (Object Con-
straints Language, [OMG 2012]) has been developed for the purposes where more
rigorous and dependable approach is required. Besides, formal OCL constraints
can be automatically translated into executable code for a specific platform or
implementation language. Such translation were developed, e.g., for SQL or Java

330 Maly J., Necasky M.: Evaluation of OCL Expressions ...

by the works of [TUD 2012]. The generated code can be used to verify validity
of the constraints in the running system. This way, OCL can become a very
powerful tool in Model Driven Development [Miller and Mukerji 2003] scenar-
ios, stepping in those situations where some significant system property cannot
be expressed using only the diagrams by themselves.

In our research, we focus on the XML platform. XML platform has its own
toolset (so called XML stack) for solving analogous issues. Tree grammar lan-
guages [Murata et al. 2005] (XML Schema, Relax NG, etc.) can be used to define
structural properties of the XML data used in the system. Properties regard-
ing the values and content of used data are checked by Schematron [ISO 2006]
schemas. XSLT [W3C 2012c] plays the role of the programming language and
XPath [W3C 2011] is the ground expression language of the XML platform.

In this paper, we show how OCL can be used for modelling XML applications
and incorporated with our XML schema management approach. We propose a
general algorithm for translating OCL into the expression language for XML -
XPath. We extend our (structural) schema modelling framework and show how
XML data can be validated using Schematron schemas generated from OCL
constraints. With our approach, OCL constraint defined at the abstract layer can
be reused for generating code for constraint verification in XML documents. It is
no longer necessary to rewrite the constraint manually. Our approach therefore
reduces both the costs of development and scope for errors.

The rest of this paper is organized as follows. In [Section 2], we formally
introduce our conceptual model for XML schemas and show how integrity con-
straints can be defined. In [Section 3-5], we describe the mechanism of translation
of OCL expressions to XPath expressions. In [Section 6], we show how to trans-
late attributes and functions defined in OCL. In [Section 7], we prove that the
introduced translation mechanism is complete and sound. [Section 8] presents
our experimental implementation. In [Section 9] we relate to the existing work
and in [Section 10] we conclude and indicate our future research.

2 Enriching Model with Constraints

In this section, we show how integrity constraints (ICs) can be defined for XML
schemas. In our approach, we model XML schemas using extended UML class
diagrams at two levels, called Platform-Independent Model (PIM) and Platform-
Specific Model (PSM).

2.1 Structural Model

We use UML class diagrams at the PIM level to create an abstract model of the
system. In this paper, we focus primarily on the PSM level. At the PSM level, the
user can define several PSM schemas. The purpose of the PSM level is to model

Maly J., Necasky M.: Evaluation of OCL Expressions ... 331

MatchSchedule ‘
tournament

Tournament
name: start

start: dateTime

end: dateTime

<tournament>

<name>First Open</name>
<start>...</start>
<end>...</end>
<!—— tournament matches ——>
<match>
<start>...</start>
<end>...</end>

match <player @id=*...’>
0“*/ \ laver <name>...</name>
play < /player>
Match Player .

start: dateTime | | @id: string </match>

end: dateTime @regNo <!—— all registered players —— >

o <player regNo=*...’ @id=*...">
1.x ¢ player : string {0..1} <name>...</name>
name: string <email>...</email>

MatchPlayer ; < /player>

@id: string CInat S

name: string : string {0..1} < /tournament>

Figure 1: Sample PSM schema and an excerpt from a valid XML document.

the system using constructs closer to the selected platform and implementation
technology (which, in our case, is XML). However, the PSM level is based on and
starts from the PIM level. Briefly, a PSM schema models how a part of the PIM
schema is structured in the modeled XML schema. We use UML class diagrams
at the PSM level as well, but with certain modifications. Each PSM schema
models a set of XML documents and can be automatically translated into a
schema in one of the structural (grammar based) XML schema languages (we
currently support XML Schema Definition (XSD, see [W3C 2012a]) and Relax
NG). For the rationale behind multi-layered modelling of XML and the details
of our extension of UML for XML, we refer to [Necasky et al. 2012b]. For the
purposes of this paper, we will use [Def. 1] for PSM schemas. We mark PSM
constructs with an apostrophe to distinguish them from PIM constructs. In this
paper, we do not deal with PIM constructs, but we decided to keep the notation
consistent with our other papers.

Definition 1. A platform-specific (PSM) schema is a tuple 8’ = (S., S, S, Cs/)
of disjoint sets of classes, attributes, and associations, respectively, and one spe-
cific class Cs, € S, called schema class.

— Class C' € S.. has a name assigned by function name, parent association
assigned by partial function parentAssociation and a list of child associations
assigned by function childAssociations.

— Attribute A’ € S!, has a name, data type, cardinality and XML form assigned
by functions name, type, card and xform, respectively. xform(A’) € {e, a}.
Attribute is associated with a class from S.. by function class.

— Association R’ € S! is a pair R’ = (E}, F)), where F{ and FE) are called

332 Maly J., Necasky M.: Evaluation of OCL Expressions ...

association ends of R'. R’ has a name assigned by function name, name(R’)
may be undefined, denoted by name(R’) = . Both E] and E, have a cardi-
nality assigned by function card and each is associated with a class from S/,
assigned by function participant.

A PSM schema models a set of XML documents with certain structure de-
fined by the schema. [Tab. 1] explains this in detail.

[Construct [Modelled XML Construct |

eSS, A complex content which is a sequence of XML attributes and
XML elements modelled by attributes in attributes(C”) followed
by XML attributes and XML elements modelled by associations

in content(C")

A" € 8, st.]An XML attribute with name name(A”), data type type(A’) and
zform(A') = a |cardinality card(A’)

A" € 8!, s.t.|An XML element with name name(A”), simple content with data
zform(A’) = e |type type(A’) and cardinality card(A’)

R € &, s.t.]JAn XML element with name name(R’), complex content mod-
name(R') # X |elled by child(R') and cardinality card(R'). If parent(R') = Cl,
then the XML element is the root XML element.

R € §], s.t.|Complex content modelled by child(R’)

name(R') =)

Table 1: XML modeled by PSM constructs.

An example of a PSM schema in [Fig. 1 (left)] models a schedule of matches
in a tournament. The schema class MatchSchedule has a single child association
named tournament. It specifies that the XML document must have tournament
root node. Names of associations model nesting of elements, class’ attributes
model XML attributes (zform(A’) = a — that is the case of reglo) or elements
with simple content (zform(A’) = e). [Fig. 1 (right)] shows a sample XML doc-
ument valid against this PSM schema.

2.2 Integrity Constraints

If we want to check integrity constraints that go beyond structure description,
we need an additional instrument besides a diagram. UML specification provides
Object Constraint Language (OCL, [OMG 2012]) for such purposes. OCL is
an expression language over a UML model. [Fig. 2] shows several examples of
integrity constraints for our sample schema.

OCL is a text based language, combining mathematical notation (used in e.g.
first-order logic expressions) with principles known from functional languages.
OCL grammar allows for recursive building of formulas from subformulas (every
formula can be represented by an expression tree).

Maly J., Necasky M.: Evaluation of OCL Expressions ... 333

context t: Tournament

/* IC1: dates consistency =/

inv: t.start <= t.end

/% IC2: all matches occur within the tournament s time frame =/
inv: match—>forAll(m | m.start >= t.start and m.end <= t.end)

context m: Match
/* IC3: player can play a Match only when registered to the Tournament */
inv: m.player—>forAll(p | p.parent.parent.player—>

exists(px | px.id = p.id))

/# IC4: players without registration numbers must provide emailsx/
context p: Player
inv: if oclIsUndefined(p.regNo) then not ocllsUndefined(p.email) else false

Figure 2: Examples of integrity constraints.

The major part of this paper is devoted to the algorithm of translating OCL
expression into XML Path Language (XPath) expressions, which will allow as
to check OCL integrity constraints in XML data using Schematron. In the next
section, we will enumerate the supported types of formulas defined in OCL spec-
ification and propose a translation to a corresponding expression in XPath.

3 Validation of Integrity Constraints in XML Documents

In this section, we present, an algorithm for automatic translation of PSM OCL
scripts into Schematron schemas, which can be used to validate the integrity
constraints in XML documents. Schematron is a straightforward rule-based lan-
guage. It consists of rule declarations, where every portion of a document match-
ing a rule (match patterns follow the same syntax as in XSLT templates) is tested
for assertions defined in that rule (assertions are expressed as XPath tests, as-
sertion is violated, when the effective boolean value of the expression is false).
A rule in [Fig. 3] tests, whether every element Person has subelement Name.

<rule context="//Person" >
<assert test="Name" >Subelement 'Name’ is missing.</assert>
< /rule>

Figure 3: Simple schematron rule.

Schematron schema, asserting over values, usually complement XSDs/RNG/
DTD (grammar based languages), which prescribe the overall structure. It is pos-
sible to specify constraints on structure in Schematron schemas as well. However,
structural descriptions expressed with the grammar based languages is usually
easier to write and manage and is widely supported by the tools.

334 Maly J., Necasky M.: Evaluation of OCL Expressions ...

The recommendation of XML Schema 1.1 [W3C 2012a] allows to include
some of the Schematron constructs directly in XSDs via assertions (assert
and report). However, there are additional limitations when using assertions
in XSDs — only restricted XPath 2.0 tests are allowed (in order to facilitate effi-
cient processing), for example not all XPath axes are allowed. The specification
describes in detail what restrictions are imposed on tests.

The usage of XSLT patterns for contexts of rules and XPath expression for
tests of asserts was chosen because those are technologies well established in
the XML ecosystem. It also facilitates Schematron validation using an XSLT
processor — an XSLT pipeline can be used to translate a Schematron schema S
into a validation XSLT transformation Ts. Ts is executed upon the validated
XML document and outputs structured information. Results produced by Ts
are formatted using SVRL — Schematron Validation Report Language, which is
part of Schematron specification [ISO 2006]. The report contains the constraints
that have been checked, which of them were violated and the locations of errors.

The power of Schematron is thus determined by the power of XPath. As
we will show later in this section, for some classes of OCL expressions, a corre-
sponding construct in XPath does not exist. For such cases, we created a library
of XSLT functions, called OclX. Functions from OclX can be used in XPath
expressions to provide sufficient expressive power. Since OclX is implemented
using pure XSLT, our approach does not require modification in Schematron
validators — if the validator uses XSLT internally, its logic can be preserved
providing that T, imports OclX library (details are described in [Section 8]).

First, we show how the principal OCL constructs can be translated to a
Schematron schema so that a skeleton of the schema is created. It is apparent
that rules, contexts and asserts in Schematron play the same role as contexts and
invariants in OCL. Thus, by creating a rule for each OCL context declaration and
adding an assert in the rule for each invariant, we can create a schema verifying

<sch:schema
xmlns:sch="http://purl.oclc.org/dsdl/schematron">
B+ <sch:pattern id="Tournament">
<sch:rule context="/tournament">
» <sch:let name="t" value="." />
| <l-- PSM1 -->

context t:Tournament P+ <sch:assert test="start le end">

/* PSM1 */ | Dates inconsistent,

inv: t.start <= t.end —,_ " <schuvalue-of select="$t/start" />
message: 'Dates inconsistent, is greater than

{t.start} is greater than {t.end} in {t.name}' <sch:value-of select="$t/end" />

in <sch:value-of select="$t/name" />
</sch:assert>
</sch:rule>
</sch:pattern>
</sch:schema>

Figure 4: Example of translation of principal OCL constructs.

Maly J., Necasky M.: Evaluation of OCL Expressions ... 335

the validity of PSM ICs. [Tab. 2] outlines the rules for translation, [Fig. 4] shows
a concrete example. The value for context attribute is obtaining by translating
the path from root to the constrained class into an absolute XPath expression. In
the following subsection, we will explain how to translate individual expressions
used in asserts.

OCL construct Schematron construct
OCL script Schematron schema
Constraint block Pattern with a rule

Context classifier Pattern id

Context variable let instruction for a variable
Invariant Assert

Invariant body Expression in assert test
Error message Failed assert text
Subexpression in error message value-of instruction in assert

Table 2: Translation of principal OCL constructs.

3.1 Algorithm for Translating OCL Expressions to XPath

The crucial step explained in the rest of this section is how to translate a PSM
OCL invariant body expression O’ to an XPath expression X¢o/ (the empha-
sized row in [Tab. 2]). Instead of showing pseudocode (which would be beyond
the scope of the paper), we will describe the algorithm using rules (which we
denote principles) for individual types of expressions. To achieve the desired
property that a Schematron assert really verifies validity of the corresponding
OCL expression the translation must follow the following principle:

Principle 1 (consistency) Let Xo: be the XPath expression obtained by trans-
lating PSM OCL invariant O'. Then, the effective boolean value of X is true
iff invariant O’ holds.

We will construct the expression so its atomic value is always of type xs:boolean.
In that case effective boolean value equals to the value of the expression.

We will now look at the different kinds of OCL expressions, as they are
depicted in [Fig. 5], and elaborate how they can be expressed equivalently in
XPath. From now on, we will apply some restrictions on the class of considered
OCL expressions. We will omit StateFxp and MessageFExp, since the notions of
state and message (signal) have no counterparts in our domain (XML data). Due
to space restrictions, we will also omit TypeFzps, which deal with casting, and

336 Maly J., Necasky M.: Evaluation of OCL Expressions ...

OclExpression

source
1 0.1

| K)

‘ VariableExp ‘ ‘LetExp

TypeExp ‘

MessageExp
StateExp

‘ LiteralExp ‘

referringExp

‘CaIIExp‘ ‘ IfExp ‘ *

‘ 0.1)
100pEXp iterator 0.1

‘ FeatureCallExp H LoopExp ‘ *| |refereredvariable
Variable

0.1
result

loopBodyOwner
0.1

‘ IteratorExp‘ ‘ IterateExp

variable

Figure 5: OCL expressions metamodel (source: OCL specification, Chpt. 8.3).

we will also treat all collections as sequences. Due to the architecture of XPath
data model we will also not allow nested sequences in expressions. We will get
back to the problem of nested sequences and different types of collections in
[Section 10]. These conditions leave us with LiteralEzp, IfExp, VariableEzp, Le-
tEzp, two kinds of LoopExps (IteratorExp and IterateEzp) and FeatureCallExp
(which encompasses operations, operators and references to attributes and asso-
ciations defined in the UML model). We also have to define consistent handling
of variables.

In the rest of this paper, we will delimit OCL expression in the text using
guillemots, e.g. this: «x +y > 1» is an OCL expression. We will use large
uppercase letters with apostrophes when we will speak about OCL expressions
at the PSM level (usually O). A translation of an OCL expression O’ into XPath
will be denoted Xo/. For XPath/XSLT expressions, as well as for the names of
PSM classes, we will use monospaced font.

3.1.1 Variables, literals, let and if expressions

Variables. There are three ways a variable is defined in OCL. Each invariant has

a context variable, which holds the validated object. It can be named explicitly

(such as ¢ in [Fig. 4]) or, when no name is given, the name of the context variable

is self. Tterator expressions (described later in this section) declare iteration

variables (such as m in the expression «match->forAll(m | ...))» in [Fig. 2]).

Let expressions (described later in this section as well) define a local variable.
We will construct the expression so that the following principle holds:

Principle 2 Every OCL variable used in O’ corresponds to an XPath variable
of the same name in Xo.. References to OCL variables (VariableExp) are trans-
lated as references to XPath variables.

Maly J., Necasky M.: Evaluation of OCL Expressions ... 337

The OCL context variable (with default name self or named explicitly) is
common in all invariants declared for the context. To declare corresponding
variable, we utilize Schematron sch:1let instruction in each rule (line <sch:let
name=*‘t”> value=‘‘.”’/>in the example). Declaration of XPath variables for the
other OCL variables (declared as a part of LetExzp or LoopEzp) will be created
in accordance with [Prin. 2], as we demonstrate later in this section.

LetEzp. Let expressions define a variable and initialize it with value. The
variable can be referenced via VariableEzp in the subexpression of the given
LetFExp. XPath 3.0 added a corresponding construct — let/return expression.
Thus, the following principle is in accord with [Prin. 2].

Principle 3 Let O be a LetExp expression

«let x : Type = initExp’ in subExp’s
where initExp’ and subFxp’ are both OCL expressions and the latter is allowed
to reference variable x. Than O’ is translated to an XPath expression Xo::

’

let $x := Xinitpep return Xouwwpep
where Xinitgzp and Xsuppzp are translations of initExp’ and subExp’.

LiteralEzp. OCL allows literals for the predefined types, collection literals
(e.g. «Sequence{1,2,3}»), tuple literals and special literals «nully (representing
missing value) and «invalid» (representing erroneous expression).

Principle 4 OCL literals are translated according to [Tab. 3].

OCL XPath

predefined type literal (literals for Real|corresponding XSD primitive type lit-
e.g. «1.23», String e.g. «‘hello’» etc.) eral (1.23, ‘hello’ etc.)

sequence literal, e.g. «Sequence(1,2,3)» |XPath sequence literal, e.g. (1,2,3)
tuple literal, e.g. «Tuple { name =|XPath map literal (more about tuples

‘John, age =10 }» in [Sec. 3.1.4])

«nully literal empty sequence literal ()

«invalidy literal call of OclX function invalid()
(more of error handling in
[Sec. 3.1.5])

Table 3: Translation of OCL literals.

IfEzp. Conditional expression in OCL has the same semantics as in XPath,
it can be translated directly.

338 Maly J., Necasky M.: Evaluation of OCL Expressions ...

FeatureCallExp

_DI

NavigationCallExp ‘
AN

parentNav

OclExpression

argument | *

referringExp referredProperty

0.1
o1 PropertyCallExp Property
. * 0.1 -
‘ OperationCallExp }refemngExp Operation

referredOperation

Figure 6: Different kinds of FeatureCallEzp expressions.

Principle 5 Let O’ be an expression «if cond’ then thenExp’ else elseExp’s.
Then IExp O’ is translated to an XPath expression Xor:
if (Xcona’) then XthenEa:p/ else XelseEa:p/

3.1.2 Translating Feature Calls

In the following, we will show how we translate FeatureCallEzp. There are two
types of features in UML — properties and operations, which can be referenced via
respective FeatureCallEzps, as depicted in a separate diagram in [Fig. 6]. We will
elaborate on both types — PropertyCallEzp and OperationCallExp separately.

PropertyCallExp. Examples of navigation expressions via PropertyCallEzp
are e.g. «t.starty, «m.players or «p.parent.parent.playery in [Fig. 2]. The first
one navigates to attribute Tournament.start, the second one navigates the as-
sociation end player which is a part of the association between classes Match
and MatchPlayer. Every FeatureCallEzp has a source (inherited from CallEzp,
[see Fig. 5]). The source in the first example is a VariableEzp «t», in the sec-
ond example, the source is a VariableExp «m». The third example is a chain of
three PropertyCallEzps. Two of the steps navigate PSM associations in upwards
direction (parent is the default name of parent association ends). The source in
the third example is the expression «p.parent.parenty, its source is «p.parents
whose source is «p». The whole navigation starts in class MatchPlayer, goes
through classes Match and Tournament and ends in Player. Navigation to prop-
erties can be translated by appending an XPath step, which uses either child
or attribute axis. Translation of navigation to association ends depends on the
direction of the association and whether the association has a name or not (an
association without a name means that the subtree under the association is not
enclosed by a wrapping tag, thus no XPath navigation is added).

Principle 6 PropertyCallExp is translated by appending an XPath step to the
translation of the source expression. Let O’ be a PropertyCallExp ezpression

Maly J., Necasky M.: Evaluation of OCL Expressions ... 339

«source’.p’» and Xsourcer be a translation of the source expression source’. If p’
navigates to an attribute A’ € S, and n' = name(A’), then O is translated to
Xor as follows:

X Xsourcer /child: :n’ if aform(A’) = e
" T\ Xuource /attribute: :n’ if zform(A’) = a

If R = (E}, E}) is an association and p' navigates to one of its ends E' €
{E{, E}, O is translated as follows:

Xsource/ 1f name(R/) =A
Xor = Xsourcer /ehild: :n’ if E' = E{ A name(R') =n/
Xsourcer /parent: :node() if E' = E

OperationCallExp. Application of predefined infix and prefix operators, calls
of OCL standard library operations and calls of methods defined by the designer
in the UML model all come under OperationCallEzp. For a majority of predefined
operators (such as «+», «andy, etc.), a corresponding XPath operator exists as
well. For those, where no corresponding operator exists (e.g. «xors), we added
a corresponding function in OclX library (we do not include the exhaustive list
in the paper, it can be found in the documentation for OclX). Similarly for the
predefined operations. As for methods defined by the designer, currently, we do
not consider modelling class methods at the PSM level. If they were to be added,
calls would be translated to calls to user-provided functions.

Principle 7 Every OperationCallExp O’ is translated into a call of correspond-
ing operation/operator (with the same amount of parameters; the translation of
the source expression in O becomes the first argument in XPath in Xo., fol-
lowed by the translation of the operation arguments in O'). The corresponding
operation/operator is either built-in XPath or defined in OclX library.

3.1.3 Translating Iterator Expressions

Loop expressions, such as the following: «source->exists(pz|px.name = p.name)»
or «source->collect(d | d.match)», are archetypal for OCL — they perform the task
of joins, quantification, maps and iterations. They are called using “->" (same
as all operations on collections), but instead of a list of parameters, the caller
specifies the list of local variables and the body subexpression [see Fig. 5]. There
are several important properties of loop expressions:

1. There are two kinds of LoopFExp, a general IterateEzp and IteratorExp. The
general syntax of IterateExp is:
«iterate(i : Type; acc : Type = acclnit | body),

340 Maly J., Necasky M.: Evaluation of OCL Expressions ...

where 7 is the iteration variable, acc accumulator variable, accInit the accu-
mulator initialization expression and body is an expression, which can refer
to variables ¢ and acc. The result is obtained by calling body expression re-
peatedly for each member of the collection (which is assigned to i and acc is
assigned the result of the previous iteration). The value of acc after the last
call is the result of the operation. The general syntax of IteratorExp is:
«iterator Name(i : Type | body)»,

where iterator Name is one of the predefined OCL iterator expressions (such
as exists, closure, etc.) or may be defined in user extension, ¢ is the iteration
variable and body is an expression, which can refer to the iteration variable
i (and all other variables valid in the place where the iterator expression is
used). The semantics of the IteratorEzp depends on the concrete iterator.
The semantics for the predefined operators is given in the specification.

2. Except closure, all other predefined iterator expressions (and a majority
of collection operations) can be defined in terms of the fundamental itera-
tor expression iterate, e.g. «exists(it | body)» is defined as «iterate(it; acc:
Boolean = false | acc or body)». Semantics of user-defined iterator expres-
sions can be defined using iterate as well.

3. Iterator expressions forAll and exists (serving as quantifiers) together with
boolean operators not and implies make OCL expressions at least as powerful
as first order logic. Operation closure increases the expressive power with
the possibility to compute transitive closures. Operation iterate allows to
compute primitively recursive functions (for more on the expressive power,
see [Mandel and Cengarle 1999)]).

4. Multiple iteration variables, such as in «c->forAll(vl,v2 | vl <> v2)», are
allowed for some expressions, but that is just a syntactic shortcut for nested
calls: «c->forAll(vl | e->forall(v2 | v1 <> v2))».

5. Collection operations define variables (iterators and accumulator) are local
(they are valid in the subexpression only). Other variables can be referenced
from body expression as well, be it context variable (self) or variables de-
fined by outer LetEzp or LoopFxp expressions. Variables except the iteration
variables (and accumulator in iterate) are free in body expression.

For translation to XPath, property 2 implies that it is sufficient to show, how
to translate closure and iterate, other operations can be defined using iterate. If
we succeed, property 3 ensures that we can check constraints with non-trivial
expressive power, including transitive closures. Property 4 relieves us from the
necessity to deal with expressions with multiple iterators. However, property 5
implies that we have to deal with local variables for iterator expressions.

There is no operation similar to iterate in XPath, nor can it be, in its most
general form, expressed by some other XPath construction. However, we will
show that iterate, and consequently all the other iterator expressions, can be

Maly J., Necasky M.: Evaluation of OCL Expressions ... 341

implemented as XSLT higher-order functions.

Higher-order functions (HOFs) are a new addition proposed for the drafts of
the common XPath/XQuery/XSLT 3.0 data model, which introduces a new kind
of item — function item. With function items, it is possible to assign functions
to variables, pass them as parameters and return them from functions, declare
anonymous functions in expressions. Function items can of course be called.

HOF is a function, which expects a function item as a parameter or returns a
function item as a result. OCL loop expression can be looked upon as HOF as well
— they all expect a subexpression (body, [see Fig. 5]), which is evaluated (called)
repeatedly for each member of a collection. Property 5 mentioned above is im-
portant for the semantics — body subexpression can have free variables, which
are, when evaluated, bound to variables defined in the source of the loop ex-
pression. E.g. in the expression IC3 in [Fig. 2] «t.match->forAll(m | m.start >=
t.start and m.end <= t.end)», the body expression refers to two variables — m
and t. Variable m is the iteration variable, variable ¢ is free.

Principle 8 IterateExp defines two variables, accumulator and the iteration
variable. IteratorExp defines one variable — the iteration variable. The transla-
tion of both IterateExp and IteratorExp must be in accord with [Prin. 2], i.e.
these wvariables must be available as XPath variables in the translation of the
body expression.

[Fig. 7] shows how iterate is implemented in OclX. It is a higher-order func-
tion, expecting a function item of two arguments in its third parameter body.
XSLT 3.0 [W3C 2012¢] introduces new instruction xsl:iterate which we can
use to our advantage. The function item is called repetitively for each member
of the collection (line 9), with the 2 expected arguments — a member of the col-
lection and the current value of the accumulator. When body was defined as an
anonymous function item, the free variables it contains are bound to the vari-
ables available in the calling expression, which is in accord with the semantics
of loop expressions of OCL. The second part of [Fig. 7] shows how HOF ezists
can be defined in terms of HOF iterate. The definition utilizes an anonymous
function node (line 22), which calls the function item passed as argument.

Principle 9 Every IterateExp (call of iterate) is translated as a call of OclX
HOF iterate. Every IteratorExp (call of some iterator expression, such as
exists etc.) is translated as a call of an OclX HOF of the same name. OclX
contains a HOF definition for each predefined iterator expression. Subexpression
body is translated separately and the resulting Xyoqy is passed as an anonymous
function item to the HOF call

The only iterator expressions, which is not defined using iterate is operation
closure. Whereas the amount of iterations needed to compute iterate is fixed,

342 Maly J., Necasky M.: Evaluation of OCL Expressions ...

<xsl:function name="*"oclX:iterate’” as=*item()*"’> 1
<xsl:param name="*collection”” as="*‘item()*""/> 2
<xsl:param name="*acclnit’’ as=*item()*"’/> 3
<xsliparam name=""body’’ as=function(item()x, item()*) as item()*/> 4

5

<xsl:iterate select=*‘1 to count($collection)’ > 6
<xsl:param name="*‘acc’’ select="‘$acclnit’” as="*‘item()*"’ /> 7
<xsl:next—iteration> 8
<xsl:with—param name=*‘‘acc” select=‘‘$body($collection[current()], $acc)” /> 9

< /xsl:inext—iteration> 10
<xsl:on—completion> 11
<xsl:sequence select=*‘‘$acc” /> 12

< /xsl:on—completion> 13
< /xsl:iterate> 14
< /xsl:function> 15
16

<xsl:function name="*‘oclX:exists”’ as=‘‘xs:boolean’ > 17
<xsl:param name="‘collection’ as="*‘item()*""/> 18
<xsl:param name=*‘body”’ as=‘‘function(item()) as xs:boolean” /> 19

20

<xsl:sequence select=*‘0clX:iterate($collection, false(), 21
function($it, $acc) { $acc or ($body($it)) })” /> 22

< /xsl:function> 23

Figure 7: OclX implementation of Iterate and exists.

closure computes a transitive closure of the body subexpression (the resulting
collection must be in depth first preorder) — thus, it is not known, how many
calls of body will be required. Again, there is no equivalent construct in standard
XPath. The implementation of closure in OclX uses a stack and recursion. Due
to space limitations, we do not include the code for oc1X:closure in the paper.

Some iterator expressions can be translated into native XPath constructs
(instead of OclX HOF) — i.e. OCL forAll can be translated as XPath every/
satisfies. We elaborate on alternative translations in [Section 5].

3.1.4 Tuples

In the following, we show, how OCL expressions using tuples (anonymous types)
can be translated to XPath. OCL allows the modeller to combine values in
expressions into tuples. Tuples have a finite number of named parts and are
created using TupleLiteralExp, a specialization of LiteralEzp. An example of
a tuple literal may be «Tuple { firstName = ‘Jakub’, lastName = ‘Maly’, age =
26 }». The values of the parts may be of arbitrary type, including collections and
other tuples. The names of tuple parts (firstName, lastName, age in the example)
must be unique and are used to access the parts of the tuple in expressions,
similarly to attributes of classes (using “.” notation), i.e. it is possible to write
e.g. «employees->collect(e | Tuple { name = e.name, salary = e.salary })->select
(t | t.salary > 2000)» The result of this expression would be a collection of tuples.
Tuples are also closely related to operation product, which computes a Cartesian
product of two collections:

Maly J., Necasky M.: Evaluation of OCL Expressions ... 343

product(cl:Collection(T1), c2:Collection(T2)) =
self— >iterate(el; acc = Set{} | c2—>iterate (e2; acc2 = acc |
acc2—>including(Tuple{first = el, second = e2})))
The result of product is a collection of type «Collection(Tuple(first: T'1, second :
T2))», which contains all possible pairs where the first compound comes from
collection cl and the second collection ¢2. Thus, not only tuples can be used
to write more concise expressions, but, together with the operation product,
they increase the expressive power of the language to relational completeness
(see [Codd 1972, Mandel and Cengarle 1999]) for more on expressive power of
OCL). Not supporting tuples would reduce the expressive power, thus we will
elaborate on the possibilities of expressing them in XPath.

We translate tuples using map items. A map item is an additional kind of an
XPath item which was added in the Working Draft of XSLT 3.0 [W3C 2012¢]
(and is already implemented in [Saxonica 2012]). Map items use atomic val-
ues for keys and allow items of any type as values. These properties of a map
item make it a great candidate for representing tuples. Strings containing the
name of a tuple part can be used as keys (and the names of parts must be
distinct in an OCL tuple as well). The tuple from the example would be repre-
sented as map{‘firstName’ := ‘Jakub’, ‘lastName’ := ‘Maly’, ‘age’ :=
26}, expression «t.firstNamey» would be represented as $t(‘firstName’). A
value in a map can also be another map or sequence, which is consistent with
semantics of OCL tuples. Operation product can be defined either by translating
the definition from specification (using two nested iterates) or via a much more
succinct XPath expression:

for el in collectionl return for e2 in collection2 return map{‘first’ := el, ‘second’ := e2}

[Prin. 10] summarizes translation of tuples.

Principle 10 A tuple literal is translated into an XPath map item literal. Every
tuple part is translated as a key/value pair in the item literal, the type of the key
is string and the value of the key equals the name of the tuple part. Access to
tuple parts is translated as indexing the tuple with a string corresponding to the
accessed part.

Neither of the examples in [Fig. 2] uses LetEzp or tuples. We will demonstrate
their usage on another example here. The expression IC5 in [Fig. 8] verifies that
no player is scheduled for two matches with overlapping time. The expression
first computes an auxiliary variable sched, which contains a tuple for each player
in the tournament. The tuple has two parts — id (tournament identifier of the
player) and sched (the set of matches the player participates in). The type of
sched is thus «Set(Tuple(id:String, matches:Set(Match)))», which we abbreviate
to PlayerMatchSet in the expression. The full translation of constraint IC5 is
depicted in [Fig. 16], together with the translations of constraints from [Fig. 2].

344 Maly J., Necasky M.: Evaluation of OCL Expressions ...

context t:Tournament
/*IC5: schedules for players do not overlap */
inv: let sched : PlayerMatchSet =
t.player.id—>iterate(id; acc: PlayerMatchSet = { } |
acc—>including(Tuple (id = id, matches =
t.match—>select(m | m.player.id—>includes(id)))))
in /% now we work with the variable sched */
sched—>forAll(s | s.matches—>forAll(m1, m2 |
not Date::isOverlap(m1l.start, m1l.end, m2.start, m2.end)))

Figure 8: LetEzp and tuples example.

3.1.5 Error Recovery

OCL as a language has a direct approach to “run-time” errors or exceptions.
Errors in computation cause the result of the expression to be invalid — a special
value, sole instance of type Ocllnvalid. It conforms to all other types (i.e. it
can be assigned to any variable and can be a result of any expression) and
any further computation with invalid results in invalid — except for operation
ocllsInvalid (and ocllsUndefined), which returns true, when the computations
results in inwvalid and false otherwise. This operation thus provides the only,
very coarse-grained error checking (there are no error codes or exception types)
available in OCL. Unlike OCL computation, XPath/XSLT 2.0 processor halts
when it encounters a dynamic error and there is no equivalent of oclIsInvalid. It
is also not possible to instruct it to jump to the validation of the next IC when
a computation of one expression fails.

XSLT 3.0, however, introduces new instructions — xsl:try and xsl:catch —
which provide means of recovery from run-time errors. With these instructions,
it is possible to implement ocllsInvalid as depicted in [Fig. 9]. We again uti-
lize HOF’s capabilities — the expression is evaluated in a function call wrapped
in try/catch. E.g. OCL expression «oclIsInvalid(1/0)» can be translated to
oclX:oclIsInvalid(function(){ 1 div 0 }). OCL also allows invalid literal
to be used explicitly in expressions (to indicate error). We translate this literal
to a call of OclX function invalid (), which simply throws a dynamic error.

Optionally, our validation pipeline (fully introduced in [Section 8]) allows
to safe-guard the evaluation of each expression using try/catch, so that the
validation of another constraint may continue if a runtime error occurs and it
is not contained by ocllsInvalid. In debug mode, detailed info is given using
xsl:message.

Principle 11 Calls of functions ocllsInvalid and ocllsUndefined are translated
into calls of corresponding OclX HOFs, implemented using try/catch instruc-
tions. Usages of invalid literal are translated into calls of invalid().

Maly J., Necasky M.: Evaluation of OCL Expressions ... 345

<xsl:function name="*oclX:oclIsInvalid" as=‘‘xs:boolean’ >
<xsl:param name="*func" as=*function() as item()*” />

<!—— evaluate func and forget the result, return false —— >
<xsl:try select=*‘let $result := $func() return false()”’>
<xsl:catch>

<xsl:if test="8debug’’> </—— print error info in debug mode —— >

<xsl:message select—‘‘‘Runtime error making the result invalid. />
<xsl:message select=‘*“ — code: ’ || $err:code” || ¢ description: ’ || $err:description” />
< /xsLif>
<xsl:sequence select=*‘‘true()”’ /> </—— if function call fails, return true ——>
< /xsl:catch>
</xslitry>

< /xsl:function>

Figure 9: Implementation of ocllsInvalid using xsl:try/xsl:catch.

Employee ‘ OrganizationHierarchySchema ‘
empNo: string organization
firstName: string
lastName: string =
name: string

salary: double departments

phone: string [0..1] Departments
A

employee 0* department
1.* S 4

Organization

Department |€— 1.*
employees | name: string department

! manager/ subdepartments l interns
0..

0.1 .1
Employees H Manager H Subdepartments H Interns‘

intern § 1.*

Employeel
empNo: string

Figure 10: PSM schema — company hierarchy.

4 Expressions with Inheritance and Recursion

In this section, we show how constraints using inheritance and recursion can
be validated using OclX (by recursion we mean navigation along cycles in PSM
schemas using closure). We will demonstrate them on a PSM schema in [Fig. 10],
the sample constraints are in [Fig. 11].

Inheritance is a common feature in UML diagrams and OCL supports in-
heritance by allowing calls of inherited features (operations and properties, via
FeatureCallExzp) and rules of type conformance. The subexpression «m.phone»
from [Fig. 11] is legal because class Manager’ inherits attribute phone’ from
class Employee’. The semantics of OCL also defines that invariants defined in
the superclass apply also for all its subclasses. Thus, the invariant PSM E2
defined for class Employee’ must also be met by instances of class Manager’.

At the PSM level, we support inheritance as well [Klimek and Necasky 2012]
—a class can inherit from another class which means that the element correspond-

346 Maly J., Necasky M.: Evaluation of OCL Expressions ...

context d:Department

/* PSM Rlx/

inv: let count:Integer = d—>closure(sd | sd.subdepartments.
department).employees.employee— >size()

in d.interns.intern—>size() > 0 implies count >= 3

message: ‘Only departments with at least 3 employees can accept interns,

department {d.name} has only {count} employee(s)’

context e: Employee
/* PSM E2 %/
inv: e.empNo <> 7

context e: Employeel
/* PSM I1x/
inv: e.Interns.Department <> null
implies e.Interns.Department <> e.toEmployee().Employees.Department
message: 'Internship in home department is forbidden’

context m:Manager

/% PSM M1 =/

inv: m.Department.employees.employee.empNo— >includes(m.empNo)
message: 'Manager is an employee of its department’

/* PSM M2 =/

inv: m.phone <> null

message: 'Managers must state their phone numbers’

Figure 11: PSM ICs for company schema.

ing to the specific class will have all the attributes and subelements defined by
the attributes and content of the general class (the inherited subelements come
before the specific class’ own subelements). This corresponds to the requirement
that inherited features can be used in OCL feature call expressions.

When translating OCL expressions over a schema which contains a class
hierarchy we must ensure that invariant O’ defined for a superclass C' are also
checked for subclasses C,. This can be achieved by:

1. copying the rule R obtained from translation of O’ for every subclass. (It
makes the resulting schema larger and less transparent.)

2. combining all the occurrences of C' and C, into the context of R using the
XPath union operator (e.g. use the expression //employee | //manager).
The translation of R is not repeated, but the resulting schema does not
visibly show that the PSM schema utilizes inheritance.

3. utilizing the feature provided by Schematron for rule logic reuse — abstract
patterns. Unlike the previous options, this one does not require the context
variables to be named the same in the general and in the specific invariants.

We decided for the last option since it preserves the nature of inheritance.
The rules for shared invariants are declared in abstract patterns and called by
the patterns for derived classes. For every class participating in a generalization
as a super class, an abstract pattern is generated. For every non-abstract class,
which inherits from the class (and for the super classes themselves), an instance
pattern is generated.

Maly J., Necasky M.: Evaluation of OCL Expressions ... 347

<sch:schema xmlns:sch=*"http://purl.oclc.org/dsdl/schematron’ >
<sch:pattern id=*‘‘Department’ >
<sch:rule context=‘*/organization/departments/descendant::department’ >
<sch:let name=d” value=*."" />
<sch:assert test=‘let $count := count(oclX:collect(oclX:collect(
oclX:closure(.,function($sd) { $sd/subdepartments/department }),
function($d) { $d/employees }), function($e) { $e/employee }))
return if (count(interns/intern) gt 0) then $count ge 3 else true()’’>
Only departments with at least 3 employees can accept interns,
department <sch:value—of select=‘‘$d/name” /> has less employee(s)
< /sch:assert>< /schirule>< /sch:pattern>
<sch:pattern id=‘‘Employee’’ abstract=*‘true’ >
<sch:rule context=*"%e”’>
<sch:assert test="‘empNo ne ©’ ”’ /> </—— empNo is not an empty string —— >
</schirule></sch:pattern>
<sch:pattern id=‘‘Employeel” >
<sch:rule context=*‘//intern’’>
<sch:let name="¢”’ value=""."" />
<sch:assert test="‘if (exists(../..)) then
not(../.. is (for $e2 in .
return (//manager | //employee)[./empNo = $e2/empNo|)/parent::employees/..)
else true()”’>
Internship in home department is forbidden
< /sch:assert>< /sch:rule>< /sch:pattern>
<sch:pattern id=‘‘Manager’’ >
<sch:rule context=*‘//manager’’ >
<sch:let name="“m” value=‘."" />
<sch:assert test=‘‘oclX:includes(oclX:collect(../employees/employee,
function($e) { data($e/empNo) }), data(empNo))”’>
Manager is an employee of its department
< /sch:assert>
<sch:assert test="*‘exists(phone)’’>Managers must state their phone numbers</sch:assert>
< /sch:rule> < /sch:pattern>
<!——instance pattern for PSMClass: Manager’s ancestor Employee—— >
<sch:pattern id=‘‘Manager-as-Employee” is—a=‘‘Employee’ >
<sch:param name—="‘‘e¢”’ value=*‘‘//manager” />
</sch:pattern>
<I——instance pattern for PSMClass: ‘‘Employee’—— >
<sch:pattern id=‘‘Employee-as-Employee’’ is—a=‘‘Employee’’ >
<sch:param name="‘e¢” value=*‘‘//employee” />
</sch:pattern>
< /sch:schema>

Figure 12: Translation of constraints from the company hierarchy schema
[Fig. 10].

Principle 12 Rules obtained by translation of invariants where the context is
a class for which specialized classes exists are placed in abstract Schematron
patterns. An instance pattern calling the abstract pattern is created for each
subclass.

A translation of invariants from [Fig. 11] is depicted in [Fig. 12]. Constraint
PSM E2 for class Employee’ is translated into an abstract pattern Employee.
This abstract pattern is called both for instances of Employee’ and Manager’
classes (via Manager-as-Employee and Employee-as-Employee respectively).

The recursive association between departments (departments have subde-
partments) is represented in the PSM schema in [Fig. 10] by the cycle Depart-
ment-Subdepartments-Department. This must be reflected in validation. The

348 Maly J., Necasky M.: Evaluation of OCL Expressions ...

expression defining the context of rule PSM R1 utilizes descendant axis:
company/departments/descendant: :department

OCL constraints concerning recursive structures often utilize closure iterator
expressions. We have described how closure is implemented in OclX earlier in
this paper [see Section 3.1.3].

5 Expression Rewriting

In [Section 3.1.3], we showed that it is possible to translate iterator expressions to
XPath using OclX functions. For every predefined OCL iterator expression, OclX
defines a higher-order function which mirrors both the syntax and semantics of
the iterator expression. Thus, the default translation (as defined by [Prin. 9]) is
syntactically closest to the original OCL expression. In some cases the usage of
an iterator expression may be translated to a native XPath expression equivalent,
to the expression with higher-order functions. Such rewritings may be desirable
for several reasons:

1. The resulting expression may be less complex, more readable and easier to
understand for an XPath users.

2. The resulting expression may be less costly to evaluate, because XPath/XSLT
processors are highly optimized for XPath axis evaluation. Also, every usage
of anonymous functions has certain overhead.

3. By rewriting the expressions used in the schema, it may be possible to
evade using OclX completely and the resulting schema would be a standard
Schematron (XPath 2.0) schema, which may be used even by non-XSLT
based Schematron validators.

In the following, we expect X oiection’ and Xpoay: (0 Xconar, where more ap-
propriate) to be translations of the expressions collection’ (returning the source
collection) and body’ (or cond’, where more appropriate) — the body expres-
sions of IteratorEzp. Some rewritings may be used only for a certain class of
expressions — these preconditions are given for each rewriting.

Definition 2 x-safe. We will call an OCL expression safe with respect to vari-
able x or z-safe, when it does not contain iterator expression referencing variable
€.

E.g. expression 1) «x > z->select(y|y = 0)» is x-safe, because z is not refer-
enced in an iterator expression. Expression 2) «z = y->select(u|xr <> u)» is not
z-safe, because z is referenced in the iterator expression select. X-safe expression
are an important subclass of expression when rewritings are concerned. When
the body expression of an iterator expression is safe with respect to the iterator
variable, references to the iterator variable can be replaced by references to con-
text node in XPath filters. E.g. in the expression 1), the subexpression «y = 0»

Maly J., Necasky M.: Evaluation of OCL Expressions ... 349

is y-safe and 1) can be thus translated as $x > $z[. eq 0]. When the body is
not y-safe, it is not possible, because some iterator subexpression references y
and in that occurence, y does not correspond to context node any more. We will
denote X,;,|, the translation of ezp’ where all references to are translated as
references to context node ¢.?.

collect. General form of collect is: «collection’->collect(x | body’)»
and it can be translated as follows:

1. oclX:collect (Xcoyection’s function($x) { Xpoay }).

2. for $x in Xcoections return Xyoqy, allowed for every case.

3. Xcollection’/XbodyR’-
Allowed when Xpoq, is a PSM path starting in variable z, then Xpoqyr/
is the path without variable x. This rewriting corresponds to OCL’s syn-
tactic shortcut for collect. Using this rewriting, it is possible to replace e.g.
the following expression: oclX:collect ($organization, function($o) {
$o/department }) with a more concise one $organization/department.

forAll/exists. Expression exists/forAll returns true when at least one/every
item in the source collection satisfies given condition. General form of forAll is:
«collection’-> for All(x | cond’)» and it can be translated as follows:

1. oclX:forAll (X ojection’> Tunction($x) { Xeona })-

2. every $x in Xcoiections satisfies Xioona -
This rewriting can be used in every case. For exists, ‘some’ will be used
instead of ‘every’.

select/reject. Expression select/reject returns the collection of those items
from the source collection, which satisfy given condition. We will show rewritings
for select, rewritings for reject can be obtained analogously after inverting the
condition. General form of select is: «collection’->select(x | cond’)» and it can
be translated as follows:

1. oclX:select (X ojjection’s function($x) { Xeona }).

2. for $x in X,.oyections return if (X.on4) then $x else ().
This rewriting can be used in every case.

3. Xeottection’ [Xcondr|2], allowed when cond’ is z-safe.

4. Xeoliection [1et $x 1= . return Xiong/|z]-
This rewriting can be used as an alternative when cond’ is not z-safe —
variable $x is defined explicitly. However, let/return expression are only
supported in XPath 3.0.

any. Expression any returns one of the items from the source collection,
which satisfy given condition (or null if no such item exists). General form of
any is: «collection’->any(z | cond’)» and it can be translated as follows:

1. OCIX:any(Xcollection/, function($x) { Xeonar 1.

350 Maly J., Necasky M.: Evaluation of OCL Expressions ...

2.

(for $x in X,.ojections return if (X,.one) then $x else ())[1].

This rewriting can be used in every case. The result of evaluation is an
empty sequence when no item satisfy the condition, which is consistent with
representing null as an empty sequence (this also applies for the following

rewriting).
- (Xeottection’ [Xcondarj21) [11., allowed when cond’ is z-safe.
- (Xeoltection’ [1et $x 1= . return X ..,q.1) [1].

Alternative when cond’ is not z-safe, XPath 3.0 only.

one. Expression one returns true if there is exactly one item in the collection

satisfying given condition. General form of one is: «col’->one(z | cond’)» and it

can be translated as follows:

1.
2.

oclX:one(X o, function($x) { Xeonar 1.
count (for $x in X,y return if (X.,,qe) then $x else ()) eq 1.
This rewriting can be used in every case.

. count (X op [Xeonar]) eq 1. Allowed when cond’ is z-safe.
. count (X.pp [let $x := . return X na1) eq 1.

Alternative when cond’ is not z-safe, XPath 3.0 only.

closure. The general form of closure is «collection’->closure(x | body’)». This

general form can not be rewritten, but closure is often used to process hierarchi-
cal structures. When the hierarchical structure is also represented via element
nesting in the XML document, XPath ancestor or descendant axes may be used.

The rewritings are thus as follows:

1.
2.

oclX:closure (X ojiection’s function($x) { Xpoay 1).

Xecollection' /descendant-or-self: : Xyoqy /.

Allowed when body’ is a PSM path and all navigation steps in the path
are oriented downwards. Expression bodyR’ is a path containing only the
last step in body’. As an example, the following expression from PSM R1 in
[Fig. 12]:

oclX:closure(., function($sd) {$sd/subdepartments/department})
can be rewritten into much more concise form:

./descendant-or-self: :department.

Xeollection/ancestor-or-self : : Xpoqy /-

Allowed when body’ is a PSM path and all navigation steps in the path are
oriented upwards. Expression bodyR’ is a path containing only the last step
in body’.

It must be pointed out that the rewritings 2. and 3. process the whole hierarchy —
i.e. when the original expression selects only a part of the hierarchy, the rewriting

is not equivalent to the original expression.

Maly J., Necasky M.: Evaluation of OCL Expressions ... 351

iterate. As we have stated in [Section 3.1.3], standard XPath does not con-
tain any expression corresponding to OCL iterate (general iteration with ac-
cumulator). XPath iterator for ...in ... has different semantics — it has no
accumulator and one iteration has no access to the results of previous itera-
tions. Thus, when iterate is used non-trivially, only the default translation using
oclX:iterate extension is possible.

6 Adding Attributes and Operations Using OCL

So far, we have been dealing only with OCL invariants. OCL allows several other
types of integrity constraints. We will examine them in this section. Besides
invariants, OCL allows also:

1. Initialization constraints. These define initial values of attributes or associ-
ation ends. In XML platform, initial values of attributes can be specified in
grammar-based languages (unlike in OCL, XML attribute default values are
restricted to constants) (DTD, XML Schema, in Relax NG, attribute default
values are allowed only in DTD compatibility mode). Initialization of sub-
trees or text nodes (which would correspond to initialization of association
ends and attributes with zform equal to e respectively) is not possible in
XML schema languages.

2. Definition of attributes. It is possible to define new attributes that are not
defined in the UML diagram. The value of the attribute is either a constant
or it is computed from other attributes/association ends of the classifier.
Both static and non-static attributes can be defined this way.

3. Definitions of operations (static and non-static (instance)). In OCL, a new
operation can be defined, including the body of the method. The only re-
striction is that the operation can not have any side-effects.

4. Methods’ preconditions and postconditions. Preconditions allow to declare
required properties of the inputs and the initial state of the objects. Post-
conditions allow to declare required properties of the method result and the
state of the objects after the method completion.

6.1 Adding attributes

Defining attributes using OCL can be useful to make other constraints more
readable and remove repeated subexpressions. [Fig. 13] shows a definition of two
derived attributes (allEmployees and totalSalary) for PSM class Department
from [Fig. 10] and a subsequent invariant (PSM DO1) that uses them. The first
one (PSM D1) adds a property that returns all employees in a department (incl.
subdepartments), the second one (PSM D2) returns a sum of salaries of all
employees in a department. The invariant (PSM TS) checks that there are no
excesses of employee salaries in a department.

352 Maly J., Necasky M.: Evaluation of OCL Expressions ...

context d:Department

/* PSM DAL x/

def: allEmploees : Set(Employee) = d—>closure(sd |
sd.subdepartments.department).employees.employee

/* PSM DA2 x/

def: totalSalary : real = d.allEmployees.salary—>sum()

/% PSM TS x*/

inv: let avg : real = d.totalSalary / d.allEmployees— >size() in
d.allEmployees—>forAll(e | e.salary < 3 * avg)

message: 'Employee’s salary must not exceed the treble the department’s average

context Date

/*PSM DO1x/

static def: isOverlap(dlfrom : Date, d1to : Date, d2from : Date, d2to : Date) : Boolean =
if (d1from > dlto or d2from > d2to) then invalid /* check inputs */
else (d1from < d2todB) and (d2from < dlto)

context e:Employee

/* PSM DO2 %/

def: getInternshipDepartments() : Set(Department) =
e.toEmployeel().parent.Department

/* PSM IN1 %/

inv: e.getInternshipDepartments()->size() < 3

message: 'Only two internships allowed concurrently for one employee’

Figure 13: Derived attributes and method definitions in OCL.

As we have explained in [Section 2], UML attributes with primitive types
are represented in XML either as XML attributes or as nodes with text content.
Relationships to other classes are represented via nesting in the XML document.
If we want to support OCL-defined attributes, we have to somehow add them
into the document so that we can refer to them in expressions. Computing and
adding them prior to validation (for example using XSLT transformation) would
be possible (because the state of the XML document does not change during
validation, so each expression returns the same result whenever executed), but
it could be ineffective (attributes would be added for all instances, even when
some of them are not read from some instances or the attributes are not used at
all). That is why we compute the value of an OCL-defined attribute only when
it is actually required during computation.

The value of the attribute is computed through a function call. For each
OCL attribute definition, an XSLT function computing the attribute’s value is
created. It must be noted that the XSLT stylesheet containing these function
must be linked to the validation stylesheet together with OclX library.

We formalize translation of OCL attribute definitions in [Prin. 13]. Due to
space limitations, we do not consider static attributes. [Fig. 14] shows translation
of the code from [Fig. 13]. It utilizes several rewritings introduced in [Section 5].

Principle 13 Each attribute A’ of class C' defined using OCL definition with
an expression O is translated into an XSLT function declaration F4.. The name
of the function is name(C")-name(A’). The function has one parameter corre-

Maly J., Necasky M.: Evaluation of OCL Expressions ... 353

<!—— functions definition for derived attr., this goes into XSLT user functions file —— >
<xsl:function name="*user:Department—allEmployees’ as="‘‘item()x"’>
<xsl:param name=*d” as="‘‘item()*” />
<xsl:sequence select="*‘descendant—or—self::department/employees/employee” />
< /xsl:function>
<xsl:function name=*‘‘user:Department—totalSalary’’ as=‘‘xs:decimalx"">
<xsl:param name=*"d” as=‘‘item()*" />
<xsl:sequence select=*‘sum(user:Department—allEmployees($d)/salary)’ />
< /xsl:function>
<!—— schematron schema with invariant using the ocl—defined attributes —— >
<sch:schema xmlns:sch=*‘‘http://purl.oclc.org/dsdl/schematron’ >
<sch:pattern id=‘‘DepartmentA’ >
<sch:rule context=*‘‘/company/departments/descendant::department’’ >
<sch:let name=*d”’ value=*"." />
<sch:assert test=*¢
let $avg := user:Department—totalSalary($d) div
count(user:Department—allEmployees($d))
return every $e in user:Department—allEmployees($d) satisfies $e/salary < 3 % $avg
»>Employee’s salary must not exceed the treble the department’s average< /sch:assert>
< /sch:rule>
< /sch:pattern>
< /sch:schema>
<!—— functions definition for derived oper., this goes into XSLT user functions file —— >
<xsl:function name="‘‘user:Date—isOverlap’’ as=‘‘xs:boolean’ >
<xsl:param name=*dlfrom” as=‘xs:dateTime” />
<xsl:param name=*d1to’’ as=‘xs:dateTime’ />
<xsl:param name=*d2from”’ as=‘xs:dateTime” />
<xsl:param name=*d2to’’ as=‘‘xs:dateTime’ />
<xsl:sequence select=""if (d1from > d1to or d2from > d2to) then oclx:invalid()
else (d1from < d2todB) and (d2from &It; d1to)” />
< /xsl:function>
<xsl:function name="*‘user:Employee—getInternshipDepartments” as=*‘xs:item()*"">
<xsl:param name=*‘e” as="‘item()” />
<xsl:sequence select="*let $p := $e return //intern[./id = $p/id]/../..” />
< /xsl:function>
<I—— schematron schema with invariant using the ocl—defined operation ——>
<sch:schema xmlns:sch=*‘‘http://purl.oclc.org/dsdl/schematron’ >
<sch:pattern id=‘‘EmployeeO’’>
<sch:rule context=*‘‘/company/departments/descendant::department/employees/employee’ >
<sch:let name="¢”’ value=""." />
<sch:assert test=‘‘count(user:Employee—getInternshipDepartments($e)) &Ilt; 3
»’>Only two internships allowed concurrently for one employee< /sch:assert >
< /sch:rule>< /sch:pattern></sch:schema>

Figure 14: Translation of OCL-defined attributes and operations to XSLT.

sponding to the context variable. Every reference to attribute A’ is translated as
a call of Far and the instance of C' is passed as a parameter to Far. Function
Fy returns the value of the expression Xo: obtained by translating O'.

6.2 Adding operations

Methods can be defined solely in OCL and used from OCL expressions after-
wards. Both static and instance(non-static) methods can be defined using oper-
ation body expressions. Examples of both are depicted also in [Fig. 13]. The first
one (PSM DO1) is a static method checking whether two specified date intervals
overlap. The second one (PSM DO2) adds a function that allows to find all de-
partments where an employee occupies a post of an intern. This function is used

354 Maly J., Necasky M.: Evaluation of OCL Expressions ...

in invariant PSM IN1 to check that no employee has more than two concurrent
internships. Note that PSM IN1 utilizes toEmployee — a traversal function to
get Employeel instances from Employee instances. Due to space limitations, a
formal definition of traversal functions is not included in this paper.

OCL operation definitions and calls are naturally translated to XSLT func-
tion definitions and calls. Static functions have an additional first parameter
representing the context variable. The translation is formalized by [Prin. 14]
and sample translations are depicted in [Fig. 14].

Principle 14 Each operation M’ of class C' defined using OCL definition with
expression O’ is translated into an XSLT function declaration Fyy . The name
of the function is name(C")-name(M’). If M’ is not static, the first parameter
of Farr corresponds to the context variable. The parameters of M’ are translated
as the remaining parameters of Fpy. Every call of M’ is translated as a call of
Fyp and the instance of C' is passed as the first parameter to Fyy when M’
is not static. The remaining parameters in the function call are translated as
subexpression. Function Fy; returns the value of the expression X o obtained by
translating O'.

7 Completeness and Soundness of the Translation Principles

We now discuss the completeness and soundness of the principles for translating
OCL expressions to XPath expressions. Firstly, we discuss completeness. Figures
[Fig. 5] and [Fig. 6] show the kinds of expressions defined by the OCL specifica-
tion document [OMG 2012]. We showed that most of them can be translated to
XPath. The XPath expressions are directly included in the Schematron skeleton
(see [Fig. 4]).Translations of particular kinds of OCL expressions are specified
by [Prin. 2-11], [Prin. 12] further extends the coverage of OCL with inheritance
and recursion. [Prin. 13,14] cover the features of OCL which enable integrity
constraints designers to express not only invariants but also exploit the power of
OCL to express pre- and post-conditions, define new features and initialize val-
ues of existing features. Therefore, the introduced set of principles covers most
kinds of OCL expressions listed in [Fig. 5] and [Fig. 6] and several other features
of OCL. As noted in [Section 3], we do not deal with StateExp, MessageExp and
TypeFzxp in this paper. We also limit the type system — we do not support nested
collections, sets, bags and ordered sets — those we leave for the future work.

[Prin. 1] indicates soundness of the translation of OCL invariants to their
XPath equivalents. However, it is not a proof. The rest of this section is devoted
to such proof. Before we provide the proof we discuss how OCL expressions are
evaluated in [Section 7.1]. The discussion is a necessary prerequisite. The proof
itself is presented in [Section 7.2].

Maly J., Necasky M.: Evaluation of OCL Expressions ... 355

7.1 Evaluating OCL Expressions

Let O’ be an OCL expression of one of the kinds depicted in [Fig. 5]. Let O" be
expressed over a given PSM schema &’. Let X be its translation to XPath (ex-
tended with OclX functions) according to the principles. We will prove that the
semantics of both O’ and X/ are the same. This will also mean that if O’ is an
invariant then the effective boolean value of X is true iff the invariant O’ holds
(i.e. that the [Prin. 1] is ensured by the other principles). In other words, this
will show that the set of principles is sound. We will use denotational semantics
to express the semantics of O’ and Xo.. We will prove that the semantics are
equal. The proof will be based on mathematical induction.

For our proof, it is important to discuss the results of evaluation of both O’
and Xo. Xo/ is an XPath expression. It is evaluated by some XSLT/XPath
processor against a given XML document D. D is a set of all XML elements and
attributes in the document as well as all hierarchical relationships between two
elements or an element and its attribute in D. The prerequisite is that D is valid
against the XML schema modeled by the PSM schema &’. (XML documents
which are not valid against their structural schema are not further validated
against more complex integrity constraints modeled by our OCL expressions.)
In terms of denotational semantics, the result of the evaluation is called meaning
of Xo/ and it is denoted [Xo/].

On the other hand, O’ is not intended for evaluation - it is expressed over
S’ and there is no instance of &’ which could be validated. O’ only expresses
the semantics of the constraint. It is expected that O’ is translated to some
other language. The translation is used to validate instances expressed in some
other data model (e.g. XPath data model for validation of XML documents).
Even so it is possible to express the semantics of O’. Its meaning is the result
of validation of a hypothetical instance of S’. We will denote this meaning in
accord with denotational semantics as [O'].

The hypothetical instance is an image of D in instances of classes and at-
tributes of the PSM schema &’. To construct this image, we need to correctly
map the XML elements and attributes and their hierarchical relationships in
D to their corresponding instances of classes, attributes and associations in S’.
Fortunately, finding this mapping is easy and straightforward thanks to our pre-
viously published theoretical results.

In [Necasky et al. 2012b], we showed that S” is a model of an XML tree
grammar G. We also described in detail the translation of S’ to G. We omit
this description in this paper due to the lack of space. It is important for our
proof that a mapping of the production rules of G to classes, attributes and
associations in &’ is created during the translation. The mapping specifies that
a given production rule in G corresponds to a component of S’. The mapping
is total. It means that each production rule of G is mapped to some component

356 Maly J., Necasky M.: Evaluation of OCL Expressions ...

in &’. Also, as proved in [Murata et al. 2005], G can be expressed in a suitable
XML schema language (XSD or Relax NG). An XML document D can therefore
be validated against G. In [Necasky et al. 2012b], we showed that D is valid
against G if and only if there exists a total mapping of XML elements and
attributes in D to the production rules in G. We can therefore compose the
mapping of components of D to the production rules of G with the mapping of
the production rules of G to components in S&’. The resulting mapping is total
because both mappings are total. In other words, each XML element, attribute or
hierarchical relationship in D is mapped to some component of S’. The composed
mapping allows us to map D to its equivalent instance of §’. We call the mapping
interpretation of D in " and denote it with I. I(z) denotes the interpretation
of a particular component x € D.

Having the XML document D, [X¢/] is the result of evaluation of the XPath
expression Xo: against D. We can also formally define what does it mean to
evaluate O', i.e. to define [O']. We consider interpretation I(D) of D in 8’ (where
I(D) ={o: (3x € D)(o=I(x))}). [O'] is the result of evaluation of O’ against
I(D). Now, we are ready to define equivalency of Xo and O’ - the interpretation
of the result of the evaluation of Xy, against any XML document D must be
the same as the result of the evaluation of O’ against I(D). We formalize this in
[Def. 3].

Definition 3. We say that Xor and O’ are equivalent, denoted as Xor = O,
iff I([Xo/]) = [O'] for any XML document D (where I([Xo/]) = {o: 3z €
[XoD(o = 1(x))}).

7.2 Proof of Soundness

Given O’ and its translation Xo, we want to prove that I([Xo/]) = [O'] for
any XML document D. Without loss of generality, we fix an arbitrary XML
document D. We use the mathematical induction schema driven by the internal
structure of O’. We suppose that O’ is of a certain type ([Fig. 5] and [Fig. 6]).
We will analyse its internal structure and prove the equation for this particular
type. More formally, we will find out sub-expressions Of, ..., O, of O’ where we
can use mathematical induction to assume that I([Xo.]) = [O;] for each sub-
expression. With this in mind, we will prove that equality holds for the whole
O’. Because O; is a subexpression of O’, s.t. O, # O’, the proof is finite.

The result of the proof is the fact that [Prin. 2-11], which specify the trans-
lation of all these particular types of OCL expressions, are sound, i.e. that they
correctly translate the OCL expressions to XPath expressions.

Each of the following sub-sections analyzes particular kinds of OCL expres-
sions and proves soundness of their translation according to respective principles.

Maly J., Necasky M.: Evaluation of OCL Expressions ... 357

7.2.1 PropertyCallExp

Let us first suppose that O’ is PropertyCallEzp. Therefore, O’ = «source’.p’»
where source’ is the source of O’ and p’ is the property of O’. Let p’ nav-
igates to an attribute A" with zform(A’) = a. According to [Prin. 6] Xor =
Xsourcer / attribute ::name(A’). We can therefore write

I([Xo]) = I(1

[(
({v: (Fe € [Xsourcer]) (v = [e/ attribute ::name(A)])}) (2
v (3[(6) € I([[Xsource’]]))(v = [[pl(l(e))]])} (3

(
(

KXsourcer [attribute ::name(A’)])

I
f—Hf—H&(M

[le 1l

v: (3I(e) € [source’])(v = [p'(I(e))])} 4
o']] 5

=
S O N N

Line (2) expresses the semantics of the XPath expression X oyrcer / attribute :
name(A"). We can assume that the PSM Schema S’ defines a correct XML struc-
ture (which is not proved in this paper but in [Necasky et al. 2012b]). The XPath
expression follows the structure given by the PSM schema and it is therefore
syntactically correct as well. In other words, we can assume that the XPath ex-
pression Xourcer targets XML elements and, therefore, [Xsourcer] must be a set
of XML elements. For each such element e, the expression e/ attribute ::name(A")
navigates to an XML attribute of e with a value v. Those values form the result
of the evaluation of X,urcer- Line (3) exploits the fact that if v is returned for ¢ as
a value of the XML attribute with name name(A’) then it must also be returned
for the interpretation of e, I(e), as a value of the PSM attribute A’ (denoted
by [p’(I(e))]. This is implied by the correctness of the interpretation function I
(see [Necasky et al. 2012b] for more details). Line (4) is a mathematical induc-
tion (denoted by = symbol) - by induction we can suppose that I([Xsource’]) =
[source’]. Moreover, line (4) specifies the semantics of O’ as described by OCL
specification. Therefore, line (5) concludes with the fact that I([Xo/]) = [O'].
This means that Xo = O’ by [Def. 3].

Let us now suppose that p’ navigates to an end Ej of an association R’ =
(E1, EY). According to [Prin. 6] Xor = Xgourcer/ child ::name(R’). In this case,
we can write

I([Xo]) = I([Xsource / child ::name(R')]) (1)
=I{f:(3e € [[Xsmme D [[e/chzld :name(RN])}) (2)
={1(f) : Gl(e) € I([Xsoureee D) (f) = [P'L(e))D} (3)
={I(f): (3 (€ [source'])(I(f) [["(I(e)]} (4)

= [0] (5)

The difference from the previous case is only technical. Now, the XPath ex-
pression is Xsourcer/ child ::name(R’). Here X oureer also returns a set of XML

358 Maly J., Necasky M.: Evaluation of OCL Expressions ...

elements, but for each such element e, the expression e/child ::name(R’) navi-
gates to a set of child XML elements. Therefore, we do not work with an at-
tribute value v as in the previous case but with a child XML element f. The
other principles remain the same.

Proofs for other cases covered by [Prin. 6] would be technically very similar
and we therefore omit them in this paper.

7.2.2 OperationCallExp

As we described in [Section 3.1.2], we consider predefined OCL operators and
operations. In both cases, there is a corresponding XPath operator or operation
for most of them. For the rest, we define their equivalents in our OclX library.
The proof is therefore straightforward. Let O’ be a call of an an OCL infix/prefix
operator or an OCL operation (. Let [J has n parameters. In other words, O’ =

004, ..., O)) where Of, ..., O], are OCL expressions. According to [Prin. 7],
Xor = Xg (Xoy, ..., Xor). We can therefore write
I([Xo]) = I(IXa([Xo], - - [Xo, D]) (1)
= [OU([Xo]), .- I([Xo, IN] (2)
= [O([o1], - .. [0.D)] (3)
=[0] (4)
Line (1) expresses the semantics of Xor. It is given by the result of applying
Xp on the operands Xor, ..., Xo, . We consider the interpretation of the result.

As we described in [Section 3.1.2], it is ensured that OJ and X5 always refer to
the same operation. This is exploited at line (2) - the interpretation of the result
of applying X on the operands Xo;, ..., Xo, is the same as the result of
applying [J on the interpretations of these operands. Line (3) is implied by the
mathematical induction - by the induction we get I([Xo,]) = [O;] for each
operand. Moreover, line (3) describes the meaning of [O']. Therefore, line (4)
concludes with the proof that I([Xo/]) = [O].

7.2.3 LetExp, IfExp, VariableExp and LiteralExp

[Prin. 3 and 5] in [Section 3.1.1] show that LetEzp and IfExp, respectively, are
translated to their direct equivalents. Therefore, I([Xo/]) = [O'] is implied
trivially by the induction.

For example, suppose that O is IfEzp, i.e. O' = «if cond then thenExp'
else elseExp'». According to [Prin. 5], Xo = if (Xconar) then Xipengazp
else Xeisemap - We can, therefore, write

Maly J., Necasky M.: Evaluation of OCL Expressions ... 359

I([Xo]) = I([if ([Xcona']) then [[XthenExp’]] else [[XelseE:cp’]] D (1)
[if (I([Xcona'])) then I([Xihenrap]) else I([Xeiserap]) 1] (2)
[if ([eond']) then [thenExp'] else [elseExp'] |] (3)
= (4)

0']

[le 1l

[Prin. 2 and 4] specify translation of variables and literals. [Prin. 10 and 11]
describe translation of specific literals. The defined translations are straightfor-
ward and so is the proof.

7.2.4 LoopEzxp

We explained loop expressions in detail in [Section 3.1.3]. We have also shown
that even though there are many kinds of loop expressions in OCL, it is sufficient
to define translation of closure and iterate. The other kinds can be expressed
with these two kinds. Therefore, it is also enough to prove soundness of these
two kinds of loop expressions.

Even though the translation of loop expressions is less straightforward then
the translation of the other kinds (it is translated to our specific function iterate
from our OclX library), the proof is very similar to IfEzp.

Formally, let O} = «iterate (i : Type; acc: Type = acclnit | body)» which
iterates the result of evaluation of some other OCL expression O}. According to
[Prin. 8 and 9], Xo; = oclX: iterate ([Xoy], [accInit Exp'], [bodyExp']). We
can therefore write

I([Xor]) = I([oc1X : iterate([Xoy], [XacernitBap]s [XvodyEap]) 1) (1)
= [iterate(I([Xoy]), I ([XacernitBap 1), I ([XbodyBxpr])) | (2)
= [iterate([O4], [accInit Exp'], [body Exp'])] (3)
0] ()

Correctness of Line (2) depends on the correctness of oclX:iterate - the OclX
implementation of the OCL loop expression iterate. Its correctness is discussed
in detail in [Section 3.1.3].

8 Implementation

We incorporated algorithms presented in this paper into our experimental XML
schema management tool eXolutio [Maly et al. 2012]. The tool allows for PIM
schema modelling and semi-automatic PSM schema derivation. The user can
specify integrity constraints at both PIM and PSM level. The user can also
ask the tool to suggest which PIM constraints are relevant for a selected PSM

360 Maly J., Necasky M.: Evaluation of OCL Expressions ...

3. L4
4,
Ly pmoct }—2—>{ PSM OCL SC::P:::;on}

5.

OclX XSLT 6. Schematron to

library XSL transform
—— Validation
——————— XProc 71 s Validation

Validated | 8. Validation output
XML 9. (SVRL)

Figure 15: XML validation using OCL — Oc¢lX and Schematron pipeline.

schema. The tool examines the mapping between PIM and PSM levels and
chooses which PIM constraints are applicable and tries to perform automatic
translation. We do not describe that algorithm in this paper, but we want to
emphasize that the tool allows to reuse integrity constraints from the PIM level
and it is not necessary to create the same constraints at the PSM level manually.

The output schema of the tool can not (generally) be used by a standard
validator. This is because it may contain references to OclIX XSLT functions
which are not part of XPath. Thus, we provide a modified Schematron pipeline
(the pipeline can be run either using XProc [W3C 2010] or as a shell script)
and requires an XSLT 3.0 Working Draft compliant processor (we tested our
implementation using [Saxonica 2012]).

The schema of usage of OCL for XML validation is depicted in [Fig. 15].
When the user specifies ICs at the PIM level (1), the tool helps him to transfer
them to the PSM level — the tool selects relevant schemas and offers automatic
translation where possible (2). Apart from ICs transferred from the PIM level,
it is possible to create expressions solely for the PSM level (3). A PSM OCL
script can be generated (4), two variants are offered — for schema aware XSLT
processors and non-schema aware (in that case, typed values are created from
string values using constructors). Since some expressions may refer to OclX func-
tions, OclX library must be linked (5) to the validation stylesheets, which are
generated by Schematron pipeline transformations. To achieve this, we slightly
modified Schematron pipeline transformations so that they add necessary im-
ports. Schematron pipeline outputs a validation stylesheet (6) which can be used
to validate XML data (7) — the result of the validation is a Schematron Validation
Report Language document (8), which contains a report on which constraints
were checked, whether some of them were violated and if so, the locations of the
errors. In this paper, we focused primarily on step (4).

Maly J., Necasky M.: Evaluation of OCL Expressions ... 361

<sch:schema xmlns:sch="‘http://purl.oclc.org/dsdl/schematron’>
<sch:pattern id=‘Tournament1’>
<sch:rule context="‘/tournament’>
<sch:let name="‘t’ value=*‘"/>
<I—— IC1: dates consistency —— >
<sch:assert test='$t/start le $t/end’ />
<!—— IC2: all matches occur within the tournament’s time frame —— >
<sch:let name=‘t’ value="."/>
<sch:assert test=‘oclX:forAll(match,
function($m) { $m.start ge $t.start and $m.end le $t.end })’ />
</schirule></sch:pattern>
<sch:pattern id=‘Match’>
<sch:rule context=*/tournament/match’>
<sch:let name=‘m’ value=*‘."/>
<!—— IC3: a Player can play a Match only when reg. to the T. ——>
<sch:assert test=‘oclX:forAll(player, function($p)
{ oclX:exists($p/../../player, function($px) { $px/Qid = $p/@Qid }) })’ />
</schirule></sch:pattern>
<sch:pattern id=‘Player’ >
<sch:rule context=*/tournament/player’>
<sch:let name="‘p’ value="‘."/>
<I—— ICY: players without registration numbers must provide emails —— >
<sch:assert test="‘if (oclX:ocllsUndefined($p/@regno)) then
not(oclX:oclIsUndefined($p/email)) else false()’ />
</sch:rule> < /sch:pattern>
<sch:pattern id=‘Tournament2’>
<sch:rule context="‘/tournament’>
<sch:let name="‘t’ value=*‘"/>
<I—— IC5: schedules for players do not overlap —— >
<sch:assert test="‘let $sched :=
oclX:iterate($t/player/@id, (), function($id, $acc)
{ oclX:including($acc,
map {‘id’ := $id,
‘matches’ := oclX:select($t/match, function($m)
{ oclX:includes($m/player/@ id, $id) }) }) })
return oclX:forAll($sched, function($s)
{ oclX:forAll($s/matches, function($ml, $m2)
{ not(oclDate:isOverlap($m1/start, $m1/end, $m2/start, $m2/end)) }) })’ />
< /schirule></sch:pattern>
< /sch:schema>

Figure 16: Translation of the sample constraints.

To conclude this section, we show, how the sample integrity constraints from
[Fig. 2] and [Fig. 8] are translated. The resulting Schematron schema is depicted
in [Fig. 16]. Translation of constraint IC1 is straightforward. Constraint IC2
contains a call of a higher order function forAll. An anonymous function item is
created for the body function and the body function also references a free variable
t (which is the context variable of the expression). Constraint IC3 illustrates the
translation of nested iterator expressions (forAll and ezists) into higher-order
functions and also upwards association navigation (using parent XPath axis).
Constraint I1C4 uses ocllsUndefined (which tests for null value). The last con-
straint IC5 is a translation of the OCL invariant from [Fig. 8] and demonstrates
let expressions (definition of a local variable), iterate operation and tuples.

362 Maly J., Necasky M.: Evaluation of OCL Expressions ...

9 Related Work

Existing academic work [Wenfei and Jerome 2003], [Arenas et al. 2008)] in the
area of integrity constraints for XML focuses mainly on the fundamental in-
tegrity constraints known from relational databases — keys, unique constraints,
foreign keys and inverse constraints — and their mathematical properties, such
as decidability, consistency, tractability (with separate results for one-attribute
vs. multi-attribute and relative vs. absolute keys). In this paper, we deal with
general constraints in the form of arbitrary expressions.

Several [Conrad et al. 2000, Dominguez et al. 2011, Routledge et al. 2002] ap-
proaches for modelling XML using UML were proposed, but they deal mainly
with modelling the structure of the schemas, without debating the integrity con-
straints present in the model. OCL is utilized in [Sengupta et al. (2005)] to allow
for automated translation from sequence to state machine UML diagrams, but
the paper does not consider XML data.

Research at Technische Universitit Dresden focuses on OCL and UML and
related technologies [Hussmann et al. 2000], which is also the coordinator of the
leading open-source implementation — Dresden OCL [TUD 2012]. Dresden OCL
targets primarily relational databases platform [Demuth and Hussmann 1999
and Java. A generic framework for generating for translation OCL expressions
into other expression languages was proposed in [Heidenreich et al. 2008]. It
mentions 2 applications: OCL — SQL translation and also OCL — XQuery.
The expression are translated into the target language via patterns. It expects
much tighter mapping between UML model and XML schema (unlike PIM/
PSM schemas used in our approach, it does not consider regular properties of
schemas). The OCL — SQL patterns are based on [Demuth and Hussmann 1999],
OCL — XQuery on [Gaafar and Sakr 2004]. The authors support constructs cor-
responding to projection, Cartesian product and restriction in the expressions
(omitting the general iteration and closures facilities).

Authors of [Gaafar and Sakr 2004] examine the fundamental similarities of
the two expression languages — OCL and XQuery. They propose a mapping
from XQuery queries to OCL constraints (bottom-up approach). They show
how the parts of elementary XQuery expressions can be mapped to OCL con-
structs, but they do not elaborate on translating definitions of (local) varables
and references to them, which would be interesting for queries with multiple
variables (such queries correspond to more complex OCL iterator expressions,
which are not mentioned in the paper). In consequence, the full expressive
power of OCL is not harnessed (for more on expressive power of OCL, see
[Mandel and Cengarle 1999]).

Maly J., Necasky M.: Evaluation of OCL Expressions ... 363

10 Conclusion

Our aim in this paper was to further utilise the potential of MDA in XML ap-
plications by allowing the reuse of integrity constraints defined at the platform-
independent level in a UML diagram. We presented an algorithm [see Section 3.1]
for translation of OCL expressions into XPath expressions and enhanced it in
[Section 4-5]. We have elaborated on one application of this translation algorithm
— document validation, which was our main motivation. With our approach, it
is possible to automatically generate integrity constraint checking code in the
form of a Schematron schema, which can be used to validate XML documents.
We identified several classes of expressions, where standard Schematron is not
sufficient, and proposed extensions required to preserve the expressive power of
OCL. We incorporated the approach into our schema management tool eXolutio
[Maly et al. 2012]. Since our extension has a form of an XSLT function library,
Schematron schema generated by our tool can be processed by any XSLT 3.0
compliant processor using modified Schematron pipeline. In [Section 6], we have
suggested another application — using OCL to define user functions on the ab-
stract level. These function can be automatically translated and evaluated in
XML data.

In our future work, we plan to further improve the OCL to XPath mapping
and add support for nested collections and collections of other kinds besides
sequences, i.e. sets, bags and ordered sets. These types are alien to the XPath
data model, which only knows flat sequences. XSLT 3.0 Working Draft proposes
an additional type to the XPath type system — a map (which we have already
utilised for representing tuples in [Section 3.1.4]). A distinct feature of XSLT
maps is that it allows both maps and sequences as values, thus, using maps, it is
theoretically possible to represent nested collections (the syntax of some expres-
sions however becomes a bit convoluted). We intent to improve the algorithm by
proposing a coherent way for representing nested collections of any of the four
kinds together with a syntax that is as transparent as possible.

Another branch of our follow up research is the area of document adaptation
[Maly et al. 2011], where we proposed an algorithm for generating an adapta-
tion script to transform documents valid against one version of a schema into
documents valid against other version of the same schema. There are scenarios,
in which document adaptation can utilise integrity constraints to precisely spec-
ify the mapping between the two versions and the translation of the mapping
constraints into adaptation transformations could use annotations in the form
of OCL constraints and the translation algorithm presented in this paper.

In [Section 8], we describe the implementation of the algorithms presented
in this paper. As a part of our future work, we plan to present the evaluation of
our experiments in real-life applications.

364 Maly J., Necasky M.: Evaluation of OCL Expressions ...

Acknowledgements

This work was supported in part by GA UK grant no. 204-10/253421 and in
part by the Czech Science Foundation (GACR), grant number P202/11/P455.

References

[Arenas et al. 2008)] Arenas, M., Fan, W., Libkin, L.: “On the complexity of verifying
consistency of xml specifications”; SIAM J. Comput.; 38 (2008), 841-880.

[Codd 1972] Codd, E. F.: “Relational completeness of data base sublanguages”; Pren-
tice Hall; California (1972).

[Conrad et al. 2000] Conrad, R., Scheffner, D., Christoph Freytag, J.: “XML Concep-
tual Modeling Using UML”; LNCS, 1920 (2000), 291-307;.

[Demuth and Hussmann 1999] Demuth, B., Hussmann, H.: “Using UML/OCL con-
straints for relational database design”; Proc. UML’99 (1999), 598-613.

[Dominguez et al. 2011] Dominguez, E., Lloret, J., Perez, B., Rodriguez, A., Rubio,
A. L., Zapata, M. A.: “Evolution of XML schemas and documents from stereotyped
UML class models: A traceable approach”; Inf. Softw. Technol., 53 (2011), 34-50.

[Gaafar and Sakr 2004] Gaafar, A., Sakr, S.: “Towards a framework for mapping be-
tween UML/OCL and XML/XQuery”; Proc. UML’04 (2004), 241-259.

[Heidenreich et al. 2008] Heidenreich, F., Wende, C., Demuth, B.: “A framework for
generating query language code from OCL invariants”; ECEASST, 9 (2008).

[Hussmann et al. 2000] Hussmann, H., Demuth, B., Finger, F.: “Modular architecture
for a toolset supporting OCL”; Proc. UML’00 (2000); 278-293.

[ISO 2006] Information Technology Document Schema Definition Languages (DSDL)
Part 3: Rule-based Validation Schematron. ISO/IEC 19757-3; ISO/EIC (2006).

[Klimek and Necasky 2012] Klimek, J., Necasky, M.: “Formal Evolution of XML
Schemas with Inheritance”; Proc, ICWS’12, IEEE (2012), 84-97.

[Maly et al. 2011] Maly, J., Mlynkova, I., Necasky, M.: “XML Data Transformations
as Schema Evolves”; Proc. ADBIS’11, Springer-Verlag, (2011), 375-388.

[Maly et al. 2012] Maly, J., Klimek, J., Necasky, M.: “eXolutio project”; (2012) http:
//exolutio.com .

[Mandel and Cengarle 1999] Mandel, L., Cengarle, M.: “On the expressive power of
OCL”; Proc. Formal Methods’99, Springer-Verlag (1999), 854-874.

[Miller and Mukerji 2003] Miller, J., Mukerji, J.: MDA Guide v. 1.0.1; Object Man-
agement Group (2003) http://omg.org/cgi-bin/doc?omg/03-06-01.

[Murata et al. 2005] Murata, M., Lee, D., Mani, M., Kawaguchi, K.: “Taxonomy of
XML Schema Languages using Formal Language Theory”; ACM Trans., 5, 4 (2005),
660-704.

[Necasky et al. 2012a] Necasky, M., Klimek, J., Maly, J., Mlynkov4, L.: “Evolution and
Change Management of XML-based Systems”; Journal of Systems and Software,
Elsevier, 85, 3 (2012), 683-707.

[Necasky et al. 2012b] Necasky, M., Mlynkova, I., Klimek, J., Maly, J.: “When con-
ceptual model meets grammar: A dual approach to XML data modeling”; Data &
Knowledge Engineering, Elsevier, 72 (2012), 1-30.

[OMG 2007] OMG: UML 2.1.2 Specification (2007) http://www.omg.org/spec/UML/
2.1.2/.

[OMG 2012] OMG: Object Constraint Language v 2.3.1 Specification. (2012) http:
//www.omg.org/spec/0CL/2.3.1/.

[Routledge et al. 2002] Routledge, N., Bird, L., Goodchild, A.: “UML and XML
Schema”; Proc. ADC’02, Australian Computer Society (2002), 157-166.

[Saxonica 2012] Saxonica: Saxon XSLT Processor 9.4 (2012) http://saxon.
sourceforge.net/.

Maly J., Necasky M.: Evaluation of OCL Expressions ... 365

[Sengupta et al. (2005)] Sengupta, S., Kanjilal, A., Bhattacharya, S.: “Automated
Translation of behavioral models using OCL and XML”, TENCON 2005 IEEE
Region 10 (2005), 1-6.

[TUD 2012] Technische Universitit Dresden: “Dresden OCL” (2012) http://www.
dresden-ocl.org.

[W3C 2010] W3C: XProc: An XML Pipeline Language (2010) http://w3.org/TR/
xproc/.

[W3C 2011] W3C: XML Path Language (XPath) 3.0, Working Draft 13 (2011) http:
//w3.org/TR/xpath-30/.

[W3C 2012a] W3C: XML Schema 1.1 (2012) http://w3.org/TR/xmlschema-1/.

[W3C 2012b] W3C: XQuery and XPath Data Model 3.0, Working Draft 13 (2012)
http://w3.org/TR/xpath-datamodel-30/.

[W3C 2012c] W3C: XSL Transformations (XSLT) Version 3.0, Working Draft 10
(2012) http://www.w3.org/TR/xs1t-30/.

[Wenfei and Jerome 2003] Wenfei, F., Jerome, S.: “Integrity Constraints for XML”;
Journal of Computer and System Sciences (JCSS); 66, 1 (2003), 254-291.

