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Abstract: Linear cryptanalysis (LC), first introduced by Matsui, is one of the most
widely used techniques for judging the security of symmetric-key cryptosystems. Tradi-
tionally, LC is performed using computer programs that are based on some fundamental
probabilistic algorithms and lemmas, which have been validated using paper-and-pencil
proof methods. In order to raise the confidence level of LC results, we propose to for-
mally verify its foundational probabilistic algorithms and lemmas in the higher-order-
logic theorem prover HOL4. This kind of infrastructure would also facilitate reasoning
about LC properties within the HOL4 theorem prover. As a first step towards the
proposed direction, this paper presents the formalization of two foundations of LC,
which were initially proposed in Matsui’s seminal paper. Firstly, we formally verify
the Piling-up Lemma, which allows us to compute the probability of a block cipher’s
linear approximation, given the probabilities of linear approximations of its individual
modules. Secondly, we provide a formal probabilistic analysis of Matsui’s algorithm
for deciphering information about the unknown bits of a cipher key. In order to illus-
trate the practical effectiveness and utilization of our formalization, we formally reason
about a couple of LC properties.

Key Words: Formal Verification, Higher-order logic, Probability Theory, Cryptogra-
phy, Theorem Proving.
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1 Introduction

Encryption is now used ubiquitously in computer systems to prevent information

leakage and cyber crime. It was the requirement to keep unclassified information

secure on computing systems that led to the development and standardization

of the Data Encryption Standard (DES) – the first published digital encryption

algorithm–in 1977. Despite its widespread use in personal, commercial, govern-

ment, and banking sectors, the DES algorithm remained impervious to attack

for over a decade.

Security evaluation of DES and other encryption algorithms falls in a sub-

branch of cryptology called cryptanalysis [Stamp and Low, 2007], which focuses

on designing attacks that can reveal the strengths/weaknesses of a cryptographic

system. Linear cryptanalysis (LC) [Matsui, 1993] is one of the most power-

ful cryptanalysis tools presently used to gauge the security of symmetric-key

cryptosystems, see e.g., DES [Matsui, 1993], GOST [Shorin et al, 2001], Serpent

[Biham et al., 2001], AES [Daemen and Rijmen, 2002], Blowfish [Nakahara, 2007]
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and SMS4 [Zhang et al., 2008]. The most popular class of attacks on encryption

systems is called the known plaintext attack, in which the attacker has access

to a set of plaintexts (inputs) and their corresponding ciphertexts (encrypted

outputs). LC allows us to identify weaknesses of a cryptosystem by deciphering

some bits of the key from the available 〈plaintext, ciphertext〉 pairs in a reason-

able computational time. The process of LC can be broadly divided into three

main steps.

First, for each one of the cipher modules E of a given cipher, we obtain linear

relationships between the bits of the plaintext P , the ciphertext C, and the key

K as:

(
⊕

i∈a

Pi)⊕ (
⊕

j∈b

Cj) =
⊕

k∈c

Kk, (1)

where ⊕ denotes the Boolean Exclusive-OR (XOR) operator and the indices i, j

and k respectively denote fixed bit locations in the bit vectors a, b and c of P , C

and K, respectively. Ideally, Equation (1) must hold exactly with a probability

p = 1
2 in the case of a randomly given plaintext P and the corresponding ci-

phertext C. Thus, the fact that p 6= 1
2 implies that we have acquired an effective

linear approximation of E.

The second step is to obtain the probability associated with the linear ap-

proximation for the entire cipher, based on the probabilities of the linear ap-

proximations of all of its modules calculated by Equation (1), using Matsui’s

fundamental probabilistic property called the Piling-up Lemma [Matsui, 1993].

As the last step, the probabilities associated with the linear approximations

of the cipher are used, along with the known plaintext and ciphertext bits,

to decipher information about the unknown key bits using an algorithm pro-

posed by Matsui [Matsui, 1993], which will henceforth be referred to as the

Key-Deciphering algorithm in this paper.

LC is usually performed by implementing the above method using computer

programs. Despite the widespread usage of such software, they cannot ascertain

100% accurate LC results. Sources of error include the informal specifications

of the cipher to be analyzed and the fundamental LC algorithms. Similarly,

roundoff errors accumulated in the extensive LC computations using computer

arithmetics also contribute to discrepancies in the results. Due to the safety- and

security-critical natures of the underlying cryptosystems that are analyzed using

LC, such inaccuracies could ultimately lead to enormous computation costs in

ensuring the safety of national security and finances.

In order to overcome these accuracy limitations, we propose to use higher-

order-logic theorem proving [Gordon, 1989] for LC. Higher-order logic is a system

of deduction with a precise semantics and, due to its high expressiveness, can

be used to describe any mathematical relationship that can be modeled in a

closed form. Interactive theorem proving is the field of computer science and
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mathematical logic concerned with computer-based formal proof tools that re-

quire human assistance. We argue that the high expressibility of higher-order

logic can be leveraged to formalize the fundamental probabilistic principles of

LC. Such an infrastructure can hence be used to formally reason about LC prop-

erties of cryptosystems within the sound core of a theorem prover. Due to the

high expressibility of higher-order logic, the proposed approach is very flexible in

terms of analyzing a variety of cryptosystems and reasoning about their generic

security properties, while providing exact results due to the inherent soundness

of the underlying approach.

As a first step towards the proposed formal LC approach, we present the for-

mal verification of the Piling-up Lemma and the formal probabilistic analysis of

Matsui’s Key-Deciphering algorithm in this paper. In view of the fundamentally

important nature of the Piling-up Lemma and the Key-Deciphering algorithm in

diverse LC applications, our results serve as the stepping stone for higher-order-

logic theorem proving based LC research. The developed HOL4 proof script,

corresponding to the above mentioned formalization, is publicly available at

[Hasan, 2014].

In order to illustrate the practical effectiveness and utilization of our for-

malization, we use it to formally verify a couple of LC properties. In particular,

we prove that a cipher cannot be broken if the probability associated with the

linear approximation of any one of its submodules is exactly equal to one half

(Theorem 7 in this paper) and that the Matsui’s Key-Deciphering algorithm

almost always succeeds if the probability that the linear expression, given in

Equation (1), becomes very small (Theorem 8 in this paper) or the total number

of 〈plaintext, ciphertext〉 becomes very large (Theorem 9 in this paper).

The foremost requirement for the proposed formalization and verification,

and thus conducting formal LC, is to have access to the mathematical theories

of natural and real numbers, sets and probability in a higher-order-logic theorem

prover. The HOL4 system [Harrison et al., 2006], a higher-order-logic theorem

prover, comes with a very rich built-in library of mathematical theories including

the ones mentioned above and thus has been used for the present work.

The rest of the paper is organized as follows: Section 2 presents some related

work. Section 3 provides an overview of HOL probabilistic analysis related foun-

dations that we build upon for the proposed formalization of this paper. Then,

we present the formalization and verification of the Piling-Up Lemma and the

Key-Deciphering algorithm in Sections 4 and 5, respectively. This will be fol-

lowed by a few illustrative applications of our formally verified results in the

area of LC in Section 6. Finally, Section 7 concludes the paper.
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2 Related Work

Formal methods have been extensively used in cryptography, due to the dire need

of precise analysis in this safety-critical domain. Formal tools, such as Avispa

[Abadi and Cortier, 2006] and CryptoVerif [Blanchet and Pointcheval, 2006], can

automatically verify cryptographic protocols for specific parameters. A SAT-

based equivalence checking approach [Smith and Dill, 2008] for block ciphers

has been successfully used to verify many commonly-used block ciphers, such as

AES, DES, Blowfish and RC2. Similarly, the higher-order-logic theorem prover

HOL4 has been used to formally specify and verify a number of widely used

symmetric-key block ciphers, such as AES, MARS, Twofish, RC6, Serpent, IDEA

and TEA [Duan et al., 2005]. Most of the research in the domain of formal anal-

ysis of cryptosystems concentrates on the functional correctness properties, such

as checking that decryption and encryption are inverse functions. Our work is

distinct from prior research because we focus on formal analysis of security as-

pects, such as checking that the cipher is not be easy to break. At the same

time, our work can also be used to complement existing formalizations of vari-

ous ciphers. For example, we can directly use the HOL4 formalization of AES,

given in [Duan et al., 2005], to perform its formal LC using the infrastructure

presented in this paper.

The ability to reason about probabilistic properties in a higher-order logic

theorem prover holds the key to the proposed formal LC approach. Hurd’s PhD

thesis [Hurd, 2002] can be considered a pioneering work in this regard as it

presents a methodology for the formalization and verification of probabilistic al-

gorithms in the HOL4 theorem prover. Building upon Hurd’s formalization, most

of the commonly-used discrete [Hurd, 2002] and continuous [Hasan, 2008] ran-

dom variables have been formalized in higher-order logic and their correspond-

ing probabilistic [Hurd, 2002] and statistical [Hasan, 2008, Hasan et al., 2009a]

properties have been verified using theorem proving techniques. In this paper, we

use the above formalization infrastructure to develop a generic theorem proving

based LC framework, which, to the best of our knowledge, has thus far not been

presented in literature.

Affeldt et al.’s [Affeldt et al., 2007] work on the formalization of a game-

playing framework and formally verifying security properties is worth mentioning

here. The foundations of this work lie upon the formalization of a probabilistic

programming language in the Coq theorem prover. This infrastructure is then

used to formally verify some of the commonly used properties that are used to

verify game-based security proofs. Affeldt et al. also illustrated the effectiveness

of their formalization by verifying the PRP/PRF Switching Lemma. This ap-

proach, just like the proposed idea, is primarily based on formal probabilistic

reasoning. But our final objectives are quite distinct. The focus of Affeldt et

al.’s work is on the formalization of game-based security proofs. In contrast, our
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work is on the development of a formal reasoning framework that facilitates the

formal verification of LC related properties.

Probabilistic model checking [Baier et al., 2003, Rutten et al., 2004] is an-

other formal method that can be used for conducting precise probabilistic anal-

ysis. The main premise of this approach is to exhaustively verify the intended

probabilistic properties against a state-based mathematical model of a given

system. Besides the accuracy of the results, the most promising feature of prob-

abilistic model checking is the ability to perform the analysis automatically.

Probabilistic model checking has been used to assess security aspects of a few

cryptosystems [Steel, 2006, Misra and Saha, 2009]. However, this method is not

suitable for conducting cryptanalysis due to two inherent limitations: 1) Only

systems that can be expressed as probabilistic finite state machines can be an-

alyzed; 2) Probabilistic model checking often suffers from state-space explosion

and does not support the verification of generic mathematical expressions. Our

proposed higher-order-logic theorem proving based approach tends to overcome

these limitations and thus can handle formal LC, which is fundamentally based

on the mathematical expression of the Piling-up Lemma and the statistical prop-

erties of the Key-Deciphering algorithm.

3 Random Variables and their Properties in HOL4

A measure space is defined as a triple (Ω,Σ, µ) [Galambos, 1995], where Ω is a

set, called the sample space, Σ represents a σ-algebra of subsets of Ω and the

subsets are usually referred to as measurable sets, and µ is a measure with do-

main Σ. A probability space is a measure space (Ω,Σ,P) such that the measure,

referred to as the probability and denoted by P, of the sample space is 1.

Hurd [Hurd, 2002] formalized some measure theory in higher-order logic to

define a measure space as a pair (Σ,µ), whereas the sample space on which

this pair is defined is implicitly implied from the higher-order-logic definitions

to be equal to the universal set of the appropriate data-type. Building upon this

formalization, the probability space was then defined as a pair (E ,P), where the

domain of P is the set E , which is a set of subsets of infinite Boolean sequences

B
∞. Both P and E are defined using the Carathéodory’s extension theorem,

which ensures that E is a σ-algebra: closed under complements and countable

unions.

Now, a random variable, which is one of the core concepts in probabilistic

analysis, is fundamentally a probabilistic function and thus can be modeled in

higher-order logic as a deterministic function, which takes an argument of type

B
∞. These deterministic functions make random choices based on the result of

popping the topmost bit in the infinite Boolean sequence and may pop as many

random bits as they need for their computation. When the functions terminate,
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they return the result along with the remaining portion of the infinite Boolean

sequence to be used by other programs. Thus, a random variable which takes

a parameter of type α and ranges over values of type β can be represented in

HOL4 by a function of type:

F : α → B∞ → β ×B∞.

As an example, consider a Bernoulli random variable that returns 1 or 0 with

probability 1
2 in either case. It can be formalized in higher-order logic as follows:

⊢ ∀ s. bit s = if shd s then 1 else 0, stl s,

where the functions shd and stl are the sequence equivalents of the list opera-

tions ‘head’ and ‘tail’, respectively. The function bit accepts the infinite Boolean

sequence s and returns a pair. The first element of the returned pair is a random

number that is either 0 or 1, depending on the Boolean value of the top most

element of s, while the second element of the pair is the unused portion of the

infinite Boolean sequence, which in this case is the tail of the sequence.

Higher-order-logic functions for probabilistic algorithms can also be expressed

in the more general state-transforming monad, where the states are the infinite

Boolean sequences. The concept of Monads originates from the category theory,

but for expressing probabilistic programs no prior knowledge of category theory

is required. The monadic operator unit is used to lift values to the monad,

and the operator bind is the monadic analogue of function application. These

operators are formally defined as follows:

⊢ ∀ a s. unit a s = (a,s)

⊢ ∀ f g s. bind f g s = g (fst (f s)) (snd (f s)).

The HOL4 functions fst and snd return the first and second components of their

argument, which is a pair, respectively. All monad laws hold for this definition

and the notation allows us to write functions without explicitly mentioning the

sequence that is passed around, e.g.,

⊢ bit monad = bind sdest (λb. if b then unit 1 else unit 0)

represents function bit in monadic notation. Function sdest gives the head and

tail of a sequence as a pair (shd s,stl s) and (λx. fx) denotes the lambda-

abstraction function that maps its argument x to f(x).

Once random variables are formalized, we can use the formalized probability

theory infrastructure to reason about their probabilistic properties. For example,

the following Probability Mass Function (PMF) property can be verified for the

function bit using the HOL4 theorem prover.

⊢ P {s | fst (bit s) = 1} = 1
2 ,
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where {x|C(x)} represents a set of all x that satisfy the condition C in HOL4.

The measurability and independence of a probabilistic function are central

concepts in probability theory. A property indep, called strong function inde-

pendence, is introduced in [Hurd, 2002] such that if a function f preserves strong

function independence, then f will be both measurable and independent. It has

also been shown that a function is guaranteed to preserve strong function inde-

pendence if it accesses the infinite Boolean sequence using only the unit, bind

and sdest primitives [Hurd, 2002].

The above approach has been successfully used to formalize most of the

commonly-used random variables and verify them based on their corresponding

probability distribution properties. In this paper, we use the Bernoulli random

variable, which is verified using the following PMF relation [Hurd, 2002]:

Theorem 1: PMF of Bernoulli(p) Random Variable

⊢ ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | fst (bernoulli rv p s)} = p.

The function bernoulli rv [Hurd, 2002] for the Bernoulli(p) random variable

models an experiment with two outcomes, True and False, whereas p represents

the probability of obtaining True. It has been formalized in [Hurd, 2002] as

follows:

The above-mentioned formalization has also been used to formally model sta-

tistical properties, like expectation and variance [Hasan, 2008]. These properties

can also be used to formally verify the corresponding relationships for random

variables. For example, in this paper, we use the expectation and variance proper-

ties of the Binomial random variable, verified by mean of the following theorems

[Hasan, 2008]:

Theorem 2: Expectation of Binomial(m,p) Random Variable

⊢ ∀ m p. 0 ≤ p ∧ p ≤ 1

⇒ expec (λs. binomial rv m p s) = m p.

Theorem 3: Variance of Binomial(m,p) Random Variable

⊢ ∀ m p. 0 ≤ p ∧ p ≤ 1

⇒ variance (λs. binomial rv m p s) = m p (1 - p).

The HOL4 functions binomial rv, expec and variance above represent the

binomial random variable, expectation and variance, respectively. The Binomial

(m, p) random variable is formally modeled the sum of m Bernoulli(p) random

variables. This way, the proofs of Theorems 2 and 3 are primarily based on

the linearity of expectation and variance properties and the expectation and

variance properties of the Bernoulli(p) random variable, respectively. Further

details about their verification can be found in [Hasan, 2008].

Similarly, the main classical properties of expectation and variance have been

verified to hold for these formal definitions. Chebyshev’s inequality [Hasan, 2008]
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is one such property that can be used to reason about the tail distribution bounds

associated with the Key-Deciphering algorithm in this paper.

Theorem 4: Chebyshev’s Inequality

⊢ ∀ R a. (0 < a) ∧ (0 < variance R) ∧

(summable(λn. n P{s | fst (R s) = n})) ∧

(summable(λn. n2 P{s | fst (R s) = n}))

⇒ P {s | abs (fst (R s) - expec R) ≥ a} ≤ variance R

a2
.

In the above theorem, the predicate summable is True if the infinite summation of

its real sequence argument exists [Harrison, 1998], i.e., ∃x. lim
k→∞

∑k

n=0 f(n) = x.

Thus, the summable assumptions in the above theorem state that the theorem is

only valid for a random variable R with a well-defined expectation and variance.

The proof of Theorem 4 is quite lengthy and can be found in [Hasan, 2008]. It

is primarily based on the relationship between variance and standard deviation

and many probability axioms.

4 Formal Verification of the Piling-Up Lemma

Linear cryptanalysis (LC) essentially consists of deciphering a cryptosystem us-

ing some of its 〈plaintext, ciphertext〉 pairs and the probabilities associated with

the linear approximations of each of its modules. The probability pi that the

linear approximation of a single module i of a block cipher holds can be exhaus-

tively evaluated using Equation (1). But the process of evaluating the probability

associated with the linear approximation of the entire cipher is much more com-

plicated. The main challenge here is the computation complexity of the probabil-

ity term, which requires one to exhaust the possible combinations of plaintexts

and keys. Obviously, such a requirement is infeasible for modern ciphers which

employ large bit widths. Matsui [Matsui, 1993] proposed the Piling-up Lemma

as a solution to this problem.

Lemma 1: Let Xi (1 ≤ i ≤ n) be independent random variables whose values

are 0 with probability pi or 1 with probability 1 − pi. Then the probability that

X1 ⊕X2 ⊕ . . .⊕Xn = 0 is
1

2
+ 2n−1

n∏

i=1

ei (2)

where ei, usually termed as the probability bias, represents the amount by which

the probability pi deviates from 1
2 , i.e., pi =

1
2 + ei.

Assuming that the linear approximations of all the modules in a block cipher

are independent from one other, we can model them as the random variables Xi

above and then the probability of the linear approximation of the entire block
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cipher can be directly evaluated using Equation (2). Matsui analyzed the DES

cipher [Matsui, 1993] this way and since then it has become the de-facto method

for LC of symmetric key block ciphers.

In this paper, we formally verify the Piling-up Lemma in HOL4. As a first

step, we develop a higher-order-logic model of the XOR operation of a set of

independent random variables X1 ⊕X2 ⊕ . . .⊕Xn = 0. We formalize the XOR

operation for multiple Boolean variables as follows:

Definition 1: XOR operation for multiple Boolean Variables

⊢ xor list [] = F ∧

∀ h t. xor list (h::t) =

(h ∧ ¬(xor list t)) ∨ (¬h ∧ (xor list t)).

In the above definition, h::t denotes the list with head h and tail t. The function

xor list accepts a list of Boolean variables and recursively computes their XOR.

It is important to note here that the function xor list returns False (F ) for the

base case when its argument is an empty list [ ]. The reason behind this choice

is that the XOR operation of any value x with False always returns x and thus

it does not affect the output of the function xor list.

By looking at the behavior of the Xi’s in Lemma 1, it can be observed

that each one of them is essentially a Bernoulli random variable with success

probability equal to 1− pi. Therefore, we formalize these n random variables as

a list of Bernoulli random variables with distinct probabilities as follows:

Definition 2: Bernoulli Random Variable List

⊢ bernoulli rv list [] = [] ∧

∀ h t. bernoulli rv list (h::t) =

bernoulli rv h :: (bernoulli rv list t).

The function bernoulli rv list accepts a list of real numbers and returns a

corresponding list of Bernoulli random variables, such that the probability of

success for each one of these random variables is equal to the corresponding

real numbers from the input list. The function bernoulli rv above represents

the formal model of the Bernoulli random variable that returns a True with a

probability equal to its argument, as explained in Section 3.

Now we define a list of independent random variables, as all the Bernoulli

random variables in the Piling-up Lemma are independent.

Definition 3: Independent Random Variable List

⊢ indep rv list [] = unit [] ∧

∀ h t. indep rv list (h::t) =

bind h (λx. bind (indep rv list t)

(λy. unit (x::y))).
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The function indep rv list accepts a list of random variables and returns the

corresponding list of the same random variables such that the outcome of each

one of these random variables is independent of the outcomes of all the others.

This is done by recursively using the remaining portion of the infinite Boolean

sequence of each random variable to model its subsequent random variable in

the list using the monadic functions unit and bind. In other words, the value

for the first random variable in the input list would be evaluated using a certain

number, say n, of the top most bits of the initial infinite Boolean sequence

Bi. The next random variable in the input list would be then evaluated using

again a certain number, say m, of the remaining infinite Boolean sequence, i.e.,

Bi − Bi[1 − n] and so on and so forth. Thus, the infinite Boolean sequence bits

that are utilized for modeling a random variable are never utilized again, which

ensures the independence between the random variables.

Based on the above definitions, we are now in the position of formally ex-

pressing the XOR operation of a set of independent Bernoulli random variables

that is used in the Piling-up Lemma as follows

Definition 4: Piling-Up

⊢ ∀ P. piling up P = bind

(indep rv list (bernoulli rv list P))

(λx. unit (xor list x)).

The function piling up accepts a list of real numbers P that represents the

probabilities of successes for Bernoulli random variables. It returns a Boolean

type random variable that corresponds to the XOR operation between all the

Bernoulli random variables with the given probabilities in the input list. The

function bernoulli rv list, given in Definition 2, is used to construct a list of

Bernoulli random variables, whereas each one of the Bernoulli random variables

models a Bernoulli experiment with success probability equal to a distinct ele-

ment of the input list of real numbers P . The function indep rv list, given in

Definition 3, then transforms this list of Bernoulli random variables to a list of

independent Bernoulli random variables. Finally, the function xor list, given in

Definition 1, evaluates the XOR of all the elements of the independent Bernoulli

random variables in the list returned from the function indep rv list. It is im-

portant to note that the final output of the function piling up is a pair with the

first element equal to the result of the above-mentioned XOR operation and the

second element equal to the remaining portion of the infinite Boolean sequence,

which is consistent with the formal modeling of randomized functions approach

outlined in Section 3. The usage of infinite Boolean sequence is implicit since

monadic operators are used.

Definition 4 can now be used to formally express the Piling-up Lemma state-

ment, given in Lemma 1, as the following higher-order-logic theorem:
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Theorem 5: Piling-Up Lemma

⊢ ∀P. (2≤LENGTH P)∧(∀e.mem e P ⇒ (-1/2 ≤ e) ∧ (e≤1/2))

⇒ (P {s | fst (piling up (prob list P) s) = F} =

1/2 + (2length(P)−1) list mul P).

The theorem is universally quantified over a list of real numbers P , which rep-

resents the list of probability biases for all of the Bernoulli random variables in

the Piling-up Lemma. The function prob list, used in Theorem 5, recursively

converts the list of probability biases to their corresponding success probabilities

for the Bernoulli random variables:

Definition 5: Probability Bias to Success Probability Conversion

⊢ prob list [] = [] ∧

∀ h t. prob list (h::t) = (1 - (1/2 + h))::(prob list t).

The function list mul, used in Theorem 5, recursively models the multiplication

of a list of real numbers as follows:

Definition 6: Product of a list of Real Numbers

⊢ list mul [] = 1 ∧

∀ h t. list mul (h::t) = h * (list mul t).

The first assumption in Theorem 5 ensures that there are at least two elements

in the probability bias list as the HOL4 function length, defined below, returns

the length of its argument list.

Definition 7: Length of a list

⊢ length [] = F ∧

∀ h t. length (h::t) = length t + 1).

This minimum constraints has been placed because the XOR operation is only

defined for two or more elements. The second assumption of Theorem 5 ensures

that each member of the input list P , or the probability bias, lies in the interval

[− 1
2 ,

1
2 ] using another list function mem, which returns a True if its first argument

is an element of the list that is given as its second argument as follows:

Definition 8: Member of a list

⊢ ∀ x. mem x [] = F ∧

∀ x h t. mem x (h::t) = (x = h) ∨ mem x t).

This constraint is imposed in order to keep the probability terms within their

interval [0, 1]. The conclusion of the theorem represents the Piling-up Lemma,

given in Equation (2), using the probability theory fundamentals of Section 3.

We proceed with the proof of Theorem 5 by inducting on P , which generates

the following subgoals after some simplifications.
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Subgoal 5.1: (∀e.mem e [a; b] ⇒ (-1/2 ≤ e) ∧ (e ≤ 1/2))

⇒ (P {s | fst (piling up (prob list [a; b]) s) = F} =

1/2 + (2length([a;b])−1) list mul [a; b]).

Subgoal 5.2: (∀e.mem e (a::b::P) ⇒(-1/2 ≤ e) ∧ (e ≤ 1/2)) ⇒

(P {s | fst(piling up (prob list (a::b::P)) s) = F} =

1/2 + (2length(a::b::P)−1) list mul (a::b::P))

⇒ ∀c.(∀e.mem e (a::b::c::P) ⇒ (-1/2≤e) ∧ (e≤1/2))⇒

(P {s | fst(piling up (prob list (a::b::c::P)) s) = F} =

1/2 + (2length(a::b::c::P)−1) list mul (a::b::c::P)).

The first subgoal corresponds to the base case whereas the second subgoal is for

the step case. We now tackle them one-by-one. Subgoal 1 represents the case

when the list P consists of only two elements, i.e., P = [a; b]. After simplifying

this subgoal with Definitions 1 to 5 and rewriting with Boolean Theory principles

we are left with the following expression to prove in the HOL4 theorem prover.

Subgoal 5.1.1: (∀e. mem e [a; b] ⇒ (-1/2 ≤ e) ∧ (e ≤ 1/2))

⇒ (P {s | fst (bernoulli rv (1 - (1 / 2 + a)) s) ∧

fst (bernoulli rv (1 - (1/2 + b))

(snd (bernoulli rv (1 - (1/2 + a)) s))) ∨

¬fst (bernoulli rv (1 - (1/2 + a)) s) ∧

¬fst (bernoulli rv (1 - (1/2 + b))

(snd (bernoulli rv (1 - (1/2 + a)) s)))} =

1/2 + (2 a b)).

The set on the left-hand-side (LHS) of the above subgoal contains two indepen-

dent Bernoulli random variables. We know that they are independent because

the remaining portion of the infinite Boolean sequence, i.e, (snd (bernoulli rv

(1 - (1 / 2 + a)) s)) is used to model the second Bernoulli random variable.

In order to simplify this subgoal, we first verify the following equality:

Subgoal 5.1.2: 1/2 + (2 a b) =

(1 - (1/2 + a)) (1 - (1/2 + b)) +

(1 - (1 - (1/2 + a))) (1 - (1 - (1/2 + b))).

Using this result, we replace the right-hand-side (RHS) term of Subgoal 5.1.1.

Next, we replace the terms (1 - (1 / 2 + a)) and (1 - (1 / 2 + b)) with

variables x and y, such that both of these newly introduced variables lie in the

interval [0, 1] based on the assumption (∀ e. mem e [a; b] ⇒ (- 1
2 ≤ e) ∧

(e ≤ 1
2)). These simplifications, along with some set theoretic reasoning, allow

us to rewrite Subgoal 1.1 as follows:

Subgoal 5.1.3: (0 ≤ x) ∧ (x ≤ 1) ∧ (0 ≤ y) ∧ (y ≤ 1)
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⇒ (P {s | fst (bernoulli rv x s)} ∩

{s | fst (bernoulli rv y (snd (bernoulli rv x s)))}
⋃

{s | fst (bernoulli rv x s)} ∩

{s | fst (bernoulli rv y (snd (bernoulli rv x s)))} =

x y + (1 - x) (1 - y).

The LHS of the above subgoal can now be simplified based on the formally

verified basic probability laws [Hurd, 2002], i.e., the additive law (P (A ∪ B) =

P (A) +P (B)), the law of independent events (P (A ∩B) = P (A)P (B)) and the

complement law (P (A) = 1 − P (A)). After this simplification, the subgoal can

be discharged using the PMF relation of the Bernoulli random variable given in

Theorem 1. This also concludes the proof of Subgoal 5.1.

Subgoal 5.2, obtained after performing induction on the variable P of The-

orem 5, represents the step case where we want to verify the given expression

holds for a list (a::b::c::P) for all values of variable c under the assumption

that the given expression is True for the list (a::b::P). After simplifying with

the definition of list function mem and some arithmetic rewriting, we obtain:

Subgoal 5.2.1: (∀e.mem e (a::b::c::P) ⇒ (-1/2≤e) ∧ (e≤1/2)) ∧

(P {s | fst(piling up (prob list (a::b::P)) s) = F} =

1/2 + (2length(P)+1) list mul (a::b::P))

⇒ (P {s | fst(piling up (prob list (a::b::c::P)) s) = F} =

1/2 + (2length(P)+2) list mul (a::b::c::P)).

The second assumption given above is the key to verify the subgoal but it cannot

be applied as is because the newly introduced element c is positioned in such a

way that just rewriting the conclusion with Definitions 1 to 5 does not result in

the list (a::b::P), which is found in the assumption. Therefore, we used the

commutativity and associativity of XOR and the independence of variables in

the piling up list to formally verify the following relationship:

Subgoal 5.2.2: P{s | fst(piling up (prob list(a::b::c::P)) s)=F} =

P{s | fst(piling up (prob list(c::a::b::P)) s)=F}.

Now after rewriting Subgoal 5.2.1 with the result of Subgoal 5.2.2 and simplifying

the resulting subgoal with Definitions 1 to 5 we get

Subgoal 5.2.3: (∀e. mem e (a::b::c::P)

⇒ (-1/2 ≤ e) ∧ (e ≤ 1/2)) ∧

(P {s | fst (piling up (prob list (a::b::P)) s) = F} =

1/2 + (2length(P)+1) list mul (a::b::P))

⇒ (P {s | fst (bernoulli rv (1 - (1/2 + c)) s) ∧

fst (piling up (prob list (a::b::P))

(snd (bernoulli rv (1 - (1/2 + c)) s))) ∨
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¬fst (bernoulli rv (1 - (1/2 + c)) s) ∧

¬fst (piling up (prob list (a::b::P)))

(snd (bernoulli rv (1 - (1/2 + c)) s))} =

1/2 + (2length(P)+2) list mul (a::b::c::P)).

The above subgoal is very similar to Subgoal 5.1.1 except the fact that in-

stead of one of the Bernoulli random variables, we have the variable (piling up

(prob list (a::b::P)). Therefore, just like Subgoal 5.1.1., the proof of Sub-

goal 5.2.3 is primarily based on the basic probability laws, the PMF relation for

the Bernoulli random variable given in Theorem 1, and the PMF relation for the

random variable (piling up (prob list (a::b::P)) which can be extracted

from its assumption list using the complement law of probability. This proof also

concludes the formal verification of the Piling-up Lemma, given in Theorem 5.

The formal verification of the Piling-up Lemma ensures the correctness of

our formalization of the Piling-up principle, given in Definition 4. Besides that,

the formally verified statement of the Piling-up Lemma can also be built upon to

formally reason about interesting LC properties within the sound core of HOL4

theorem prover, as will be illustrated in Section 6 of this paper.

5 Probabilistic Analysis of the Key-Deciphering algorithm

Matsui’s algorithm, given in Algorithm 1, is based on the maximum-likelihood

method and can be used to obtain one bit of information about the key, i.e.,

(
⊕

k∈c Kk), once a linear expression of the entire cipher is obtained [Matsui, 1993].

By observation, it can be deduced that the success rate of the above algorithm

would increase with N or e, which denotes the probability bias |p − 1
2 |. This

deduction forms the basis of LC and has been used to break many block ciphers.

In this paper, we formally reason about this result using the probabilistic theo-

rem proving based approach, outlined in Section 3. Algorithm 1 is formalized as

follows:

Definition 9: Key-Deciphering Algorithm

⊢ ∀ N p. key deciphering N p s =

(xor (fst (binomial rv N p s) > N/2) (p > 1/2)).

The function key deciphering accepts three parameters: N p and s that rep-

resent the variables N and p used in Algorithm 1 and the infinite Boolean se-

quence, which is the source of randomness in our formalization. It returns a

Boolean quantity
⊕

k∈c Kk by modeling variable T of Algorithm 1 as the Bino-

mial random variable with parameters N and p.

In this paper, we analyze Algorithm 1 under the assumptions that e > 0

and
⊕

k∈c Kk = False, which have been adapted from Junod’s [Junod, 2000]

informal paper-and-pencil based analysis of the same algorithm. We formally
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Algorithm 1 Key-Deciphering Algorithm

01. N := Total number of 〈plaintext, ciphertext〉 pairs

02. p := Probability that the linear expression given in Equation (1) holds

03. T := Number of plaintexts for which the LHS of Equation (1) is False

04. if (T > N
2 ) then

05. if (p > 1
2 ) then

06.
⊕

k∈c Kk = False

07. else

08.
⊕

k∈c Kk = True

09. else

10. if (p > 1
2 ) then

11.
⊕

k∈c Kk = True

12. else

13.
⊕

k∈c Kk = False

reason about the following relationship between the probability of success of

Algorithm 1 and the parameters N and e.

Theorem 6: Lower Bound on the Probability of Success of Algorithm 1

⊢ ∀ k N p e.0 < N ∧ (p=1/2 - e) ∧ 0 < e ∧ e < 1/2 ∧ (k=F)

⇒ 1 - (1/N)(1/(4 e2) - 1) ≤

P {s | (key deciphering N p s) = k}.

The first assumption ensures that we have at least one 〈plaintext, ciphertext〉

pair, while the others define the relationship between variables e and p and the

above-mentioned constraints under which we analyze the algorithm. The RHS of

the above inequality represents the success probability of Algorithm 1 as it gives

the probability when the algorithm returns k, which represents
⊕

k∈c Kk. The

LHS of the inequality is an expression in terms of variables N and e, the value

of which increases when the value of any one of these two variables increases.

We proceed with the proof of Theorem 6 by first rewriting the success proba-

bility term with Definition 9, simplifying it based on the given assumptions and

the complement law of probability and rearranging the terms as follows:

Subgoal 6.1: 0 < N ∧ 0 < e ∧ e < 1/2

⇒ P {s | N/2 < (fst (binomial rv N (1 / 2 - e) s))} ≤

(1/N)(1/(4 e2) - 1).

The LHS of the above subgoal can be rewritten based on the expectation and

variance relations of the Binomial random variable, given in Theorems 2 and 3,
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respectively, and some arithmetic reasoning as follows:

Subgoal 6.2: 0 < N ∧ 0 < e ∧ e < 1/2

⇒ P {s | fst ((λs. binomial rv N (1/2 - e) s) s) -

expec (λs. binomial rv N (1/2 - e) s) > N e} ≤

(variance (λs. binomial rv N (1/2 - e) s))/(N e)2.

The above subgoal can now be discharged by using the increasing law of prob-

abilities (A ⊆ B ⇒ Pr(A) ≤ Pr(B)) and the Chebyshev’s inequality, given in

Theorem 4. This also concludes the proof of Theorem 6.

Theorem 6 provides a formal proof of Matsui’s deduction that the probability

of success of Algorithm 1 increases with both N and e. The HOL4 proof script,

corresponding to the formalization and verification presented in Sections 4 and

5, is available at [Hasan, 2014].

Just like the Piling-Up lemma, the key deciphering algorithm is also a funda-

mental concept in LC and thus its formal verification confirms the accuracy of

LC research that is based on this principle. Similarly, this verification paves the

path to reason about many interesting LC properties using theorem proving.

6 Application: Formal Reasoning about LC Properties

To illustrate the usability and practical effectiveness of the proposed formaliza-

tion, we use it to reason about some of the commonly used LC characteristics

in this Section.

The first property that we verify states that the probability of linear approxi-

mation of a cipher is equal to one half, i.e., it can never be broken with the given

linear approximation, if the probability associated with the linear approxima-

tion of at least one of its submodule is exactly equal to one half. The Piling-up

Lemma is the core foundation that deals with the above-mentioned relationship

of probabilities of linear approximations between the cipher and its submodules

and thus would be used to verify it. Therefore, the given characteristic can be

formalized as follows:

Theorem 7: Probability of Linear Approximation is equal to 1/2

⊢ ∀ P. (2 ≤ LENGTH P) ∧

(∀ e. mem e P ⇒ (-1/2 ≤ e) ∧ (e ≤ 1/2)) ∧

(∃ e. mem e P ∧ (e = 0))

⇒ (P {s | fst (piling up (prob list P) s) = F} = 1/2).

The third assumption ensures that at least one element of the probability bias

list would be zero and thus, from Definition 5, the corresponding probability

of linear approximation would be exactly equal to 1
2 . The proof of the above

theorem is a direct instantiation of Theorem 5 along with some basic arithmetic

reasoning and was done in one HOL4 rewriting step.
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Next, we want to formally reason about the impact of the total number of

〈plaintext, ciphertext〉 pairs N and the probability that the linear expression,

given in Equation (1), holds p on the success of Matsui’s Key-Deciphering al-

gorithm. We first verify that the success probability of Matsui’s deciphering

algorithm approaches 1 when p approaches to 0.

Theorem 8: Success Probability of Matsui’s Deciphering Algorithm when p

tends to 0

⊢ ∀ n. (0 < n)

⇒ (right lim (λp.P{s | key deciphering n p s = F}) 1 0).

The predicate right lim f l a, formalized in [Hasan et al., 2009b], represents

the limit from the right limx→a+f(x) = l, i.e., the limit value of the function f

at point a is l when its argument x decreases in value approaching a. Theorem 8

basically states that the success probability of the Matsui’s Key-Deciphering al-

gorithm, formalized in Definition 9, approaches 1 as its argument p approaches 0

when we have at least one 〈plaintext, ciphertext〉 pair. We proceed with the proof

of Theorem 8 by first rewriting the proof goal with the definition of the function

right lim f l a, which after simplification gives us the following subgoal

Subgoal 8.1: 0 < n ∧ 0 < e

⇒ ∃d. 0 < d ∧ (∀x. 0 < x ∧ x < d ⇒

abs(P {s | ¬(key deciphering algo n x s)} - 1) < e).

where abs is the absolute function in HOL. Next, we remove the existential

quantifier on the variable d using the term (1/2) - (1/2) * (1/(sqrt(1 +

(n) * e))), where the HOL4 function sqrt models the square root of a real

number. This term is positive, which allows us to discharge the first conjunct in

the above subgoal. Using arithmetic simplification and the fact that the prob-

ability can never be greater than 1, the second conjunct of Subgoal 8.1 can be

rewritten as follows:

Subgoal 8.2: 0 < n ∧ 0 < e ∧ 0 < x

∧ x < (1/2) - (1/2) * (1/(sqrt(1 + (n) * e))) ⇒

1 - e < P {s | ¬(key deciphering algo n x s)}.

The above inequality can now be verified using Theorem 6 and some arithmetic

reasoning, which concludes the proof of Theorem 8.

Now, to reason about the impact of the total number of 〈plaintext, ciphertext〉

pairs N on the success of Matsui’s deciphering algorithm, we prove that as N

becomes very large, the success probability of Matsui’s deciphering algorithm

approaches 1.

Theorem 9: Success Probability of Matsui’s Deciphering Algorithm when n

tends to ∞
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⊢ ∀ p e. (p = 1
2
− e) ∧ (0 < e) ∧ (e < 1

2
)

⇒ (lim (λn. P {s | key deciphering n p s = F}) = 1).

The function lim f, formalized in [Harrison, 1998], represents the limit of a real

sequence limn→∞f(n), i.e., the limit value of a real sequence f as its natural

number arguments becomes very large. Theorem 9 states that the success prob-

ability of the Matsui’s Key-Deciphering algorithm, formalized in Definition 9,

approaches 1 as its natural number argument n becomes very large under the

assumptions when p lies in the interval (0, 12 ). The proof of Theorem 9 is very

similar to the one of Theorem 8.

The straightforward formal verification of the above LC characteristics clearly

demonstrates the effectiveness of the formalization of the previous two sections.

It is also important to note that all the above properties are generic and in-

dependent of the cipher behavior. In case, we want to reason about properties

specific to a given cipher, the cipher’s behavior can be expressed in higher-order

logic and the corresponding bias list can then be reasoned about, which in turn

can be used to formally verify interesting LC properties.

7 Conclusions

This paper presents the formal verification of the Piling-up Lemma and Matsui’s

Key-Deciphering algorithm using the HOL4 theorem prover. These results are

of foundational nature in the LC domain and thus their formalization facilitates

the proposed approach for analyzing security aspects of block ciphers within

the sound core of a higher-order-logic theorem prover. Accuracy is the main

strength of our approach, which is a very useful feature while analyzing block

ciphers deployed in safety or financial-critical systems. For illustration purposes,

we used our formalization infrastructure to formally reason about a few LC

properties in HOL4.

To the best of our knowledge, this paper represents the first attempt to for-

mally reason about fundamental LC properties in a mechanical theorem prover.

Our formalization opens the doors to many new areas in the direction of the-

orem proving based LC. First of all, we plan to build upon our formalization

infrastructure to formally analyze security aspects of the DES cipher, which also

served as a case study in Matsui’s seminal paper on LC [Matsui, 1993]. Simi-

larly, LC of other modern block ciphers, such as AES, MARS, Twofish, RC6,

Serpent, IDEA, and TEA, can also be performed in HOL4. Another useful direc-

tion to explore would be to use one model of a block cipher to formally analyze

both the functional and the security properties. Similar to our formalization of

LC, differential cryptanalysis algorithms and lemmas can also be formalized in

higher-order logic to facilitate the development of a formal differential crypt-

analysis infrastructure.
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