
Automatic Authentication to Cloud-Based Services

Mircea Boris Vleju

(Christian Doppler Laboratory for Client-Centric Cloud Computing (CDCC)

Hagenberg im Mühlkreis, Austria

b.vleju@cdcc.faw.jku.at)

Abstract: We describe the concept of automatic authentication for cloud-based ser-
vices via the use of a client-centric solution for small and medium enterprises (SMEs).
In previous work we have introduced the Identity Management Machine (IdMM) which
is designed to handle the interaction between a client’s identity directory and various
cloud identity management systems. We now further refine this machine by describing
its interaction with various cloud authentication systems. The IdMM is designed to
aid SMEs in their adoption or migration to cloud-based services. The system allows
SMEs to store its confidential data on-premise, enhancing the client’s control over the
data. We further enhance the privacy related aspects of a client-to-cloud interaction via
the introduction of obfuscated and partially obfuscated identities which allow SMEs to
also choose the type of data being sent to a cloud service. Since the IdMM is a single
sign-on system capable of automatic authentication the risk of phishing or other social
engineering attacks is reduced as an individual user may not be aware of his or her
credentials for a given cloud service.

Key Words: Abstract State Machine, Automatic Authentication, Client Centric,
Cloud Computing, Identity Management, Small and Medium Enterprises

Category: D.2.10, F.1, H.4, H.5.3, K.6.5

1 Introduction

Our research within the Christian Doppler Laboratory for Client-Centric Cloud

Computing (CDCC) deals with the client-side aspects of identity management

in cloud computing [1]. The adoption of cloud-based services offers many ad-

vantages for small and medium enterprises. However, a cloud-based approach

also entails certain disadvantages. The authors of [Alpár et al. 2011], [Brunette

and Mogull 2009],[Cloud Security Alliance 2010] and [Schewe et al. 2011] outline

some of these disadvantages: loss of control, contracting issues, provider lock-in

and other security and privacy issues. Such issues imply an extra level of trust be-

tween a client and a cloud provider. With respect to identity management, a loss

of control implies that the client must trust the cloud provider with sometimes

critical or important identity information (such as credit card information). A

potential client would prefer such data to be stored on-premise and only be of-

fered to a service on demand. The vendor lock-in issue might be mitigated by the

[1] We define the term client as being a small or medium enterprise (SME) that con-
tracts and uses any cloud service. Similarly we refer to a user as an identity within the
SME using a cloud-based service.

Journal of Universal Computer Science, vol. 20, no. 3 (2014), 385-405
submitted: 24/3/13, accepted: 4/2/14, appeared: 1/3/14 J.UCS

adoption of services across multiple providers. In this scenario a problem arises

in maintaining identity data across the providers. Changing a client-side prop-

erty, such as the user’s address for example, entails changing this property on

each individual service (a time consuming task especially if the service provider

does not adopt open standards). Our research is focused on providing a client-

centric identity meta-system which allows a client to maintain a private identity

directory while offering individual users automatic authentication to cloud-based

services via a single sign-on, privacy enhanced service.

In [Vleju 2012a] we have introduced the Identity Management Machine

(IdMM) representing a client-centric, single sign-on tool for small and medium

enterprises that want to adopt or migrate to cloud-based services. This concept

has been further refined in [Vleju 2012b] where we described the architecture of

the IdMM. As mentioned in [Vleju 2012b], the IdMM is composed of six agents

[see Fig. 1]: the core agent (comprising the rules described in [Vleju 2012a]),

the client agent (managing the interaction with the client’s directory), the cloud

agent (used for the interaction with a cloud service), the user agent (handling the

interaction with a user), the protocol agent (used for protocol-based authentica-

tion) and the provisioning agent (managing user provisioning, password resets

and user de-provisioning). Apart from the core agent, each agent is defined by

further refinement of the abstract functions presented in [Vleju 2012a]. This pro-

cess is still an ongoing task, with the provisioning and protocol agents still left

at an abstract level. In [Vleju 2012c] we have described the IdMMClient agent by

further refinement of the client-side abstract functions. We also gave an example

of the IdMMClient’s interaction with an ApacheDS LDAP directory.

Figure 1: IdMM Architecture

386 Vleju M.B.: Automatic Authentication to Cloud-Based Services

The purpose of this paper is to introduce the rules relating to the cloud and

user agents of the IdMM. With these agents specified we can then exemplify the

IdMM’s automatic authentication capabilities. Since this process is dependent

on the specification of the IdMMCore and IdMMClient agents we will first describe

these two agents. In [Section 3] we describe the main concepts of the Identity

Management Machine. [Section 4] and [Section 5] describe the IdMMCore and

IdMMClient agents. More information about the key concepts and these two

agents can be found in [Vleju 2012a;b;c]. The IdMMCloud agent is described in

[Section 6] with the IdMMUser agent described in [Section 7]. Finally, we describe

a proof of concept implementation in [Section 8] and outline our conclusions and

further work on the topic in [Section 9].

2 Related Work

As mentioned in [Vleju 2012a] there have been several attempts to define a

client-centric approach to identity management. The authors of [Ahn et al. 2009]

describe a privacy enhanced user-centric identity management system allowing

users to select their credentials when responding to authentication requests. It in-

troduces "a category-based privacy preference management for user-centric iden-

tity management" using a CardSpace compatible selector for Java and extended

privacy utility functions for P3PLite and PREP languages. The advantage of

such a system is that it allows users to select the specific attributes that will

eventually be sent to a relying party. Such a system works well for enhancing

privacy, however it fails to address the extra overhead inflicted on the user. As

[Schechter et al. 2007] shows a typical user would tend to ignore obvious security

and privacy indicators. For composite services, the authors of [Zhang and Chen

2010] describe a universal identity management model focused on anonymous

credentials. The model "provides the delegation of anonymous credentials and

combines identity meta-system to support easy-to-use, consistent experience and

transparent security".

From a client-centric perspective, Microsoft introduced an identity manage-

ment framework (CardSpace) aimed at reducing the reliance on passwords for

Internet user authentication while improving the privacy of information. The

identity meta-system, introduced with Windows Vista and Internet Explorer 7,

makes use of an "open" XML based framework allowing portability to other

browsers via customized plugins. However CardSpace does suffer from some

known privacy and security issues, mentioned in [Alrodhan and Mitchell 2007,

Oppliger et al. 2007]. The concept of a client-centric identity meta-system is

thoroughly defined in [Cameron et al. 2008]. The framework proposed here is

used for the protection of privacy and the avoidance of unnecessary propagation

of identity information while at the same time facilitating exchange of specific

387Vleju M.B.: Automatic Authentication to Cloud-Based Services

information needed by Internet systems to personalize and control access to ser-

vices. By defining abstract services the framework facilitates the interoperation

of the different meta-system components.

Passwords managers can, in our opinion, reside within the topic of automatic

authentication for individual users. Projects such as KeePass [2] and LastPass [3]

do offer some similar functionalities to the IdMM. However both fall short in two

key criteria: neither is truly automatic (since some input is required by the user

upon authentication to a service) and while both work well with individual users

they cannot or should not be used by SMEs (since Keepass is designed to be

user-centric and LastPass does not offer a client control over where the data is

stored).

3 The Identity Management Machine

Identity Management Machine (IdMM), first presented in [Vleju 2012a], is a

privacy enhanced client-centric identity meta-system based on the concept of

abstract state machines [Börger and Stärk 2003]. The system provides a ’proxy’

between the client and cloud-based identity management solutions, ’translating’

the protocols used by the client to manage identities to a set of protocols used

by cloud providers. The IdMM can then authenticate a user to a given cloud

service as well as manage any private identity-related data stored on the cloud.

3.1 Interaction Scenarios

The IdMM makes an abstraction of the protocols used by both the client and

cloud provider for their identity management systems via the use of the abstract

functions presented in paper [Vleju 2012a]. Such functions leave the organiza-

tional and implementation aspects of the identity management systems directly

into the hands of the end parties. To describe these functions we must first

consider the interaction between a client and a cloud provider with respect to

identity management, authentication and authorization. We consider three dis-

tinct cases of client-to-cloud interaction: the direct case, the obfuscated case and

the protocol based case.

3.1.1 Direct Client-to-Cloud Interaction

As showed by the authors of [Alpár et al. 2011], [Brunette and Mogull 2009]

and [Dhamija and Dusseault 2008] one of the greatest issues surrounding iden-

tity management for cloud providers is the need of the cloud provider to control

[2] http://www.keepass.info/
[3] http://www.lastpass.com/

388 Vleju M.B.: Automatic Authentication to Cloud-Based Services

the customer experience. Many providers make use of their own custom designed

identity systems to which a client must subscribe. This means that the client has

no choice but to use the cloud provider’s identity system. While this may be an

inconvenience from a privacy point of view, the real problem lies in managing the

client’s information across multiple providers. A simple change, such as changing

a user’s address, entails changing the value on every single provider the client

uses. To combat this problem we view the interaction between the client and

a cloud service as a one-to-many mapping. Any change made on the client-side

must also be made on the cloud via the synchronization of attributes. Concur-

rently, any changes made by the provider (such as the addition, replacement or

removal of an attribute) must be reflected in the client’s directory system.

3.1.2 Obfuscated Client-to-Cloud Interaction

While the direct client-to-cloud interaction allows for an efficient use of cloud

services it does suffer from a lack of privacy. Since all information about a client

is stored on the provider’s infrastructure there is an increased risk that through

data leakage or unauthorized access that information could be fall into the wrong

hands. We mitigate this threat by introducing the concept of obfuscated identi-

ties [4].

We consider an identity as being a real identity if the information contained

corresponds to the identity’s owner and is visible to any external entity (as

opposed to the other scenarios where the raw information may be obfuscated to

an external entity). Such identities can be used, for example, in on-line stores,

where the provider needs to have real information to work with. In such cases

the provider needs to know the full name of the user, the address and possibly

credit card data. Using any kind of obfuscation in such a case could impede the

provider from handling the order request.

As opposed to a real identity, an obfuscated identity has its information ob-

fuscated. Depending on the method of obfuscation (some methods are presented

in [Bakken et al. 2004]) the information is either undecipherable or can only be

deciphered by the owner of the identity. Any free file storage service can be used

as an example where obfuscated identities are recommended. In such services,

the provider does not need to know the user’s full name, height or address.

Therefore such obfuscated identities can be successfully used. If the obfuscation

method makes the information undecipherable, then the corresponding identity

can be viewed as anonymous (as described by the authors of [Zhang and Chen

2010]).

A third kind of identity considered is the partially obfuscated identity. The

information contained by such identities is a mix of real/visible attributes as well

[4] For the purpose of this paper we consider the definition of an identity as explained
in [The Open Group Identity Management Work Area 2004]

389Vleju M.B.: Automatic Authentication to Cloud-Based Services

as obfuscated ones. If we extend the file storage example by adding the condition

that any user must be over 18 years old in order to use the service then the age

of the user must not be obfuscated. As such, while the rest of the information

can remain obfuscated, the age will contain real user data.

The usage of obfuscated and partially obfuscated identities is dependent on

the cloud service. As mentioned, some services do require real identities. Even

if the service can be used with obfuscated identities we leave the matter in the

hands of the client. The client can choose whether or not to use obfuscation in

such cases. For partially obfuscated identities we also allow the client to choose

what real data attributes are sent to a service.

3.1.3 Protocol-Based Client-to-Cloud Interaction

In recent years there has been a drive to improve interoperability between cloud

providers mostly to prevent vendor lock-in. From an identity management per-

spective the result has been the adoption of some open-based protocols to facili-

tate both cloud interoperability as well as identity access management. Protocols

such as OpenID or OpenAuth represent an important tool for a client-centric

identity management system. They allow the provider to focus on the require-

ments of the service while allowing access via the standard implementation of

these protocols. From the client’s perspective, such protocols allow for an easier

integration across multiple cloud providers. It must be noted however that such

protocols do suffer from a variety of security and privacy issues, as described in

[Dhamija and Dusseault 2008] and [Prodromou 2007].

3.2 Architecture

The IdMM represents a client-centric tool used for authentication, authorization

and, when needed, attributes synchronization to cloud services. Our research

thus far has focused only on the authentication and attributes synchronization

part with the authorization planned as future work. The rules for the automatic

authentication are described in [Vleju 2012a]. To describe these rules we make

use of abstract functions. These functions can be divided into four categories:

client-side functions, cloud-based functions, system functions and user-based

functions [see Fig. 2]. From these functions we can derive the general architecture

of the system [see Fig. 1]. The system is composed of seven agents: IdMMCore,

IdMMClient, IdMMCloud, IdMMUser, IdMMProtocol and IdMMProvisioning. Apart

from the IdMMProtocol and IdMMProvisioning agents which we will detail each

agent in the following sections. The full specification of the protocol and provi-

sioning agents is still an ongoing task.

390 Vleju M.B.: Automatic Authentication to Cloud-Based Services

Figure 2: Abstract Functions

3.3 Notational Conventions

For a quick reference we list here some frequently used notations, in particular

for list operations:

T ∗ denotes a list of elements of type T .

[e1, . . . , en] denotes a list containing the elements e1, . . . , en.

[] denotes an empty list. length(l) returns the number of elements in the list

l.

l1 · l2 denotes the concatenation of the lists l1 and l2.

e ∈ l denotes that the list l contains the element e.

e /∈ l denotes that the list l does not contain the element e.

l1 ⊂ l2 denotes that all the elements in l1 exist in l2.

split(l, n) splits off the last n elements from the list l returning a pair (l′, n′)

such that l′ · n′ = l ∧ length(n′) = n.

l1 − l2 removes from l1 any elements that exist in both l1 and l2.

random(l) returns a random element from the list l.

4 The IdMMCore Agent

The core agent for our client-centric solution is described in [Vleju 2012a]. The re-

sulting ASM has 9 states [see Fig. 3]. The initial state of the IdMM is UserLogin.

While in this state the user is prompted to input his or her credentials and is

subsequently authenticated to the machine (if the user cannot be authenticated

the machine halts with the appropriate error). Upon a successful authentication

the machine then waits for further input from the user. This input is represented

by one of three events: a user logout request, a service authentication request

or a service de-authentication request. Upon a user logout request the state is

set to UserLogout. This will log the user out of the machine set the state to

UserLogoutService which then logs the user out of every single service he or she

was connected to and halts the execution of the machine. The termination of

391Vleju M.B.: Automatic Authentication to Cloud-Based Services

the machine occurs in the Halt state. If an error exists the appropriate message

will be displayed to the user.

Figure 3: IdMM Flow

When the user wants to use a specific service he or she will specify the ser-

vice’s URI. The event triggered by this action will set the state to ServiceLogin.

In the ServiceLogin state the machine attempts to find the matching service

given the URI. If no services can be found an error message is triggered. If a

service is found the state will be set to AuthorizeLogin. In case the user is already

connected to the service he or she will be redirected to the given URI. The au-

thorization is done by the AuthorizeLogin state. If the user has the appropriate

access rights the state is set to PerformLogin where the machine checks the type

of identity required and sets the state to PerformObfuscatedLogin. If the ser-

vice supports protocol-based authentication then PerformObfuscatedLogin will

switch to PerformProtocolLogin, which will perform the authentication based on

a given protocol. In case the service does not support protocol-based authenti-

cation the machine will perform the authentication with the given identity. The

machine switches to the ServiceLogout state when a log-out event is triggered. In

this state the IdMM searches for the matching service and performs the log-out.

To describe the rules of the IdMM we have introduced several types and

data structures [see Fig. 4]. We defined the type Access which will later be used

for access control. Since the addition of access control management is planned

as future work the values supported by the type are not yet relevant. To iden-

tify whether an identity is real, obfuscated or partially obfuscated we use the

392 Vleju M.B.: Automatic Authentication to Cloud-Based Services

type IdentityType. The data structure Attr is a name-value pair representing an

attribute. To describe a protocol we use the data structure Protocol. The data

structure User is used to store any information about an identity (unique id, the

attributes, the type of the identity and an access control list for each service).

Similarly, the data structure Service is used for storing information regarding

services. Any service has a unique URI, an access control list and a marker to

identify the type of identities it supports. We surmise that each cloud service

has an authentication service. Since the authentication service is a cloud-based

service itself we include it as being part of the data structure Service. A service

is considered as being an authentication service if the value of authService is ∅.

The lists attrs and authAttrs represent the names of the attributes and authen-

tication attributes used by the service. This list will be used as a parameter in

the functions getServiceAttrs and getAuthAttrs [see Fig. 2]. If an authentication

service supports standard protocols then these protocols are stored in the list

protocols.

type Access = NoAccess | Read | Write | Execute
type IdentityType = Real | Partial | Obfuscated

data Attr = (name, value)
name ∈ String , value ∈ String | R | Attr | Attr∗

data Protocol = (name, protocolAttrs) ,
name ∈ String , protocolAttrs ∈ String∗

data Service = (uri, attrs, acl, authService, authAttr, idType, protocols)
uri ∈ String , attrs ∈ String∗ , acl ∈ Access∗ ,
authService ∈ Service | ∅ , authAttr ∈ String∗ | [] ,
idType ∈ IdentityType , protocols ∈ Protocol∗

data User = (id, attrs, sacl, idType) ,
id ∈ String , attrs ∈ Attr∗ , sacl ∈ Map (Service, Access∗) ,
idType ∈ IdentityType

Figure 4: IdMM Types and Data Structures

As previously stated we make use of abstract functions to describe the IdMM

[see Fig. 2]. The client-side functions, cloud-based functions and user-based func-

tions will be further refined by describing the IdMMClient, IdMMCloud, IdMMUser

and IdMMProtocol agents. To ease this process we keep the underlying communi-

cation layers abstract [5]. The system functions include two important functions

which we must detail: random and setUserAttr. In order to handle an obfuscated

identity we use the function users to select a list of the obfuscated identities con-

tained in the client’s directory. We would then choose a random identity from

this list and use it to authenticate to the required cloud service. At present we

[5] In [Vleju 2013] for example, we have included the IdMMClient agent as part of a
Tomcat server. The communication with the IdMMCore agent is done via the Google
Web Toolkit RPC framework.

393Vleju M.B.: Automatic Authentication to Cloud-Based Services

propose that the function random should be restricted to only this requirement.

More research can be conducted in this topic to further enhance privacy. For

instance, we might choose not to include identities that have been previously

been used with the give service.

If the service requires a partially obfuscated identity we use the function

setUserAttr to replace some of the obfuscated values in the identity with real

values that correspond to the current user [see Fig. 5] [6]. To achieve this we

assume that the result of the function getServiceAttrs will contain an attribute

named "RequiredUserAttrs". The value of this attribute will be a list representing

the names of the real attributes that must be inserted.

Boolean setUserAttr (User obf , S e rv i c e s , User current)=
l e t r e s u l t = fa l se
let a t t r s = getServiceAttrs (s , current)
l e t r e qu i r edAt t r s = getAttribute (’ RequiredUserAttrs ’ , a t t r s , s . u r i)
i f r e qu i r edAt t r s 6= ∅ and

r e qu i r edAt t r s . va lue ∈ String∗ then
r e s u l t :=true
fo ra l l attrName∈ r e qu i r edAt t r s . va lue do

let attr_current = ge tAt t r i bu t e (attrName , a t t r s , s . u r i)
l e t attr_obf = ge tAt t r i bu t e (attrName , obf . a t t r s , s . u r i)
i f attr_current 6= ∅ and attr_obf 6= ∅ then
attr_obf . va lue := attr_current . va lue

else
r e s u l t := fa l se

return r e s u l t ;

Figure 5: System Function setUserAttr

5 The IdMMClient Agent

The refinement of the client-side functions is described in [Vleju 2012c]. To allow

a seamless adoption of the IdMM by a potential client we make an abstraction

with respect to the client’s directory. The refinement of the client-side functions

yielded an interface (client interaction interface) of 20 directory dependent func-

tions [see Fig. 6]. Each one of these functions depends on the type and the proto-

cols used by the client’s directory. For example, if the client uses an LDAP-based

directory than the implementation of the client interaction interface must con-

tain a minimum implementation of the LDAP protocol such that the IdMMClient

agent can interact with the directory.

In addition to the client interaction interface the refinement of the client-side

functions also yielded a list of parameters for each of the submachines. These

[6] The function getAttribute is described in [Vleju 2012c]. It returns an attribute given
its name from a list provided as parameter. If no attribute is found the function returns
∅

394 Vleju M.B.: Automatic Authentication to Cloud-Based Services

parameters will include information about the client’s directory (location, au-

thentication mechanism, credentials) as well as information about the structure

of the client’s directory [see Fig. 6]. In [Vleju 2012c] we illustrated how to imple-

ment a client interaction interface for an ApacheDS server. We used the Novell

LDAP Classes for Java API to facilitate the interaction with the ApacheDS

server. The parameters were stored in an XML file. In [Vleju 2013] we switched

from an XML file to a .properties file.

The IdMMClient agent is responsible with the interaction with the client’s

directory service. Its purpose is to retrieve any relevant information from the

directory service and convert it to the IdMM’s data structures. To achieve this

we further refined the client-side functions presented in [Fig. 2]. Apart for the

getAuthAttrs function, the refinement involves introducing a new submachine

for each client-side function.

Figure 6: Client-Side Functions Refinement

6 The IdMMCloud Agent

The IdMMCloud agent is responsible with the interaction with any cloud service.

Its purpose is to authenticate/de-authenticate the user to/from a given service

and to perform attribute synchronization [see Section 3.1.1]. To achieve this goal

the cloud-based functions presented in [Fig. 2] must be further refined.

The function performLogin authenticates the user to a given cloud ser-

vice using the direct and obfuscated scenarios [see Section 3.1]. The function

performLogout de-authenticates the user from the given cloud service. Attribute

synchronization is done via the function syncServiceAttr. To refine these func-

tions we introduce the IdMMCloud submachine.

If the service supports any protocol based authentication we use the function

performProtocolLogin for authentication and performProtocolLogout for de-

395Vleju M.B.: Automatic Authentication to Cloud-Based Services

authentication. For the purpose of this paper we only describe the authentication

in the direct and obfuscated cases. The refinement of the performProtocolLogin

and performProtocolLogout functions entails further research into the specifica-

tion of open-based authentication and authorization protocols. The first step

in the refinement of these functions is to allow the IdMM to authenticate a

user using an external identity provider, regardless of the protocol. Once this

step is complete we intend to further refine the functions by specifying the

IdMMProtocol agent. We intend to have this agent act as an identity provider

itself thus eliminating some of the privacy issues related with utilizing external

identity providers.

6.1 Types and Data Structures

Apart from the types and data structures presented in the papers [Vleju 2012a;c]

we introduce the type Method which will allow us to identify the method being

used and the data structure CloudService [see Fig. 7]. A CloudService data type

retains any pertinent information about the cloud service. This includes the

service’s URI, the names of the attributes required to use the service and the

list of attributes used by the service.

type Method = Login | Logout | Sync

data CloudService = (uri, requiredAttrs, attrs)
ur i∈ Str ing ,
a t t r s∈ Attr ∗
r e qu i r edAt t r s∈ St r i ng∗

Figure 7: IdMMCloud Types and Data Structures

6.2 A Plugin-Based System

In [Section 5] we described the communication between the IdMMClient and the

client’s directory by reducing it to a client interaction interface whose imple-

mentation is dependent of the type of the directory used by the client. The

description of the interaction with the cloud follows a similar direction. Since

the direct and obfuscated interaction scenarios entail the usage of the cloud

provider’s authentication system we must make an abstraction of this system.

As such the refinement of the cloud-based functions will also yield an interface

of abstract functions.

In order for the IdMMCloud to authenticate/de-authenticate a user from a

cloud service a suitable service-dependent implementation must be provided. As

such we describe the interface of abstract functions as a CloudPlugin [see Fig. 8].

396 Vleju M.B.: Automatic Authentication to Cloud-Based Services

We define the function plugins() which returns all the cloud plugins currently

existing in the IdMMCloud agent’s scope. We will now detail each of the functions

presented in [Fig. 8].

type CloudPlugin = (id , gener i c , ge tSyncServ ice s , makeAPIAuthentication ,
makeAPIDeAuthentication , makeAPISync , mapClientAttrsToCloud ,
matchService , parseAuthParameters , parseGener i cAuthent i cat ion ,
parseGenericDeAuthenticat ion , parseGenericSync , requestAuthParameters ,
requestGener i cAuthent i cat ion , requestGener icDeAuthent i cat ion ,
requestGenericSync , uriAuth , uriDeAuth
where

id ∈ String , generic ∈ Boolean , CloudService∗ getSyncServices() ,
Boolean makeAPIAuthentication(Service s , Attr ∗ attrs) ,
Boolean makeAPIDeAuthentication(String uri) ,
Boolean makeAPISync(CloudService s) ,
Attr∗ mapClientAttrsToCloud(Attr∗ attrs , Methodm) ,
Boolean matchService(Service s) ,
Service parseAuthParameters(Object response) ,
Boolean parseGenericAuthentication(Object response) ,
Boolean parseGenericDeAuthentication(Object response) ,
Boolean parseGenericSync(Object response) ,
Object requestAuthParameters(String uri) ,
Object requestGenericAuthentication(CloudService s) ,
Object requestGenericDeAuthentication(String uri) ,
Object requestGenericSync(CloudService s) ,
uriAuth ∈ String , uriDeAuth ∈ String

Figure 8: CloudPlugin Interface

6.2.1 CloudPlugin Information

The type CloudPlugin has several fields which provide some information about

the type of the plugin. The field id represents the unique identifier for the plugin.

The field generic is false if the service corresponding to this plugin offers its own

custom API for authentication. The fields uriAuth and uriDeAuth represent the

entry point URIs for authentication and de-authentication processes.

To identify the correct plugin for a given service the function matchService

is used. It returns true if the plugin can be used in conjunction with the service

or false otherwise.

6.2.2 Mapping Directory Attributes to Cloud Attributes

Since the IdMM makes an abstraction with respect to the structure and mech-

anisms of both the client’s directory and the cloud service there has to be a

mapping between the attributes stored in client’s directory and the ones used by

the cloud service. This mapping is done via the mapClientAttrsToCloud func-

tion. The function takes a list of attributes representing the values from the

client’s directory and renames them so the values correspond to the required

cloud-based names.

397Vleju M.B.: Automatic Authentication to Cloud-Based Services

In [Vleju 2013] we used a special attribute called ’map’ to store the mappings.

Each call of the getServiceAttrs or the getAuthAttrs function would include such

an attribute. The value of the map attribute is a list of attributes where the

name corresponds to the cloud service attribute name and the value represents

the name used in the directory. For example, if getServiceAttrs would return the

following list:

[(′username′,′ j.smith′) · (′password′,′ 12345′)
·(′map′, [(′user′,′ username′) · (′pass′,′ password′)])]

then the result of the mapClientAttrsToCloud function applied to this list should

be:

[(′user′,′ j.smith′) · (′pass′,′ 12345′)]

6.2.3 Authenticating to a Service

There are two means of authenticating to a cloud service. If the service has

its own API implemented the function makeAPIAuthentication is used. This

function returns true or false depending on whether the authentication was suc-

cessful. If the service does not have an API implemented then a generic one

must be provided. We use the functions requestAuthParameters and parseAuth-

Parameters to obtain the necessary information required for authentication. To

make the actual authentication we use the functions requestGenericAuthentica-

tion and parseGenericAuthentication, the latter of which will return true if the

authentication was successful.

6.2.4 De-Authentication from a Service

As with the authentication process there are two ways of performing a de-

authentication. If the service has a custom API implemented we use the func-

tion makeAPIDeAuthentication. Otherwise we use the functions requestGener-

icDeAuthentication and parseGenericDeAuthentication. As before the function

parseGenericDeAuthentication will return true if the de-authentication was suc-

cessful.

6.2.5 Synchronizing Service Attributes

Attribute synchronization is needed when the value of an attribute changes in

the client’s directory. To synchronize service attributes we first use the function

getSyncServices to retrieve all the synchronization endpoints for a particular

service. Afterwards we make the actual synchronization using the makeAPISync

function if the service has an API or the requestGenericSync and parseGeneric-

Sync functions otherwise. The function syncServiceAttr returns true if all syn-

chronizations succeeded.

398 Vleju M.B.: Automatic Authentication to Cloud-Based Services

6.3 Dynamic Frame and States

The IdMMCloud submachine has 11 states [see Fig. 9]. The submachine’s dy-

namic frame is composed of: the current service, the eventual result that will

be returned, the list of attributes provided as parameters, the current method,

the CloudPlugin that will be used and a halt flag. The machine will halt its

execution when halt gets a defined value.

States Dynamic Frame
type State= DetermineType

| FindPlugin
| MakeAPIAuth | MakeAPIDeAuth
| MakeAPISync | MakeGenericSync
| MakeGenericAuth | MakeGenericDeAuth
| PerformLogin | PerformLogout
| SyncServ iceAttrs

s e r v i c e∈Se rv i c e
r e s u l t∈Boolean
a t t r s∈Attr∗
s t a t e∈Sta t e s
ha l t∈St r i ng
method∈Method
p lug in∈CloudPlugin

Figure 9: IdMMCloud Dynamic Frame and States

6.4 Rules

The rules for the IdMMCloud can be divided into three categories. The setup

rules [see Fig. 10] are used to initialize the machine. While in the PerformLogin,

PerformLogout, SyncServiceAttrs states the values for plugin and method are

set and the state is set to FindPlugin. The FindPlugin state is responsible for

finding the appropriate plugin for the given service. If a plugin is found the

machine switches to the DetermineType state where based on the method and

the value of the plugin’s generic field it determines the next state. The initial

state of the machine is determined by the function that started the machine [see

Fig. 11].

Authentication is handled while in the MakeAPIAuth or MakeGenericAuth

state [see Fig. 12]. The machine uses the plugin’s functions described in [Sec-

tion 6.2] and performs the authentication. In both cases the directory attributes

are mapped to the corresponding cloud values. Similarly the de-authentication

is done via the MakeAPIDeAuth or MakeGenericDeAuth state [see Fig. 12].

The synchronization is done while in the MakeGenericSync or MakeAPISync

state [see Fig. 13]. The machine retrieves all the synchronization endpoints, maps

the directory attributes to the cloud values and then performs the synchroniza-

tion for each endpoint.

399Vleju M.B.: Automatic Authentication to Cloud-Based Services

PerformLogin →
p lug in :=∅
method:=Login
s t a t e :=FindPlugin

PerformLogout →
p lug in :=∅
method:=Logout
s t a t e :=FindPlugin

SyncServiceAttrs →
p lug in :=∅
method:=Sync
s t a t e :=FindPlugin

FindPlugin →
f o ra l l p ∈ plugins() do

i f p .matchService(s) then
p lug in :=p

i f p lug in=∅ then
ha l t := ’No p lug in found ’

else
s t a t e :=DetermineType

DetermineType →
i f p lug in . generic then

case method of
Login →

s t a t e :=MakeGenericAuth
Logout →

s t a t e :=MakeGenericDeAuth
Sync →

s t a t e :=MakeGenericSync
else

case method of
Login →

s t a t e :=MakeAPIAuth
Logout →

s t a t e :=MakeAPIDeAuth
Sync →

s t a t e :=MakeAPISync

Figure 10: IdMMCloud Setup Rules

Boolean performLogin(Services ,
Attr ∗ attributes)=

r e s u l t :=false
ha l t :=∅
s e r v i c e := s
a t t r s := a t t r i b u t e s
s t a t e :=PerformLogin
while ha l t=∅ do

f i r e IdMMCloud r u l e s
return r e s u l t

Boolean performLogout(Services)=
r e s u l t :=false
ha l t :=∅
s e r v i c e := s
s t a t e :=PerformLogout
while ha l t=∅ do

f i r e IdMMcloud r u l e s
return r e s u l t

Boolean syncServiceAttrs(Services , Attr ∗ attributes)=
r e s u l t :=false
ha l t :=∅
s e r v i c e := s
a t t r s := a t t r i b u t e s
s t a t e :=SyncServ iceAttrs
while ha l t=∅ do

f i r e IdMMcloud r u l e s
return r e s u l t

Other Functions
Plugin∗ plugins ()

Attr∗ extractAttributes(Attr∗ attributes , S t r i ng∗ toExtract)=
l e t r e s u l t = [] , r e s u l t∈Attr∗
f o ra l l name∈ toExtrac t do

let a t t r = findAttribute(name , a t t r i b u t e s)
i f a t t r 6= ∅ then

r e s u l t = r e s u l t · [a t t r]
return r e s u l t

Attr findAttribute(S t r i ng name , Attr∗ attributes)=
i f ∃a | a ∈ attrs ∧ a.name = name then

return a
else

return ∅

Figure 11: Cloud-Based Functions

400 Vleju M.B.: Automatic Authentication to Cloud-Based Services

MakeAPIAuth →
l e t a t t r i b u t e s = plug in .mapClientAttrsToCloud (a t t r s , method)
r e s u l t := p lug in .makeAPIAuthentication (s e rv i c e , a t t r i b u t e s)
ha l t := ’ halt ’

MakeGenericAuth →
l e t re sponse = plug in . requestAuthParameters (p lug in .uriAuth)
i f re sponse=∅ then

ha l t := ’No auth parameters found ’
else

let s = plug in . parseAuthParameters (re sponse)
l e t a t t r i b u t e s = plug in .mapClientAttrsToCloud(a t t r s , method)
s . a t t r s = [s . a t t r s] · [extractAttributes (a t t r i bu t e s , s . r e qu i r edAt t r s)]
re sponse :=plug in . requestGenericAuthentication (s)
i f re sponse=∅ then

ha l t := ’ Fai l ed to make authent i cat ion ’
else

r e s u l t := p lug in . parseGenericAuthentication (re sponse)
ha l t := ’ halt ’

MakeAPIDeAuth →
r e s u l t := p lug in .makeAPIDeAuthentication (p lug in .uriDeAuth)
ha l t := ’ halt ’

MakeGenericDeAuth →
l e t re sponse = plug in . requestGenericDeAuthentication (p lug in .uriDeAuth)
i f re sponse=∅ then

ha l t := ’Cannot make deauthent i cat ion ’
else

r e s u l t := p lug in . parseGenericDeAuthentication (re sponse)
ha l t := ’ halt ’

Figure 12: IdMMCloud Authentication and De-Authentication Rules

MakeGenericSync →
l e t s e r v i c e s = plug in . getSyncServices ()
l e t a t t r i b u t e s = plug in .mapClientAttrsToCloud (a t t r s , method)
f o ra l l s ∈ services do

s . a t t r s = [s . a t t r s] · [extractAttributes (a t t r i bu t e s , s . r e qu i r edAt t r s)]
l e t re sponse = plug in . requestGenericSync (s)
i f re sponse=∅ then

ha l t := ’ Fai l ed to sync ’
else

i f p lug in . parseGenericSync (re sponse)=false then
ha l t := ’ Fai l ed to sync ’

i f ha l t=∅ then
r e s u l t :=true
ha l t := ’ halt ’

MakeAPISync →
l e t s e r v i c e s = plug in . getSyncServices ()
l e t a t t r i b u t e s = plug in .mapClientAttrsToCloud (a t t r s , method)
f o ra l l s ∈ services do

s . a t t r s = [s . a t t r s] · [extractAttributes (a t t r i bu t e s , s . r e qu i r edAt t r s)]
i f p lug in .makeAPISync(s)=false then

ha l t := ’ Fai l ed to sync ’
i f ha l t=∅ then

r e s u l t :=true
ha l t := ’ halt ’

Figure 13: IdMMCloud Synchronization Rules

7 The IdMMUser Agent

The IdMMUser agent is responsible for the interaction with an individual user.

Its purpose is to handle inputs from the user and to display the appropriate mes-

401Vleju M.B.: Automatic Authentication to Cloud-Based Services

sages. This goal is achieved by implementing the user-based functions presented

in [Fig. 2]. Since the implementation of these functions is software-dependent

we opted to keep the functions abstract. In this section we will detail only the

specification of the functions and exemplify their implementation in our proof

of concept implementation presented in [Vleju 2013].

The function prompt is used to prompt the user into typing his or her cre-

dentials. The function returns a list of attributes representing the credentials. In

[Vleju 2013] the credentials are stored in the browser’s localStorage variable. The

user inputs the data as part of the extensions options. In this case there is no

user interaction upon calling the function as its implementation entails reading

the values from the localStorage.

The function error is used to notify the user of an error that occurred during

the authentication process. The function takes one parameter, the error mes-

sage, and displays this message to the user. In [Vleju 2013] the error message

is displayed using Chrome’s extension popup mechanism. Upon an error the ex-

tension icon is changed and the message will be displayed only when the user

clicks this icon.

The function redirect is used to redirect the user to a specific URI, specified

as a parameter. Since the implementation described in [Vleju 2013] is browser-

based the call of this function has two effects. If the user is already authenticated

to the service then the function will be void. If the user was authenticated by

the IdMM then the window’s URL will be set to the provided URL. This will

have the effect of reloading the page, since the URL does not change.

redirect(String uri)
error(String message)
Attr∗ prompt()

triggerLogoff() =
i n s t r :=UserLogout

triggerAuth(String uri) =
i n s t r :=ServiceLogin(uri)

triggerDeAuth(String uri) =
i n s t r :=ServiceLogout(uri)

Figure 14: User-Based Functions

When the user enters a URI the underlying event will call the function trig-

gerAuth [see Fig. 14]. This function simply changes the state of the IdMMCore

agent to ServiceLogin [7]. When the user wants to de-authenticate from a service

the underlying event will call the function triggerDeAuth. This function sets the

state of the IdMMCore agent to ServiceLogout. Similarly, the de-authentication

from the IdMM is done via the triggerLogoff function, which sets the state to

UserLogout.

[7] The IdMMCore agent fires IdMM rules until its dynamic frame variable halt gets a
defined value. As such changing the state to ServiceLogin has the effect of triggering
the ServiceLogin rule.

402 Vleju M.B.: Automatic Authentication to Cloud-Based Services

In [Vleju 2013] there are two events for triggering a service authentication.

One event monitors the creation of new pages: the user opens a new tab and

enters a URL. The second event monitors the page’s URL. If this value changes

then the service authentication is triggered. The functions triggerAuth and trig-

gerDeAuth are called synchronously. This is to ensure that an authentication or

de-authentication event is successfully completed. The de-authentication from

a service is done once every window used by the service is closed. The de-

authentication from the IdMM is done when the browser itself is closed. Since

the IdMMCore, IdMMCloud and IdMMUser agents are implemented as a Google

Chrome Extension the domain of single sign-on service is the browser itself. Mov-

ing the IdMMCore agent outside the browser (as a separate service, for example)

will switch the domain (to the user’s device).

8 Proof of Concept Implementation

The specification of the IdMMCore, IdMMClient, IdMMCloud and IdMMUser

agents allows for an automatic authentication tool for cloud-based services in

the direct and obfuscated interaction scenarios. Concurrently we have created

a proof of concept implementation, presented in [Vleju 2013], which follows the

architecture presented in [Fig. 1]. An on-line demo of the implementation can

be found at http://youtu.be/DoM36D0ydkA. The IdMM core, cloud and user

agents run in a Google Chrome browser as an extension. The implementation

was written in Java with Google Web Toolkit (GWT) being used for JavaScript

compilation. The IdMMClient agent runs separately on top of a Tomcat server. In

this case the communication between the IdMMCore agent and the IdMMClient

agent is done via the GWT RPC framework.

During the implementation phase we became aware that some web-based

applications do require the user to enter dynamically generated data for the

sole purpose of disallowing automated requests. Most often this is achieved via

captcha messages. As such we were forced to introduce a new user-based function,

String captcha(Object message), to allow the user to input captcha messages.

9 Conclusions and Further Work

The IdMM represents a single sign-on service that performs automatic authenti-

cation and authorization to cloud services. The IdMM is composed of six agents

(four of which are described above). The refinements of the IdMMCloud [see Sec-

tion 6] and the IdMMUser [see Section 7] agents allow the system to automatically

authenticate a user to cloud services. In [Section 8] we described a proof of con-

cept implementation of the IdMM. With the refinements presented in this paper

a user can be automatically authenticated to a service using either the direct or

obfuscated client-to-cloud interaction scenarios presented in [Section 3.1].

403Vleju M.B.: Automatic Authentication to Cloud-Based Services

Because of the single sign-on capability of the IdMM, an individual user

may not be aware of the credentials used to authenticate him or her to a cloud

service, thus mitigating the risk of phishing attacks. In addition, all identity

related data is stored on-premise allowing the client to have better control over

what information is sent to cloud services. This is further enhanced via the

introduction of obfuscated and partially obfuscated identities allowing a client

to connect to services without using (or partially using) the real identity-related

data.

To satisfy the requirements of the protocol-based interaction scenario the per-

formProtocolLogin and performProtocolLogout functions must also be refined.

This entails the introduction of the IdMMProtocol agent which will act as an

identity provider for a given protocol. With the successful introduction of the

IdMMProtocol agent we can then focus on the authorization and access manage-

ment part. We intend to study the existing identity access control solutions and

adapt them to our use cases.

Having completed the addition of access control mechanisms to the IdMM

we can then focus on introducing of the IdMMProvisioning agent. This agent will

allow for an easier management of the identities and access rights stored both on

the client as well as the cloud provider’s systems. The agent will be responsible

for the creation, modification and deletion of identities on the client’s directory

as well as account creation, synchronization and deletion on the necessary cloud

services. The system will also be responsible for periodical passwords resets on

cloud services. As a further step in enhancing the functionalities of the IdMM

we plan to introduce an auditing and logging system.

References

[Ahn et al. 2009] Ahn, G.-J., Ko, M., Shehab, M.: “Privacy-enhanced user-

centric identity management”; Communications, 2009. ICC ’09. IEEE Inter-

national Conference on; 1 –5; 2009.

[Alpár et al. 2011] Alpár, G., Hoepman, J.-H., Siljee, J.: “The identity cri-

sis. security, privacy and usability issues in identity management”; CoRR;

abs/1101.0427 (2011).

[Alrodhan and Mitchell 2007] Alrodhan, W., Mitchell, C.: “Addressing privacy

issues in cardspace”; Third International Symposium on Information Assur-

ance and Security, 2007. IAS 2007; 285 –291; 2007.

[Bakken et al. 2004] Bakken, D., Rarameswaran, R., Blough, D., Franz, A.,

Palmer, T.: “Data obfuscation: anonymity and desensitization of usable data

sets”; Security Privacy, IEEE; 2 (2004), 6, 34 – 41.

[Börger and Stärk 2003] Börger, E., Stärk, R.: Abstract State Machines: A

Method for High-Level System Design and Analysis; Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2003.

404 Vleju M.B.: Automatic Authentication to Cloud-Based Services

[Brunette and Mogull 2009] Brunette, G., Mogull, R.: “Security Guidance for

critical areas of focus in Cloud Computing V2. 1”; (2009).

[Cameron et al. 2008] Cameron, K., Posch, R., Rannenberg, K.: “Proposal for a

Common Identity Framework: A User-Centric Identity Metasystem”; (2008).

[Cloud Security Alliance 2010] Cloud Security Alliance: “Top threats to cloud

computing”; (2010).

[Dhamija and Dusseault 2008] Dhamija, R., Dusseault, L.: “The seven flaws of

identity management: Usability and security challenges”; Security Privacy,

IEEE; 6 (2008), 2, 24 –29.

[Oppliger et al. 2007] Oppliger, R., Gajek, S., Hauser, R.: “Security of mi-

crosoft’s identity metasystem and cardspace”; Communication in Distributed

Systems (KiVS), 2007 ITG-GI Conference; (2007), 1 –12.

[Prodromou 2007] Prodromou, E.: “Openid privacy concerns”; (2007).

[Schechter et al. 2007] Schechter, S., Dhamija, R., Ozment, A., Fischer, I.: “The

emperor’s new security indicators”; Security and Privacy, 2007. SP ’07. IEEE

Symposium on; 51 –65; 2007.

[Schewe et al. 2011] Schewe, K.-D., Bósa, K., Lampesberger, H., Ma, J., Rady,

M., Vleju, M. B.: “Challenges in cloud computing”; Scalable Computing: Prac-

tice and Experience; 12 (2011), 4, 385–390.

[The Open Group Identity Management Work Area 2004] The Open Group

Identity Management Work Area: “Identity management”; (2004).

[Vleju 2012a] Vleju, M. B.: “A client-centric asm-based approach to identity

management in cloud computing”; Advances in Conceptual Modeling; volume

7518 of Lecture Notes in Computer Science; 34–43; Springer Berlin Heidelberg,

2012a.

[Vleju 2012b] Vleju, M. B.: “A client-centric identity management tool for small

and medium enterprises using cloud services”; 4th Workshop on Software Ser-

vices; 15–19; Bled, Slovenia, 2012b.

[Vleju 2012c] Vleju, M. B.: “Interaction of the idmm with a client-side identity

management component”; Technical report; Christian Doppler Laboratory for

Client-Centric Cloud Computing (CDCC), Johannes Kepler University Linz;

Hagenberg, Austria (2012c).

[Vleju 2013] Vleju, M. B.: “A practical implementation of a client-centric iden-

tity management tool for cloud computing”; EUROCAST-Computer Aided

Systems Theory; Gran Canaria, Spain, 2013.

[Zhang and Chen 2010] Zhang, Y., Chen, J.-L.: “Universal identity management

model based on anonymous credentials”; Services Computing (SCC), 2010

IEEE International Conference on; 305 –312; 2010.

405Vleju M.B.: Automatic Authentication to Cloud-Based Services

